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Abstract

A sequence 7 = (di,...,dn) of nonnegative integers is graphic if there
exists a graph G with n vertices for which dy,...,d, are the degrees of
its vertices. G is referred to as a realization of 7. Let P be a graph
property. A graphic sequence w is potentially P-graphic if there exists
a realization of 7w with the graph property P. Similarly, = is forcibly
P-graphic if all realizations of 7 have the property P. We characterize
potentially Halin graph-graphic sequences, forcibly Halin graph-graphic
sequences, and forcibly cograph-graphic sequences.

1 Introduction

We consider finite simple graphs only. A sequence = = (d,,...,d,) of non-
negative integers is graphic if there exists a graph G with n vertices for which
dy,...,d, are the degrees of its vertices. G is referred to as a realization of
and 7 is the degree sequence of G.

A graphic sequence r is potentially P-graphic if there exists a realization of
« with the graph property P. Similarly, = is forcibly P-graphic if all realizations
of 7 have the property P.

For several graph properties the forcibly P-graphic or potentially P-graphic
sequences are well known. From the definitions of forcibly and potentially P-
graphic sequences arises the following question:

For which graph property P is the number of forcibly P-graphic sequences
finite?

We show that there are only three forcibly Halin graph-graphic sequences.
Halin graph is one of the first graph property P with a finite number of forcibly
P-graphic sequences.

A graph is a cograph if it has no induced subgraph P;. Threshold graphs and
trivially perfect graphs are subclasses of cographs and their forcibly P-graphic

ARS COMBINATORIA 75(2005), pp. 205-210



sequences are well known [5], [1]. We characterize forcibly cograph-graphic
sequences in a very elementary way. S.R. Rao proposed a general approach
to the description of forcibly hereditary P-graphic sequences [7]. S.R. Rao’s
criterion in case of cograph requires O(n”) operations. OQur characterization
requires O(n) operations and it gives complete information about the structure
of forcibly cograph-graphic sequences.

In general, a graphic sequence w has several realizations. We switch two
edges of a realization of m, then we get another realization of 7. Formally,
assume that e, b, c,d are vertices of a graph G = (V, E) such that ab,cd € E(G)
and ac,bd ¢ E(G). The switching is the replacement of the edges ab and cd by
the edges ac,bd. The resulting graph is G' = G — ab — cd + ac + ad. Clearly,
switchings do not change degree of any vertex.

2 Degree Sequences of Halin Graphs

A Halin graph is a plane graph H = T U C, where T is a plane tree with no
vertex of degree two and at least one vertex of degree three or more, and C is
a cycle connecting the endvertices of T in the cyclic order determined by the
embedding of T.

Lemma 1 ([6]) A sequence ® = (dy,...,dn) is potentially tree-graphic if and
only if everyd; >0 and Y, di =2(n - 1).

Theorem 1 A sequence * = (d,...,dy), dy < --- < d, is potentially Halin
graph-graphic if and only if the following assertions hold:
Let | be the number of elementsd; =3 and h:=1 Y7 di—n+1.

(i) dy =3 and! > 3,
(ii) h is an integer with 3 < h <.

Proof: If = is potentially Halin graph-graphic, then = has a realization H =
T U C, which is a Halin graph. Let k be the number of endvertices of T. By
the definition of Halin graph it is easy to see that d; = 3, 3 < k < [ and
Yo, di=2n—2+2k. Hence3<h=k<l

Conversely, we assume that d; = 3,! > 3 and h is an integer with3 < h < L.
We look at the sequence 7’ = (1,...,1,dr41,..-,ds). The sum of the elements
of #’ is equal to 2n — 2. By Lemma 1 #' is potentially tree-graphic. Let T” be a
tree realization of «’. T' does not have a vertex with degree two and T/ has at
least one vertex of degree three or more. Now we add a cycle C, which connects
the endvertices of 7' in the cyclic order determined by the embedding of T".
G =T'UC is a Halin graph and = is the degree sequence of G. Therefore = is
potentially Halin graph-graphic. 0

Lemma 2 ([4]) Helin graphs are 3-connected graphs.

