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Abstract. Let £ > 3 be odd and G = (V(G), E(G)) be a
k-edge-connected graph. For X C V(G), e(X) denotes the
number of edges between X and V(G) — X. We here prove that
if {8;,t:} S X; CV(Q) (i=1, 2), XinNXy =0, e(X;) <2k-2
and e(X;) < 2k — 1, then there exist paths P, and P; such that
P; joins s; and ¢;, V(P,') cX; (Z = 1,2) and G- E(PLUP,)is
(k — 2)-edge-connected, and in fact we give a generalization of
this result and some other results about paths not containing
given edges.

1 Introduction

We consider finite undirected multigraph without loops. Let G be a graph
and let V(G) and E(G) be the set of vertices and edges of G, respec-
tively. A(G) denotes the edge-connectivity of G. We allow repetition
of vertices (but not edges) in a path or cycle. Let A(G) > k > 2 and
T = {81,%1,82,t2} C V(G). When is the following true ?

(1.1) There erist edge-disjoint paths P, and P, such that P; joins s; and
t; (1. = 1,2) and A(G - E(P1 UPz)) > k-2

When & is even, if |T| < 3, then (1.1) is true ([4]). When & is odd, even if
|T'| = 2, (1.1) is not always true (Huck and Okamura [2]). In Theorem 1, it
is given that if k > 3 is odd, A(G) > k, fori = 1,2, {s;,t;} C X; C V(G),
X1 N X, =0, and if the number of edges between X; and V(G) - X; is n;,
ny < 2k—2 and ny < 2k — 1, then there exist paths P, and P, such that P;
joins 8; and ¢;, V(F;) C X; (1 =1,2) and \(G-E(P,UR)) > k-2. Ifn, =
ng = 2k—1, then (1.1) is not always true. Figure 1 gives a counterexample,
where k = 5 and X; = {s;,%;,;} (i = 1,2). A generalization of Theorem 1
is given in Theorem 2 and some other results about paths not containing
given edges are given in Theorem 4. Related results for even k are given in
[9].

A subgraph H in a k-edge-connected graph G such that A(G~ E(H)) >
k — 2 is called 2-reducible. 2-reducible paths and cycles are investigated in
[4-9).
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Figure 1

Notations and definitions

Let X, Y C V(G). We set X := V(G) — X. We denote by 8(X,Y;G)
the set of edges with one end in X and the other in Y, and define 8(X; G) :=
X, X;G), e(X,Y;G) := |9(X,Y;G)| and e(X;G) := |[0(X;G)|.
set N(X G) {a € X | e(a,X) > 0} and set E(X;G) := 9(X, X;G).
When XNY = 0, A(X,Y; G) denotes the maximal number of edge-disjoint
paths between X and Y. When X = {z} and Y = {y}, we use A(z,y;G)
for M(X,Y;G). We set AM(X;G) := :g;igx Az,y;G) (note that A(G) =

A(V(G); G)). In such expressions, we often omit G. If | X| > 2, |X| > 2
and e(X) = k, we call X and &(X) a k-set and a k-cut respectlvely G/ X
denotes the graph obtained from G by identifying all the vertices in X and
deleting any resulting loops. In G/X, X denotes the corresponding new
vertex, each x € X denotes vertex X and for Z C V(G) with ZNX # 0, Z
denotes (Z — X) U {X}. For z,y € V(G), we write P = P|z,y] to denote
that P is a path between z and y and we denote by P(a, b) a subpath of P
between a and b for a,b € V(P). We often denote a path by its edge set.
For z € X, y € X and for paths P, [z, X| in G/X with 3(X)NE(P,) = {f}
and P[X,y] in G/X with 8(X) N E(P,) = {f}, we write P:= P,UP; in
G to denote that P is the path between z and y in G obtained from P,
and P, by combining them at f.
For K,L C E(G) and W C V(G), we define

- Cis a cycle in G such that K C E(C),

+ o

C(G,K+,17,W) = {C LOE(C) = B and X(W:C — E(C)) S k-2 )
K C E(P), LNE(P) = 0 and

AW;G - E(P)) > k-2

In these notations, we omit K+ or L~ if it is the emptyset.

P = PJs,t] is a path in G such that
P(G,s,t, K+, L=, W) := {P }
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Let € X. For a,b € N(z) with a # b (a = b, respectively) and for
f € 8(z,a) and g € d(z,b) — f, G¥* and G¥9 denote the graph (V(G),
(E(G) + k) — {f,g}), (V(G), E(G) — {f,g}), respectively), and is called
a lifting of G at z, where h is a new edge between a and b. We call G’
admissible if for each y # z € V(G) — z, Ay, z; G©9) = A(y, 2; G).
Throughout this paper, we use a := |k/2].

Our main results are the following.
1,2), XN Xy = 0, e(X1) < 2k -2 and e(X2) < 2k — 1, then there

erist paths Pi[s1,t;] and Py[ss,t2] such that V(P;) C X; (i = 1,2) and
MG-EP,UR))>k-2.

THEOREM 1 If k > 3 is odd, A\(G) > k, {s:,t;} C X;: C V(G) (i =
k-1,

THEOREM 2 Suppose that:

(i) k >3 isodd, V(G) = WUS, WNS =0, \(W) > k, {s1,t1,82,2} C W,
L C E(G) and e(b) is even for each b€ S,

(i) {85,t:} S X;i CV(G) (i=1,2) and X; N X, = 0.

