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Let v. k and A be positive integers. A iransilive ordered k-tuple
(ar.ap.---.ay) is defined to be the set {(a;,a;) : 1 <i < j<k)
consisting of (5) ordered paits. A directed balanced incomplete block
design (directed BIBD), brielly DB(k, X;v), is a pair (X, B), where X
is a v-set of points and B is a collection of transitive ordered k-tuples
of X (called blocks) such that every ordered pair of distinct points
of X occurs in exactly A blocks of B. It is noted that a DB(k.\:v)
becomes a balanced incomplete block design B(k. 2)\; v) (or (v, k, 2X)-
BIBD) if the order of the blocks is ignored. The necessary conditions
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for the existence of a DB(k. A;v) arce

v =1)=0 (modk—1).
— k
M(w—-1)=0 (mod (3)).
It has been shown in [7] that the necessary condition for the existence
ofa DB(4. \;v)isthat v=1 (mod 3)and v > 4ifA = 1.2 (mod 3):
and any v if A=0 (mod 3).

Every transitive ordered k-tuple B = (a;.a3.---.a;) has a con-
verse B~ = (ag, ap_1. ---. a). So given a DB(k, A\;v) (X.B). one
can define B~! = {B~! : B € B}. Obviously, (X.B™!) is also a
DB(k. A;v), which is called the converse of (X,B). If there exists
a permutation f on X such that B~! = {f(B) : B € B}. where
f(B) = (f(a1). f(a2).- -+, f(ax)) for B = (ay.a2,---,ay), then we
say that (X.B) and (X,B~1) are isomorphic. If such an isomor-
phism [ exists. then the DB(k.A;v) (X.B) is called self-converse
and denoted by SCDB(k. A\;v) or (X.B, f).

It is well known that a DB(3,1;v) exists if and only if v =
0. 1 (mod 3) (see [4]). In [2], it was put forward as a open problem
by Colbourn and Rosa that for what orders an SCDB(3,1; v) exists.
Kang, Chang and Yang gave a complete answer and proved that an
SCDB(3,1;v) exists if and only if v = 0,1 (mod 3) and v # 6 (see
(5]). Recently, Yin gave a short new proof for Colbourn and Rosa
problem (see [9]) and the authers showed that the existence spectrum
ofan SCDB(4,1;v) isv=1 (mod 3) and v # 7 in [8]. In this pa-
per we will establish the existence spectrum of an SCDB(4, A: v) for
any integer A > 2.

2 Preliminaries

In order to establish our construction, we need the following auxiliary
designs.

A GDD with block size k and index A, a positive integer, denoted
by (k.A)-GDD, is a triple (X.G,.A) which satisfies the following

properties:
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Construction 2.4 ([8]) Let V be a v-set of points and W a w-sel
of points with VAW ={. Let = be an arbitrary permutation on W
and [; a permulation on G; whose order p(f;) <2 for 1 < j <L
Suppose that the following designs exist:

1. a (k.))-GDD (V.G.B) withG={G;: j=1,2,---.t},

2. an ISCDB(k. X: |Gj|+w.w) (G;UW,W.Bj.mo f;) for1 < j <
{—1.

Then there ezists an ISCDB(k, Aiv +w, |G| +w) with isomorphism
f = wofo---0fa0f). Furthermore, if there is an SCDB(k, A; |G |+w)
(G, UW,B,.7 o f;), then there exists an SCDB(k, ;v + w) with
isomorphism. f.

Let (X, B, f) be an SCDB(k, \;v). For any v € X, if fi(z) ==
but f*(z) # 2 when s < ¢, then we denote ps(z) =t. When ps(z) =
1. we call z a fized point. The following Lemma is simple but very
useful.

Lemma 2.5 If the permutatlion f has a fized point, then the exis-
tence of an SCDB(k, A;v) with the isomorphic mapping [ is equiv-
alent to the existence of an ISCDB(k, A;v,1).

Theorem 2.6 There exisls an SCDB(4,A;v) forv =1 (mod 3),
v # T and any A.