Lemma 3 ([2]) A grephic sequence 7 = (dy,...,dn), 1y >+ >2dy 21,023
is forcibly tree-graphic if and only ifds = 1 and dy + dy = n.
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Theorem 2 A graphic sequence w is forcibly Halin graph-graphic if and only if
7 =(3,3,33), 7=(4,33,33) or7=(53,3,3,3,3).

Proof: Let H = T U C be a Halin graph realization of #. Without loss of
generality we may assume that T has at least four endvertices: otherwise = =
(3,3,3,3). In view of Lemma 2, our aim is to find a realization of w, which
is not 3-connected. By Lemma 2 such a realization is not a Halin graph. We
look at the degree sequence wr of the tree T. Let G be a realization of 7 with
endvertices v1,...,vp (dy; = 1). It is easy to see that we can always find a cycle
C' = (vi,,...,v;,) such that GUC’ is a realization of .

We first consider the case that mr is not forcibly tree-graphic. Then wnr has
a realization G, which is disconnected. Let Sy, ...,S,, mK, be the components
of G, where S; has at least three vertices and m components are K. Some S;
must contain a cycle, as G cannot be a forest. Each component has at least one
endvertex: otherwise 7 has a realization, which is disconnected. Let v;,..., v
be endvertices of Sy, ..., Sy, first the endvertices of S;, then endvertices of S
and so on. Let a;b; be the edges of Ky, fori=1,...,m.

If m > 2, we add the cycle C = (v1,...,0,81,...,8m,b1,...,bp). GUC
has the degree sequence 7. G UC is not a Halin graph, since G U C — {v, %}
is disconnected.

If m = 0, then necessarily » > 2. We add the cycle C = (v;,...,v), then
GUC - {v),vn} is disconnected, where v, is the first and vy, is the last endvertex
of S 1-

If m = 1 and G has at least two S; components, then we add the cycle
C=(v1,--+Uh81,Vht1y .-, Uk, 01). GUC — {ay,b1} is disconnected. If r =1,
then S; has only one cycle Z: otherwise w1 has another realization, which is
connected and not a tree, a contradiction. Let vertex v be on the cycle Z. If it
exists a path P = (v, z,y) such that z and y are not on the cycle Z, then we
switch a;b; and vz and we get a new graph G'. For G' it holds m = 0. If no
such a path P = (z,¥, z) does exist, then each vertex is either on the cycle Z or
endvertex, and has a neighbor on the cycle Z. By definition of Halin graph each
vertex on the cycle Z has at least one endvertex as a neighbor. If S; has more
than four endvertices, then it is easy to find two cycles C; = (v, a;,v2,b,) and
Cy = (vg,-.-.,vx) such that GU C; U C: is not 3-connected. If S has at most
four endvertices, then it exists only three degree sequences (3,3,3,3,3,3,3,3),
(4,3,3,3,3,3,3,3,3) and (3,3,3,3,3,3,3,3,3,3). Each of these sequences has a
realization, which is disconnected and has K4 as a component.

It remains to consider the case that wr is forcibly tree-graphic. By Lemma 3
the tree T with n vertices has at least n — 2 endvertices. If T has more then five
endvertices, then we can add two disjoint cycles through these endvertices in
such a way that the arising graph is not 3-connected. By Lemma 3 and the def-
inition of a Halin graph, we get only five forcibly tree-graphic degree sequences
with at most five endvertices: nr, = (3,1,1,1), =, = (4,1,1,1,1), np, =
(5,1,1,1,1,1), np, = (3,3,1,1,1,1), 71y = (4,3,1,1,1,1,1). We put a cycle on
the endvertices of T}, then we get the degree sequences 7, = (3,3,3,3), n2 =
(41 3» 37 31 3)1 3 = (51 3, 31 3, 31 3): Ty = (3’ 31 3$31 3: 3)’ 5 = (41 3y 3: 3» 3’ 3: 3)-
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It is easy to see that m;, w2 and =3 have unique realizations and that they are
Halin graphs. w4 has the realization K33 and 75 a non-planar realization too
(see Figure 1). a

Figure 1: A non-planar graph with degree sequence 7 = (4,3,3,3,3,3,3). By
the contraction of edge e, K3 3 is minor of the graph.