(1) Ife(Xy) € 2k—2-2|LNE(X,)| and e(X2) < 2k—1-2|LNE(X>)|, then
there exist paths Pi[s,,t,] and Py[s2,t2] such that V(P;) C X;, LNE(P;) =
0 (i=1,2) and \(W;G - E(PLUR)) > k-2.

(2) Ife(X1) <2k —1-2|LNE(X,)| and f € 8(s2,t2), then there ezists a
path P[sy,t1] such that V(P) C X;, LNE(P) = § and \(W;G—f—E(P)) >
k-2

COROLLARY 3 If k > 3 is odd, \(G) > k, 81,t1,89,82,v are distinct
virtices, e(s1) = e(t1) = e(v) =k, e(s1,t1) =0, f € 8(s1,v), g € (v,t,)

and e(s1,v) +e(v,t1) > (k+3)/2, then G — {f, g} contains a path P[sy,t,]
such that A\(G - {f,9} — E(P)) > k- 2.

Theorem 1 is a corollary of Theorem 2 and to prove Theorem 2, we
need the following.

THEOREM 4 Suppose that k > 3 is odd, V(G) = WUS,WNS =
8, M(W) > k, {s,t,v} C W, L C E(G) and e(b) is even for each be S.

(1) If|IL| <(k—3)/2 and f € O(s,v) — L, then there is P ¢
P(G,s,t,f*,L~, W) such that A\(s,t;G — E(P)) > k- 1.

(2 If |ILI<(k-3)/2, f€ed(v,8)—L and ged(v,t)~L, then
C(G,{f, g}, L, W) #0.

(3) If |L| < (k—1)/2, then there is P € P(G,s,t,L=,W) such that
A{v,3,t};G — E(P)) > k— 1.
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4) If {s,t} C X C V(G) —v, &(X) < 2k—-2— 2ILNE(X)| and f €
d(v, s), then there is P € P(G — [,3, t,L~,W) such that V(P) C X and
AMv,t,G—f—E(P))>k—-1.

(5) If {s,t} C X C V(G) — v, e(X) < 2k —2-2|LN E(X)|, f € 8(v,9)
and g € 8(v,t), then there is P € P(G — {f,g},s.1, L~,W) such that
V(P)C X.

(6) If {s,t} C X C V(G) —v and e(X) < 2k—1-2|LN E(X)|, then there
is P € P(G,s,t,L=, W) such that V(P) C X and A\({v,s,t};G - E(P)) >
k-1.

THEOREM 5 If k > 3 is odd, \(G) > k, V(G) = X UY, XnY =0,
e(X) =k, s€ X,t € V(G), P, € P(G/Y,sV(G), L C EY) and
|L| < (k—3)/2, then there is P € P(G, s,t,L~,V(G)) such that P/Y = P;.

2 Preliminaries

We prepare some lemmas. Lemma 1 follows by simple counting.
LEMMA 1 If X,Y CV(G), then

(21) e(X -Y) +e(Y - X)=e(X) +e(Y) —2e(X NY,XNY),
(22) e(XNY)+e(XNY)=e(X) +e(Y) —2¢(X -Y,Y — X).

LEMMA 2 (Mader [3] and Frank [1]) If z € V(G), 3 # e(z) =k (k =2a
or 2a + 1) and there is no cut-edge incident to x, then there are distinct

edges {fi, -, fasG1, " *19a} C O(z) such that GF% (1 < i < ) are
admissible.

LEMMA 3 Ifk>3isodd, V(G) =WUS,WNS =0, V(G) = XUY,
XNnY =0,e(X) =k+1, WNX #0 #£WnY, \(W;G/X) > k,
AW;GIY) >k, z€e XNW, Mz,Y) = k+ 1 and e(b) is even for each
be S, then A\(W;G) > k.

Proof. Let G be a minimum counterexample with respect to |E(G)|. To
prove S = (), assume that there is b € S. If b € X (b € Y, respec-
tively), there is an admissible lifting G* of G/Y (G/X, respectively) at b
by Lemma 2. Let G, be a lifting of G such that G,/Y = G* (Gy/X = G*,
respectively). A(W;Gp/X) > k, A\(W;Go/Y) 2 k, AM(z,Y;Gp) =k +1 and
|E(Gs)| < |E(G)|, and so k < A(W;Gs) < A(W;G). Thus S = 0. Since
MW;G) < k, thereis Z C V(G) with e(Z) < k—1. XNZ, XNZ, X—Z and
Z — X are not emptyset, since \(G/X) > k and A(G/Y) > k. By Lemma
1, e(X —2)+e(Z-X) <e(X)+e(Z) < 2k and e(X N Z) +e(XN7Z) < 2k,
andso e(X —Z) = e(Z — X) =k and e(X N 2Z) = (X N Z) = k. Then
A(z,Y) = k, a contradiction.

16



LEMMA 4 Ifk > 3 is odd, \(G) 2 k, X andY are k-sets, XNY # 0 and
X-Y#0, thenYC X orY CX.

Proof. Otherwise Y — X # @ and XNY # 0. By Lemma 1, e(X - Y) =
eY ~X)=kande(XNY)=e(XNY)=k. Thene(X)=e(XNY)+
e(X —Y)—2e(XNY,X —Y) is even, a contradiction.