Proof In [8]. there exists an SCDB(4,1;v) if and only if v =
1 (mod 3) and v # 7. Then an SCDB(4, A;v) can be obtained by
repeating every block of the SCDB(4,1;1) A times. m]

By Theorem 2.6 and the necessary condition for the existence of a,
DB(4. A;v), we only need consider the existence of an SCDB(4, \; 7)
for A > 2 and an SCDB(4,\;v) for A=0 (mod 3) and v = 0,2
(mod 3).

214



3 The Existence of SCDB(4,3;v)’s

In this section we will show that an SCDB(4.3;v) exists [or v =
0.2 (mod 3), and hence an SCDB(4,\;v) with A = 0 (mod 3)
exists. For convenicnce we define f(B~!) = {f(B™!): B € B}.
First, we need the following results as auxiliary design for utilizing
Construction 2.4.

Lemma 3.1 For each pair (v,w) € {(11,2),(11,3). (14,2), (15.3),
(85.11)}, there exists an ISCDB (4,3;v,w) with isomorphism f
whose order p(f) = 2.

Proof Suppose that X = Z,_,UY and Y = {ocy, - .o¢y,}. The
desired ISCDB (4,3;v,w) is (X,Y, AU f(A™!), f), where the block
set A and the isomorphism f are listed below.

Case (v,w) = (11,2)

A: (x1.0.1.4) (+1, mod 9).
(0, 1. 3, 5) (+1. mod 9),
(2, 0, 1, 3) (+1, mod 9).

J = (0)(1) - (8)(201 oc2).

Case (v,w) = (11,3)

A: (0,2.4.6), (1,35, 7),
(1. 0, 1, 3) (+1, mod 8),
(24, 0, 1 5) (+1, mod 8).
(003, 0, 1, 3) (+1, mod 8).

f= 0)(1)-~(7)(0<>1 002)(003).
Case (»,w) = (14,2)

A: (0.3,6,9), (1,4,7,10), (2 5,8, 11),
(0.1.7.6), (1,2.87), (2 3.9.8).
(3.4.10.9), (4,5,11,10), (5,6,0,11),

(1. 2. 4, 6) (+1. mod 12),
(0.1, 3, 8) (+1, mod 12),
(ocg. 1. 2. 10) (+1, mod 12).

S =(0)(1)--- (11)(o0; o03).
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Case (v.w) = (15.3)
A: (0.3.6.9). (1.4.7.10). (2,5.8,11),
(ocy, 0.3, 7) (+1, mod 12).
(0.1, 4, 9) (+1. mod 12).
(2. 0. 1. 2) (+1. mod 12),
(2c3, 0. 6. 8) (+1, mod 12).

= (0)(1) -+ (11)(ocy oca)(2cs)-
Case (v.w) = (35.11)
A: (0.6.12,18). (1, 7.13.19).
(2. 8, 14, 20). (3. 9. 15. 21).
(4. 10. 16. 22), (5. 11,17, 23),

(0. 2, 5. 001) (+1. mod 24),
(0, 1. 3. 002) (+1, mod 24),
(0. 3. 8, 003) (+1, mod 24),
(0. 1, 2, <) (+1, mod 24),
(0. 7. 14. oc3) (+1. mod 24),
(0. 6, 14, ocg) (+1 mod 24),
(0. 4, 13. oc7) (+1. mod 24),
(0. 5, 14, ocg) (+1, mod 24),
(0, 4, 12, 009) (+1. mod 24),
(0, 4, 13, 2c10) (+1, mod 24),

(0, 6, 13, >c11) (41, mod 24).
= (0)(1) - - - (23){ocy 00z) - - - (ocgocin)(cct)- ]

Theorem 3.2 An SCDB(4.3;v) exists forv =0 or1 (mod 4) .

Proof For v = 0or 1 (mod 4), there is a B(4,3;v) (X,B) (see
[3]). The desired SCDB(4,3;v) is obtained by writing cach block of
B twice — once in some order and the other in the reverse order. in
which the isomorphism [ is an identical permutation on X. a

What remains is to deal with the cases where v = 2,3.6,11
(mod 12). We will give some results with small order which play
important roles on constructing new SCDB(4, 3; v)s.