3 Rao’s Method for a Hereditary Property

A graph property P is hereditary if a graph G and each induced subgraph of
G have the property P. For example, cograph, planarity. S.R. Rao proposed
the following general approach to characterize forcibly hereditary P-graphic
sequences [7}:

On the set of all graphic sequences the partial order « is defined as
follows: m; <« s if w2 has a realization G and n; has a realization
H such that H is an induced subgraph of G.

Let G(P) be the set of graphs with property P. Then there exists
the set Fo(P) of minimal forbidden subgraphs such that G € G(P)
if and only if none of the induced subgraphs of G belongs to Fo(P).
Let Ag(P) be the set of graphic sequences of elements of Fy(P). Let
M (P) be the set of minimal elements with respect to < in Ag(P).

A graphic sequence m = (dy,...,dy), di > --- > d, is forcibly P-
graphic if and only if M (P) contains no elements such that 7’ < .

Lemma 4 If the property P is cograph, then M(P) = {(2,2,1,1)}.

Proof: #* = (2,2,1,1) has a unique realization, the path P;. Hence n* €
Ao(P). If # € Ag(P), then 7 has a realization G, which is not cograph. P, is
an induced subgraph of G. Then n* « w. Therefore 7* is the unique minimal
element of Ag(P) and M(P) = {(2,2,1,1)}. m]

If M(P) is known and no additional considerations are used, then time
c((¥)n(n — k)2k* +n) is necessary for the verification of S.R. Rao's criterion {1}.
k is the maximum length of sequences from M(P), n is the length of the tested
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sequence and c is a constant. By Lemma 4 the direct use of S.R. Rao’s criterion
on a cograph requires cn? operations. In the next section we give a linear time
characterization for forcibly cograph-graphic sequences.

4 Forcibly Cograph-graphic Sequences

We denote by G¢ the complement graph of G. For a graphic sequence 7 =
(di,...,dn) wecall ¢ = (n-1-dj,...,n—1—d,) the complement sequence of
7. It is easy to see that G is a realization of = if and only if G¢ is a realization
of w¢.

Lemma 5 ([3]) G is a connected cograph if and only if G° is a disconnected
cograph.

Theorem 3 A graphic sequence m# = (di,...,dp), dy > -+ > dp, n > 2 is
forcibly cograph-graphic if and only if one of the following assertions holds:

(i dy=n—1endm =(dy —1,...,dn — 1) is forcibly cograph-graphic;
(ii) dn =0 and 7y = (d1,...,dn—1) is forcibly cograph-graphic;
(iii) dy < n-1,1<d, and 7 or 7° is equal to (k,1,...,1).

Proof: Assertions (i) and (ii) are trivial. We prove the assertion (iii). Let 7 =
(d1,...,dy) be a forcibly cograph-graphic sequence withd; <n-1and 1 < d,,.
We first consider the case that 7 has a realization G which is disconnected. G
is a cograph and it has at least two components. Each component of G has an
edge, since d, > 1. Now we show that at most one component is a K; & and all
other components are K2. We assume that one of the components has a cycle.
We switch an edge of a shortest cycle with an edge of another component, then
we get a realization of = with an induced subgraph P;. This is a contradiction. If
two components have an induced subgraph P, then we again get, by switching,
an induced P4. Let S be the unique component of G with an induced P;. S
is a tree and Pj is a longest path of S. Hence S is a K . It follows that
m = (k,1,...,1). It remains to consider the case that 7 has a realization H
which is connected. By Lemma 5 H* is disconnected and cograph. Therefore
n° = (k,1,...,1).

Conversely, it is easy to see that the sequence = = (k,1,...,1) with n ele-
ments is graphicif andonlyif 1< k<n-1landn—k~1iseven. 7 and 7n°
have unique realizations G and G°, respectively. A unique component of G is
K, k, the remaining components of G are all K». G is a cograph. Therefore 7
and 7° are forcibly cograph-graphic. o

Corollary 1 The forcibly cograph-graphic sequence m = (dy,...,dy), di >
-+« > dy can be recognized in O(n) elementary operations.

Corollary 2 If w is forcibly cograph-graphic, then = has a unique realization.
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