LEMMA 5 If k > 3 is odd, \(G) 2> k, X is a minimal k-set, {z,y} C X
and h € 8(z,y), then h is contained in no k-cut.

Proof. Otherwise there is a k-set Y with |Y N {z,y}| =1, then Y C X or
Y C X by Lemma 4, contrary to the minimality of X.

Proof of Lemma 6 will be given in Section 3.

LEMMA 6 Suppose that k > 3 is odd, V(G) = WUS, WNS =0, AW) >
k, {s,t,v} CW, {s,t} C X CV(G)—v, L C E(G) and e(b) is even for
eachbe S.

(N Ife(X) <2 -1-2ILNE(X),u€W -X-vand f€ 0(v,u), then
there is P € P(G — f,s,t,L~,W) such that V(P) C X.

(8) Ife(X) <2k—2-2|LNE(X)|,ue XNW, e(u) =k, e(u,X) > a and
f € 8(v,u), then there is P € P(G — f,s,t,L=, W) such that V(P)C X.

Note that @ = (k- 1)/2 and e(z,y) < a, if k£ > 3 is odd, M(G) > k,
{z,y} C V(G) and e(z) = e(y) = k.

LEMMA 7 Suppose that k > 3 is odd, \(G) > k, {s, t} CXSV(G), e(z) =
k for eachz € X, L C E(X) and e(X) < 2k — 2 — 2|L| + € for integer ¢.
Then

() Ll L a+ (e -1)/2.

@) IEX)] 2 |L] + (1X| = 2)a + (IX] - ) /2.

(3) Ife <1 and z € X, then 8(z, X —z)—-L#0.

(4) Ife <1 and | X| =2, then 8(s,t) — L # 0.

Proof. (1) By k < e(X) < 2k — 2 — 2|L| +¢, we have
IL|<(k-1)/2+(-1)/2=a+(e-1)/2.

(2) By e(X) = k|X| - 2|E(X)| < 2k — 2 ~ 2|L| + ¢, we have
|E(X)| 2 |L]-k+1+((2a+1)|X|—€)/2 = |L|+(IX]-2)a+(|X| &) /2.

(3) Otherwise e(z, X — z) < |L|. By e(z,X) > k — |L|, we have

e(X —z) = e(X)—e(z, X)+e(z, X —z) < 2k—1—2|L|—(k—|L|)+|L| = k-1,
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a contradiction.
(4) follows by (3).

LEMMA 8 Suppose that k > 3 is odd, A(G) > k, X = {s,t,2}3V(G),
e(s) = e(t) = e(z) = k, L C E(X) and e(X) < 2k —2—2|L| +¢ for integer
E.

(1) Ife < 2 and 8(s,t) C L, then 8(s,z) — L # 0 and o(t,z)— L#0.

(2) If <0 and e(z,X) = o, then 8(s,t) — L # 0.

Proof. (1) If 8(s,z) C L, then e(s, {t,z}) < |L| and |E(X)| = e(s, {t,z}) +
e(t,z) < |L| + a, contrary to Lemma 7(2).

(2) Otherwise |E(X)| = e(s,t) + e(z, {s,t}) < |L| + (o + 1), contrary to
Lemma 7(2).

LEMMA 9 Suppose that k > 3 is odd, \(G) > k, X = {s,t,21,22}3V(G),
e(z) =k for each z € X, L C E(X), e(X) < 2k — 2 - 2|L| + € for integer
€, and 8(s,t) C L.

(1) Ife < 3 and e(z1,22) = 0, then fori =1 or 2, 8(s,z:;) - L # ® and
o(t,z;) — L#0.
(2) If e < 1 and e(z1,X) = @, then 8(s,z2) — L # 0 and 8(t,z2) — L # 0.

(3) If ¢ < 1, 8(s,z2) C L and 8(t,z1) C L, then d(s,z1) — L # 0,
O(z1,22) — L # 0 and 8(t,z2) — L # 0.

Proof. (1) |E(X)| = e(s,t) + e(s,21) + €(s8,z2) + e(t, %1) + e(t, z2). By
Lemma 7(2), |E(X)| > |L|+2a+1, and so at most one of 8(s, 1), 3(s, 2),
8(t, 1) and (i, z2) is contained in L.

(2) Let X':=X—z;. Then e(X') =e(X)+1 < 2k—2|L| < 2%k—
2|LN E(X')]. By Lemma 8(1), the result follows.
(3) By Lemma 7(3), 8(s,z1) — L # 0 and 8(¢,22) — L # 0. If 8(z1,72) C L,

then e(s, {t,z2}) + e(t,z1) + e(z1,22) < |L| and we have |E(X)| < |L| +
e(s,z1) + e(t,72) < |L| + 2a, contrary to Lemma 7(2).

LEMMA 10 Suppose that k > 3 is odd, M\G) >k, X = {s,t,%1,%2, %3}
V(G), e(x) =k for each z € X, L C E(X), e(X) < 2k —2~-2|L| +¢ for
integer €, and 9(s,t) C L.

(1) Ife < 4 and e(zi,z;) =0 (1 < i # j < 3), then for some1 <i <3,
9(s,z;) —L#0 and 8(t,z;) — L #0.