Lemma 3.3 There is an SCDB(4.3;6) with isomorphism f whose
order p(f) = 2.
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Proof Suppose X = I and the isomorphism f = (0 1)(2 3)(4 5).
the block set B=ByUB, U f (Bl'l) where the blocks of By and B;
are listed below:

Bo: (0,2,3,1), (3.4,5.2), (5,1,0,4);
B,: (0.2,4.1), (0,2,3,4), (1,2,0,5),
(1,2,4,5), (3.2.0,5), (1,3.5,4).

It is readily checked that (X.B,f) is the desired SCDB(4,3:6). O

Lemma 3.4 There is an SCDB(4,3;v) with isomorphism [ whose
order p(f) = 2 for v = 14,18, 26.

Proof The desired SCDB(4,3;v) (X, B, f) can be constructed by
taking the point set X = Z,, the isomorphism f: 2 — 2 + 3 for
x € Z,. and the block set B=ByU B U f(Bl'l) where all blocks of

By and B; are listed below.

Case v=14

(0, 5, 12, 8) (+2, mod 14),
(1, 6, 12, 4) (+2, mod 14),
(0, 5. 10, 6) (+2, mod 14).

(0, 5, 6, 11) (+2, mod 18),
(0, 6, 14, 12) (+2, mod 18),
(0, 16, 1, 12) (+2, mod 18),

By: (0.1, 8,7) (+2, mod 14);

By: (0,1, 2, 3) (+2, mod 14),

(0, 3. 4. 8) (+2, mod 14),

(0. 2,4, 7) (+2. mod 14),

Case v =18

By:  (0.1,10,9) (+2, mod 18)
Byi: (0.2,4,7) (+2, mod 18),
(0, 3, 4, 8) (+2, mod 18),
(5.0, 2,9) (+2, mod 18),

(1. 2.3, 10) (+2. mod 18),

(11, 1, 4, 14) (42, mod 18).

Case v = 26

By: (0,1, 14, 13) (42, mod 26);

By: (0, 5. 3, 16) (+2, mod 26),
(1. 3, 0. 10) (+2, mod 26),
(3.1, 23, 2) (+2, mod 26),

(0, 18. 14, 10) (+2, mod 26),
(0. 11, 20, 21) (+2, mod 26),
(21, 6, 14, 17) (+2, mod 26),
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(0, 6, 12, 19) (+2, mod 26),
(0, 8, 17, 20) (+2, mod 26),
(0. 8. 20, 18) (+2. mod 26),
(0, 9, 11, 14) (+2, mod 26).
(1, 5, 20, 10) (+2, mod 26),
(16,18.15,11) (+2, mod 26).
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Lemma 3.5 There is an SCDB(4.3;v) with isomorphism f whose
order p(f) = 2 for v = 11,15,23,27. Moreover, there erists an

SCDB(4,3:v.1).

Proof Suppose that X = Z,_; U {oc}, the isomorphism f: 2 —
r+ % where 2 € Z,-; and oc is a fixed point. The block set
B = By U B U f(By'). and all blocks of By and B, are listed below.
respectively. So (X, B, f) is the desired SCDB(4. 3;v) and hence an
ISCDB(4.3;v.1) exists by Lemma 2.5.

Case v =11
By: (0. 1, 6, 5) (+2, mod 10);
Bi: (0,1, 2,3) (+2, mod 10), (0,4, 8, oc) (+2. mod 10),
(0.2, 4, 7) (+2, mod 10), (1,5, o, 2) (+2, mod 10),
(1. 3, 0, 6) (+2, mod 10).
Case v =15
By: (0, 1.8, 7) (+2, mod 14);
Bi: (0,1, 2.3) (+2, mod 14), (1,3, 10, 6) (+2, mod 14),
(0, 3, 4, 8) (+2, mod 14), (0, 9, o0, 6) (+2, mod 14),
(0. 2.4, 7) (+2, mod 14). (0, 10, oo, 6) (+2, mod 14),
(0, 5, 8, 6) (+2, mod 14).
Case v =23
Bo:  (0.1,12,11) (+2, mod 22);
By: (0,3.4,8) (+2, mod 22), (0, 6, 12, 20) (42, mod 22),
(0. 2, 4, 5) (+2, mod 22), (0, 7. 10, 18) (+2, mod 22),
(0. 5. 6, 11) (+2, mod 22), (0.9, 13, 16) (+2, mod 22),
(0. 7.9,12) (+2, mod 22), (0, 3, 15, oc) (+2, mod 22),
(9, 0. 14, 2) (+2. mod 22), (1, 14, 10, oc) (42, mod 22),
(19, 3. 4, 5) (+2. mod 22).
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Case v =27
, 14, 13) (+2. mod 26);

.1

. 2.7, 6) (+2. mod 26). (0, 8. 16, oc) (+2, mod 26).
0.7, 6, 18) (+2, mod 26), (0, 20, 16, 10) (+2, mod 26),
0,9, 11, 14) (+2, mod 26), (13, oc, 22, 6) (+2, mod 26),
0,9, 11, 14) (+2, mod 26), (24, 21, 22, 1) (+2, mod 26).
0,9, 12, 22) (+2, mod 26), (23, 5, 16, 12) (+2. mod 26),
. 6. 19, 11) (42, mod 26), (16, 17, 15, 13) (+2.mod 26),
1. 2. 20, 6) (+2, mod 26).

-

Lemma 3.6 For v = 35,59,83. there exists an SCDB(4,3:v) with
isomorphism f whose order p(f) = 2.

Proof By Lemma 2.1 there exist (4,3)-GDDs of types 8!, 87 and
819, We can apply Construction 2.4 with an ISCDB(4,3;11,3) and
an SCDB(4.3;11) from Lemma 3.1 and Lemma 3.5 to obtain an
SCDB(4,3;35), an SCDB(4,3;59) and an SCDB(4, 3; 83). o

Lemma 3.7 There exists an SCDB(4, 3;v) for v = 38,47.

Proof By Lemma 2.1 there exist (4,3)-GDDs of types 9 and
95. Applying Construction 2.4 with an ISCDB(4,3;11,2) and an
SCDB(4,3:11) from Lemmas 3.1 and 3.5 gives an SCDB(4. 3; 38)
and an SCDB(4,3;47). a

Lemma 3.8 There ezists an SCDB(4,3;39).

Proof By Lemma 2.3 there exists a (4,1)-GDD of type 6°9! which
produces a (4,3)-GDD with the same type. Start with an SCDB(4,
3:6) and an SCDB(4, 3;9) from Lemma 3.3 and Theorem 3.2, and
apply Construction 2.4 with w = 0 to give the desired result. a
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Lemma 3.9 There erists an SCDB(4.3:71).

Proof By Lemma 2.1 there is a (4,3)-GDD of type 107. We can
apply Construction 2.4 with an ISCDB(4,3;11,1) and an SCDB(4,
3:11) from Lemma 3.5 to obtain an SCDB(4,3;71). a

Theorem 3.10 For v = 2 (mod 12) and v > 14, there exists an
SCDB(4.,3;v).

Proof By Lemma 2.1, Lemma 3.1 and Lemma 3.4, there exist
a (4,3)-GDD of type 12® with n > 4, and an ISCDB(4,3;14,2)
and an SCDB(4,3;14) with isomorphism f whose order p(f) = 2.
Applying Construction 2.4 with w = 2 gives an SCDB(4,3;v) for
v =2 (mod 12) and v > 50. For v = 26,38, an SCDB(4. 3;v) exists
by Lemma 3.4 and Lemma 3.7. The conclusion then follows. D

Theorem 3.11 For v = 3 (mod 12) and v > 15, there exists an
SCDB(4,3;v).

Proof By Lemma 3.5 and Lemma 3.8, an SCDB(4, 3; v) exists for
v = 15,27,39. Starting with a (4,3)-GDD of type 12" for n > 4
from Lemma 2.1 and an ISCDB(4,3;15,3) from Lemma 3.1 and
an SCDB(4,3;15) from Lemma 3.5, we can apply Construction 2.4
with w = 3 to obtain an SCDB(4,3;v) for v =3 (mod 12) and
v > 5l. O

Theorem 3.12 For v =6 (mod 12), an SCDB(4, 3;v) exists.

Proof By Lemma 3.3 and Lemma 3.4. there exists an SCDB(4, 3; v)
when v = 6.18. For v = 6 (mod 12) and v > 30, let v = 6(2n +
1) where n > 2. Then there exists a (4,3)-GDD of type 62"+!
by Lemma 2.1. Applying Construction 2.4 with w = 0 gives an
SCDB(4,3;12n + 6), ie., an SCDB(4,3;v). This completes the
proof. ]
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Theorem 3.13 For v=11 (mod 12), an SCDB(4,3;v) exists.