(2) Ife<2, e(z1,X) = a and e(z2,z3) = 0, then fori =2 or 3, 9(s,z:) —
L #0 and 8(t,z;) # 0.
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(3) If e < 0 and e(z,,X) = e(z2,X) = a, then 8(s,z3) — L # 0 and
a(ta 33) # Q

Proof. (1) Otherwise by Lemma 7(3), we may let 8(z;,s)~L #0 (= 1,2),
O(z3,t) — L # 0 and e(s, {t,z3}) + e(t, {z1,22}) < |L|. Then |E(X)| <
|L| + e(8, {z1,22}) + e(t, z3) < |L| + 3a, contrary to Lemma 7(2).

(2) Let X' := X —2,. Then e(X')=e(X)+1< (2k—2L)+1<
2k — 2|L N E(X')| + 1. By Lemma 9(1), the result follows.

(3) Let X' := X — {z1,22}. Then e(X') < e(X)+2 < 2k -2|L| <
2k — 2|LN E(X')|. By Lemma 8(1), the result follows.

LEMMA 11 Suppose that k > 3 is odd, \(G) > k, {s,t,v} C V(G), e(v) =
k, u e V(G) —v, f € 8(v,u), L C E(G) and each Y C V(G) — {s,t,v}
withu € Y i3 not a k-set.

(1) If |IL| £ a — 1, then there is P € P(G —~ f,8,t,L~,V(G) — u) such that
Av,2;G—f—E(P)) > k—1 forz = s ort and e(u; G~ f - E(P)) > k-3.

(2) If {3,t,u} C X CV(G) — v (possibly u = s ort) and e(X) < 2k — 2 —
2|LNE(X)|, then there is P € P(G—f,s,t,L~,V(G)—u) such that V(P) C
X, Av,z;G~f~E(P)) > k-1 forz = s ort and e(u; G- f—E(P)) > k-3.

Proof. Since Theorem 4 will be proved without Lemma 11 in Section 3, we
can use Theorem 4. In (1), let X := V(G) — v, then &(X) = e(v) = k =
2k—2-2(a—-1)-1< 2k—2-2|LN E(X)|, and so it suffices to prove (2).
If u = s or ¢, then the result follows by Theorem 4(4). Thus let u # s,¢
and let T := {s,t,v,u}. Let Gy = (G- f)+g and G2 = (G — f) +h, where
g is a new edge between v and s and h is a new edge between v and ¢.
MV(G:) —w;Gi) 2 k (i =1 or 2), say for i = 1, otherwise G has k-sets X,
and X, with X; NT = {u,t} and XoNT = {u, s}, contrary to Lemma 4. If
e(u) > k, then A(G)) > k and if e(u) = k, then e(u; G;) is even. Thus by
Theorem 4(4), there is simple P € P(G; —g,s,t, L, V(G1) —u) such that
V(P) C X, \v,t;G1 —g~E(P)) > k—1 and e(s;Gy —g - E(P)) > k—3.
Then e(u; G — f — E(P)) > k— 3 and P is a required path.

LEMMA 12 Suppose that k > 3 is odd, V(G) = XUY, XNY = 0,
X2 2, e(X) =k, z € X, {v,4} C ¥, f € 8(z,3), NG/X) > k—2 and
A0, X;G-f)=k~1.

(1) IFANG/Y — f) > k-2, then \(G) > k —2.

(2) Ife(z,Y) <o, \V(G/Y)-z;G/Y — f) > k-2 and e(z,G— f) > k-3,
then A(G) > k — 2.

Proof. In (2), we may let e(z; G — f) = k—3, otherwise A\(G/Y — f) > k—2
and the result follows by (1).
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Case 1. MG/X -f) 2 k-2

By Lemma 3, in (1), A(G - f) 2 k-2, and so A(G) > k—2. In (2),
since e(z; G — f) is even, by Lemma 3, AV(G) -=z;G—f) 2 k-2 By
e(z;G) = k — 2, we have A\(G) 2 k — 2.

Case 2. M(G/X - f)=k-3.

There is Z C Y such that e(Z) =k—2and y € Z. We choose maximal
Z. Then v ¢ Z. Since &(Z; G — f) is even, by Lemma 3, AV(G)-Z;,G|Z-
f)>k—2in (1) and AV(G)-Z-2G/Z—f)>2k—2in(2). In (),
Xz,Z;G) = k-2 for each z € Z, and so MG) > k—-2. In (2), by
e(z, Z;G) < e(z,Y;G) < a, we have e(Z + z) = e(Z) + e(z) — 2¢(Z,2) 2
(k-2)+((k-2)—-2a-1) =k-1 Thus X(2,Z +z;G) = k— 2 for
each z € Z, and so A(V(G) —z;G) = k—2. By e(z;G) = k — 2, we have
AMG)=k-2.

Note that in what follows, k is odd and a = (k — 1)/2.

3 Proof of Theorem 4 and Lemma 6

We denote (1),(2),(3),(4),(5) and (6) of Theorem 4 by (1),(2),(3),(4):(5)
and (6) respectively and denote (7) and (8) of Lemma 6 by (7) and (8)
respectively. In (8), if u = s or ¢, then the result follows by (4), and thus
we may let u # s,t. In (8), let X' := X —u, then e(X') < e(X)+1 <
%k —1-2|LNE(X)| < 2k—1—2|LNE(X")| and the result follows by (7).
Let € = 0 in (1),(2),(4) and (5), and let € = 1 in (3),(6) and (7). We may
assume

(3.1) In (1), (3), (4), (6) and (7), e(z) = k for each z € W. In (2) and
(5), e(z) =k for eachz € W —v and e(v) =k or k+1.

Proof. Let z € W and 8(z) = {g1,-- -, ¢-}- In (1),(3),(4),(6) and (7) and if
z # v in (2) and (5) (respectively, z = v in (2) and (5), g1 = f and g» = g)
and r > k + 1 (respectively, 7 > k + 2), then we replace z and 8(z) by .
the graph in Figure 2 (respectively, Figure 3), in which each heavy edge
represents o parallel edges, producing a new graph G'. If the result holds
in G', then it also holds in G.

In (1), let X := V(G) —s, and in (2) and (3), let X := V(G)—v. Since
L L k+1 in (1) and (2)

2%—2-2LNE(X)|+¢ 2 2k—2-2L)+e 23 ;7 15 ,

e(X) =k in (1) and (3) and e(X) < k+ 1 in (2), we have e(X) < 2k - 2—
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Figure 2

Figure 3

2|LNE(X)|+¢ and (1), (2) and (3) follow by (4), (5) and (6) respectively.
In (5), if there is P € P(G - f,s,t,L=,W) such that V(P) € X and
A(v,t; G~ f—E(P)) = k—1, then P € P(G - {f,g},s,t, L™, W). Thus (5)
follows by (4). We shall prove (4),(6) and (7) simultaneously. Let G be a
counterexample which satisfies the additional condition (3.1) with |E(G)]
minimized. In this section, we let

in (4): 1(G) =I(GaX7L-,W) = {PG P(G_frsat1L~1W)|V(P) cX
and A(v,4;,G ~ f-E(P))=k -1},

in (6), I(G) = I(G, X,L=,W) := {P € P(G, s,t,L~,W)|V(P) C X and
A{v,s,t};G~ E(P)) =k -1},

in (7), (@) = I(G,X,L_,W) = {P € P(G_ f,s,t,L‘,W)|V(P) - X}
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We let T := {s,t,v} in (4) and (6), and let T := {s,t,v,u} in (7). We have
(3.2) by Lemma 7(1) and we may assume (3.3).

(3.2) In (4), [ILNE(X)| < a—1. In (6) and (7), |ILNE(X)| La.
(3.3) If {s,t} CY S X, then e(Y) > e(X). We may assume L C E(X).

Proof. Assume that e(Y) < e(X). Then e(Y) < 2k—2-2|LNE(X)|+€ <
2k—2—2|LNE(Y)|+¢, since [LNE(Y)| < |[LNE(X)|. K I(G,Y,L™, W) # 0,
then I(G) D I(G,Y, L~ , W) #0.

(3.4) S=0.

Proof. Otherwise let b € S. By Lemma 2, there is an admissible lifting Gs
of G at b. For some z; € N(b) and h; € 8(b,z:) (i = 1,2), G, = Ghrh2,
Let h be a new edge in G; between z; and 3 if z; # z2. Ifb € X or
[X N {z1,z2}| < 1, then by e(X;Gs) < e(X;G), 8 # I(Gy) € I(G). I
b¢ X and {z1,22} C X, then let L' := L+ h. e(X;Gs) = e(X;G) -2 <
2k—2-2|L|+e—-2 = 2k—2-2|L'|+&. Thus @ # I(Gs, X, L'~, W) C I(G).

(3.5) If Y CW — {s,t} is a k-set, then Y C X orY C X.

Proof. Otherwise YNX #0#Y — X and we have e(X ~Y) > e(X) +1 by
(3.3). By (2.1), e(Y - X) < e(Y)+e(X)—e(X-Y) < k-1, a contradiction.

(3.6) 8(s,t) C L.
Proof. If there is h € (s, t) — L, then {h} € I(G).
(3.7) In (6) and (7), either 8(s,z) C L or O(t,z) C L for eachz € X -T.

Proof. Assume that there are hy € 8(s,z) — L and hy € 9(t,z) — L for
some z € X —T. By (3.5), A({v,s,t};G — {h1,h2}) > k—1in (6) and
MG = {f,h1,h2}) > k—2in (7), and so we have {hy, ho} € I(G).

(3.8) If {z,y} CW —T, h € 3(z,y) and h is contained in no k-cut, then
{z,y} C X, e(z,y) = a end (z,y) = L in (6) and (7), and we have a
contradiction in (4).

Proof. A(W —{z,y}; G—h) > k and there is simple P € I(G—h,X,L~,W—
{z,y}). Since P ¢ I(G), we have e(z,y) = a and A({z,y};G — E(P)) =
k—3. If thereis h’' € 6(z,y) — L, then let 8, z,y,t be in this order in P and
let P! := P(s,z) U{h'}U P(y,t) in G. Then A({z,y};G — E(P")) > k-2
and P’ € I(G). Thus 8(z,y) = L. We have a contradiction in (4).

(3.9) If Y is a minimal k-set, {z,y} CY —T and h € 3(z,y), then
{z,y} C X, e(z,y) = @ and 8(z,y) = L in (6) and (7).
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Proof. By Lemma 5, h is contained in no k-cut. The result follows by (3.8).