Proof For v < 83, there exists an SCDB(4,3;v) by Lemmas 3.5,
3.6. 3.7 and 3.9. For v > 95, we divide two cases as follows:

(1) For v = 11 (mod 24) and v > 107, there exists a (4,3)-
GDD of type 24* for k > 4 by Lemma 2.1. Starting with an
ISCDB(4.3:35.11) and an SCDB(4,3;35) from Lemma 3.1 and
Lemma 3.6, we can apply Construction 2.4 with w = 11 to obtain
the desired SCDB(4, 3;v).

(2) For v =23 (mod 24) and v > 95, we have a (4,3)-GDD of
type 2%*5! for k > 3 by Lemma 2.2. Give each point of the (4, 3)-
GDD a weight of 4 and apply Wilson’s Fundamental Construction
to obtain a (4,3)-GDD of type 8%20!. The required input design
is a (4.3)-GDD of type 4%. There exist an ISCDB(4,3;11,3) and
an SCDB(4.3;23) by Lemma 3.1 and Lemma 3.5. We can apply
Construction 2.4 with w = 3 to obtain an SCDB(4, 3;v). |

4 Existence of SCDB(4,\;7)’s for A > 2
Lemma 4.1 For A=0 (mod 2), there exists an SCDB(4,\: 7).

Proof Firstly, let us give the existence of an SCDB(4,2;7). Let
X = Iz, the isomorphism f = (0 1)(2 3)(4 5)(6) and the block set
B=ByUf(By 1) where all 7 blocks of By are listed as follows:

(0.2,1.3). (0,
(1,5,2,6), (3

7

It is readily checked that (X, B, f) is an SCDB(4,2;7). For A =0
(mod 2), the desired SCDB(4,A;7) can be obtained by repeating
each block of the SCDB(4,2;7) 4 times. O

Lemma 4.2 For A= 0 (mod 3), there exists an SCDB(4, ;7).
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Proof An SCDB(4.3;7) can be constructed by taking the following
21 blocks based on X = I7 and the isomorphism f = (01)(23)(45)(6).
The first three blocks are

(1,2.3,0), (3.4,5.2), (5,0,1.4).

The remaining 18 blocks are the blocks B and f(B~!), where B
consists of the following blocks:

0.3
0,2
1.2

L}

L O

.6). (1.3,4,6), (1.0,5.6), (L.2.5.4),
. 3), (3,4,2,6), (0,2,4,5), (0,2,4,6),
)

A

v o= U
<D

o~~~

For A=0 (mod 3), the desired SCDB(4, A: 7) can be obtained by
repeating each block of the SCDB(4,3;7) % times. a

Theorem 4.3 There ezists an SCDB(4,\;7) for A > 2.

Proof For A > 2. A can be written as A = A\ + A2 where A\ = 0
(mod 2) and Ay =0 (mod 3). By Lemma 4.1 and Lemma 4.2, there
exist an SCDB(4,\;7) (I7,B1. f) and an SCDB(4, X; 7) (17, Ba. f).
So, it is easy to see that (I7, By UBy, f) is the desired SCDB(4, \; 7).

O

5 Concluding

Theorem 5.1 There ezists an SCDB(4,\;v) if and only if v > 4
when A=0 (mod 3); v=1 (mod3) when A=1,2 (mod 3) and
(v, A) # (7.1).

Proof The necessity follows from the necessary condition for the ex-
istence of a DB(4, A; v) and the non-existence of an SCDB(4,1;7) in
[8]. By Theorem 2.6, an SCDB(4, A; v) exists for A=1,2 (mod 3),
v=1 (mod3) and v # 7. For A = 0 (mod 3), there exists
an SCDB(4,x;v) for v =1 (mod 3) and v = 0,1 (mod 4) by
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Theorems 2.6 and 3.2; an SCDB(4, A;v) exists for v = 2,3,6,11
(mod 12) by Theorems 3.10-3.13. Furthermore, an SCDB(4,;7)
exists for any A > 1 by Theorem 4.3. Therefore the conclusion holds.

(]
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