(3.10) In (4) and (6), G has no k-set. In (7), if Y isa k-set andt ¢ Y,
thenY C X.

Proof. Assume that G has a k-set Y such that [Y NT] < 1in (4) and (6)
and [Y NT| <2in (7).

Case 1. [YNT| < 1.

We choose minimal Y with this property. By (3.1) and (3.4), [Y] > 3,
and so for some z,,z2 € Y — T, e(z1,22) > 0. By (3.9), in (6) and (7),
{z1,22} C X, e(z1,22) = a, 8(z1,22) = L and Y = {z1,%3,y} for some
y€T. By (3.5),y=sort. Thereis P € I(G/Y). Let z be the end vertex
of PinY. If 2 = y, then P € I(G). If z = z,, then for b' € d(z;,),
P+ k€ I(G).

Case 2. Y NT = {s,v} or {s,u} in (7), say the former. .
Let ) and Y2 be minimal k-sets with ¥; C Y and with Y CY. Then
inY;=0and 2NT = {t,u}.

(3.10.1) |L| < a—1.
Proof. Otherwise e(X) < 2k — 1 — 2|L| < k, contrary to Lemma 4.
(3.10.2) [V;| =|Y2| =3 and V(G) = Y1 U Ys.

Proof. If |Y1| > 4, then [Y; — T'| > 3, since |V;| is odd. By e({s,0}U¥;) <
3k —2, we have for some z;,z, € Y; - T, e(z1,22) > 0, contrary to (3.10.1)
and (3.9). Thus |Y;] = |Y;] = 3. HV(Q) # Y; UYa, then let Y3 be a
minimal k-set with Y1 GYs C Y2 and let z; € Y3 — ¥;. Then for some
z2 € Y3 =11, e(z1,23) > 0. By (3.8), e(z1,22) = a and 8(21,20) = L,
contrary to (3.10.1). Thus V(G) =Y; UYs.

Let Y, - T = {z;} (i =1,2). |X| >4 by (3.6),(3.7) and by Lemmas
7(4) and 8(1), and so {z;,z,} C X. By (2.2), e(X NY;) <e(X) +e(Y;) -
e(XNY;) < e(X) (4 = 1,2), and so there are g1 € 9(s,z;) — L and
g2 € 8(t,z2) — L by Lemma 7(4). By (3.7), 9(s,z2) C L and 8(t,z,) C L.
Then there is b € 8(z;,22) — L by Lemma 9(3). Let P := {g1,h,92}.
MG/Yi—f—E(P)) > k-2 (i = 1,2) by (3.5), and so MG-f-E(P)) > k-2
and P € I(G).

Case 3. YNT = {v,u} in (7).
By (35), Y C X.

(3.11) In (6) and (7), I(G) # 0.
Proof. By (3.10), each edge in E(X) is contained in no k-cut.
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Case 1. e(z1,z2) > 0 for some z;,z2 € X — T.

By (3.8), e(z1,22) = a and d(z1,22) = L. e(X) = k by e(X) <
2k — 1 — 2|L| = k. Since |X| is odd, there is z3 € X — T — {21,%2} and
N(z3;G/X) = {s,t, X}, contrary to (3.7).

Case 2. N(z) C {s,t}UX foreachz € X - T.

By e({s,t}UX) < e(s) +e(t) +e(X) <2k+ (2k-1-2|L|) <4k-1,
we have |X — T| < 3. By (3.6) and by Lemmas 7(4), 8(1), 9(1) and 10(1),
for some z € X — T, 8(s,z) — L # @ and 8(z,t) — L # 0, contrary to (3.7).

We shall prove (4). N(z) = T for each z € W — T by (3.8) and (3.10).
Since |W —T| is odd and e(T) < 3k—2, we have |W—T| = 1, and so | X| < 3.
By (3.6) and by Lemmas 7(4) and 8(1), |X| = 3 and for z € X — T, there
are hy € 8(s,z) — L and h; € 8(z,t) — L. e(v,z) = a by {h1,h2} ¢ I(G),
contrary to Lemma 8(2).

4 Proof of Theorem 5

Ift € Y, then let g € E(P) N 38(X). By Theorem 4(1), there is P, €
P(G/X,X,t,gt,L~,W) such that A\(X,#;G/X — E(P;)) = k— 1. Let
P:=PUP,in G. By Lemma 3, \(G— E(P)) > k-2. Ift € X and
E(P)N3(X) =0, then let P:= P,. If t € X and E(P,) N8(X) = {f, g},
then there is C € C(G/X,{f,g9}*,L~,W) by Theorem 4(2). Let P :=
CUP; in G. In each case, P is a required path.

5 Proof of Theorem 2

Theorem 2(2) follows by Lemma 6(7). We shall prove Theorem 2(1). In
the same way as (3.1), we may assume

(5.1) e(z) =k for eachz e W.

Let G be a counterexample to Theorem 2(1) which satisfies the addi-
tional condition (5.1) with |E(G)| minimized. Let &1 = 0 and €2 = 1. Let
T := {81,t1,82,t2}, L; == LnE(X,-), G; == G/X. (i = 1,2) and let

J(G) = J(G, X1,L], X2, Ly , W) := {(P1, P2)|P;[3:, t;] is a simple path,
V(P.) C Xi, LINE(P,) = 0 (i = 1,2) and \(W;G—E(P,UP,)) > k—2}.

We may assume
(8.2) If {si,ti} C Yg X;, thene(Y) > e(X;) (:=1,2).

Proof. Assume that {s;,t;} € Y G X) and e(Y) < e(X1). Then e(Y) <
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2k—2-2|L,| < 2k—2—2|LNE(Y)|. It J(G,Y,(LNE(Y))", X2, L7, W) # 0,
then J(G) 2 J(G,Y, (LN E(Y))™, X2,L3 , W) #0.

(5.3) S=10.

Proof. Otherwise let b € S. By Lemma 2, for some z; € N(b) and h; €
d(b,z;) (i = 1,2), there is an admissible lifting Gy = G**#2, Let h be a
new edge in G between z; and z; if z; # z,.

Case 1. {z1,22} C X; and b ¢ X; (¢ = 1or2), say for i=1.
Let L} := Ly + h. e(X1;Gs) = e(X1;G) — 2 < 2k — 2 — 2|L}| and
e(Xg,G,,) < G(Xz,G). Thus @ ié J(Gb,Xl,Lll_,Xz,Lz_,W) - J(G)

Case 2. Either [{z1,z2} N X;| <1 (i =1,2) or {z1,22,0} C X; (j=1or
2).

By e(Xiva) < e(Xi’G) (i =1, 2)3 we have 0 # J(Gbaxl’Ll_1X27L2_a W)
C J(G).

(5.4) e(z,X;) < a foreachz € X; - T (i =1,2).
Proof. Otherwise e(X; — z) < e(X;), contrary to (5.2).

(5.5) If {z,y} CW —T, g € 8(z,y) and g is contained in no k-cut, then
e(z,y) = a and either 8(z,y) = Lz or {z,y} N X;| =1 (i =1,2).

Proof. There is (P,P,) € J(G — 9, X1, Ly, X5, L, W — {z,y}). By
(P, Py) ¢ J(G), we have A({z,y};G — E(P,UP,)) = k-3 and e(z,y) =a
(note that P, and P, are simple). If for i = 1 or 2, {z,y} € V(P) and
there is h € 8(z,y) — L, say for i=1, then let s,,z,y,¢; be in this order in
Py and let P3 := Py(s,,z) U {h} U Py(y,t1). Then (P3, P2) € J(G). Thus
0z, y) =Ly or [{z,y} N X:| =1 (i =1,2).

(5.6) If Y CW —T, then Y is not a k-set.

Proof. Assume that Y C W —T is a minimal k-set. For some {z1,22,23} C
Y, there are g € 9(z,2,) and h € 8(z2,73). By Lemma 5, g and h are
contained in no k-cut. Thus by (5.5), e(z1,z2) = e(z2,z3) = o. We may
let z; € X; (i = 1,2), otherwise 8(z,, ) = L, and z3 € X; by (5.5) and

we can take {z3,7,} instead of {z;,z,}. By e(z1,Y) < a and by (5.4), for
some z4 € X3 NY — 1, e(x1,24) > 0, contrary to (5.5).

(5.7) e(Xs) > k+1 (i =1,2).
Proof. Assume that e(X;) = k or e(X3) = k.

Case 1. e(X3) = k. _
Thereis P, € P(Gz,Sz,tz,L;,W) with )\(S2,X2;G2—E(P2)) =k—-1by
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Theorem 4(3). Then for some g € 3(Xz), A(s2, X2; G2 —E(P;)—g) = k—1.
Let V(g) N X2 = {u}. If u ¢ X, then by Lemma 6(7), there is P, €
P(G/X2—g,51,t1, LT, W) with V(P;) C X;. A(G-E(P,UPR,)) > k-2by
Lemma 12(1) and thus (P, P;) € J(G). If v € X, and e(u, X1) > @, then
by Lemma 6(8), there is P, € P(G/X2—g,51,t1, Ly, W) with V(P,) C X4,
and thus (Pl,Pz) € J(G) Ifu € X; and e(u,Xl) < a, then G/X2
does not contain a k-set Y C V(G/X2) — {s1,t1,X2} by (5.6), and so
by Lemma 11(2), there is P, € P(G/X; — g,81,t1, L7, W — u) such that
V(P)) C X; and e(u;G/X2 — g — E(P)) > k — 3. By Lemma 12(2),
MG — E(P, U R)) > k — 2, and thus (P, ;) € J(G).

Case 2. e(X;) =k and e(X2) > k. L

By V(G) # X1 U X,, for some v € X; and v € X; N Xy, there is
g € 8(u,v). By Lemma 6(7), there is P, € P(G/X) —g, 82,12, Ly , W) with
V(P;) C X;. By (5.6), G\ contains no k-set Y C V(G1) — {s1,t1,X1}.
Thus by Lemma 11(1), there is P, € P(G, — g, 81,1, L7, W —u) such that
AX1,2;G1 —g~E(P)) > k—1for z = s; or t; and e(u; G1 —g— E(P,)) >
k—3. If e(u;G1 —g— E(P1)) > k-2, then \(G, ~g— E(P;)) > k—2, and
5o A(G—-E(P,UPR)) > k—2by Lemma 3. If e(u;G1 —g— E(P)) = k-3,
then by it is even and by Lemma 3, A(W —u;G —g— E(PLUP,)) > k-2,
and so A(G — E(P, U P;)) > k — 2. Thus (P;, P,) € J(G).

(5.8) |ILij <a~1(i=1,2).

Proof. Otherwise |Ls| = a by Lemma 7(1). Then e(X;) < 2k—1-2|L,| =
2k — 1 — 2a = k, contrary to (5.7).

(5.9) If Z is a k-set, then |Z0{sy,t}| = |ZN{s3, 5} =10r X, CZ C X,
orXoCZcCX,.

Proof. Casel. |ZNT| < 1.

We choose minimal Z with this property. For some {z,y} C Z - T,
e(z,y) > 0. By Lemma 5, (5.5)and (5.8), e(z,y) = a and |{z,y} N X;| =1
(i=1,2). ZNTNX; =0 (i=1 or 2), say for i = 2. Then e(X;—2Z) > e(X>)
by (5.2), and so by (2.1), e(Z — X3) < e(Z) + e(X2) —e(X2 ~2) <k -1,
a contradiction.

Case?2. |ZNT|=2.

If ZNT = {sy,61}, then Z — X; # @ by (5.2) and (5.7). X, C Z,
otherwise, e(X; N Z) > e(X;) by (5-2), and so by (2.2), e(X;: N Z) <
e(X;) + e(Z) - e(X1 N Z) < k-1, a contradiction. Similarly we have
X» C Z and thus the result follows.

By (5.9), we have
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(5.10) Ifz € X; — T, f € 8(si,z) and g € O(t;, ), then there is no k-cut
containing {f,g} (: =1,2).

(5.11) Ifz; € X; — T, 8(ss,z;) — Li # 0 and 8(t;,z;) — L; # 0 (i = 1,2),
then e(z;1,22) = a.

Proof. Let f; € O(si,z;)—L; and g; € 8(t:,z:)— L; (i = 1,2). By J(G) =0,
we have ({f1,01},{f2,92}) ¢ J(G), and 50 A\(G — {f1,91, f2,92}) < k- 3.
By (5.10), there is a (k + 1)-set Z with {f, g1, f2,92} C 8(Z). Let z; € Z.
By (5.2), e(X; — Z) > e(X;) +1, and 50 by (2.1), e(Z — X;) < e(X1) 4
e(Z)—e(X1—Z) < k. By (5.10), Z— X, is not a k-set, and s0 |Z — X;| = 1
and Z - X; = {2,}. Similarly we have Z — X, = {z,}. Thus Z = {z;,z,}
and 6(201,222) = q. ’

(5.12) If e(z,y) = O for each {z,y} C X; =T (i = 1,2), then |X1| > 6 or
|X2| > 6.

Proof. Assume that |X;| <5 (i =1,2).
Case 1. 8(8;,t;) — L; # 0 (i = 1 or 2), say for i=1.
: Let f € 8(s1,41) — L1. If there is g € 8(s2, t2) — Lo, then (f,g) € J(G).

Thus 3(s3,t2) C L, and |X3| > 3 by Lemma 7(4). There are g € 9(ss,z) —
L; and h € 9(t2,z) — L, for some z € X, — T by Lemmas 8(1), 9(1) and
10(1). A(G — {f,9,h}) > k — 2 by (5.10) and thus (£, {g, h}) € J(G).
Case 2. 6(si,t.-) - L; (i = 1,2).

|Xi| > 3 (i = 1,2) by Lemma 7(4). 8(s;,z;)~L; # @ and O(ti,z;)—L; #

0 for some z; € X; — T (i = 1,2) by Lemmas 8(1), 9(1) and 10(1). Then
e(z1,22) = a by (5.11). By Lemma 8(2), | X,| > 4. 9(s1,23) — Ly # 0 and
d(t1,23) — L1 # 0 for some x3 € X; — T — 7, by Lemmas 9(2) and 10(2).
Then e(z3,2) = a by (5.11), contrary to (5.4).

(5.13) f X, CY C Xy, thene(Y) > k+ 1.

Proof. Otherwise e(Y) = k. Let Y; and Y, be minimal k-sets with X; C
Y1 € Xz and X, C Y, C X, (possibly ¥; = Y:). Then i NY, = @
by Lemma 4. By (5.9), if Z gYi, then Z is not a k-set, and so Y; is a
minimal -set (i = 1,2). By Lemma 5, (5.5) and (5.8), e(z,y) = 0 for each
{24} CY.—T (i=1,2). Thus |Y;] <5 (i = 1,2), contrary to (5.12).

(5.14) G contains a k-set.

Proof. Otherwise e(z,y) = 0 for each {z,y} C X; - T (i =1,2) by (5.5)
and (5.8). By (5.12), [X;| > 6 (i = lor 2). Then 2k—1 > e(X;) =
kIX:| — 2|E(X:)] > kI X:) — 2(e(s:) + e(ts)) > 2k, a contradiction.

By (5.14), let Z; be a minimal k-set. We may let Z; NT = {s,3,}
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by (5.9) and (5.13). Let Z, be a minimal k-set with 2 C Z,. Then
ZoNT = {t1,t2}. By Lemma 5, (5.5) and (5.8), we have

(5.15) If {z,y} S XinZ; - T, then e(z,y) =0 (3, = 1,2).

(5.16) e(X; N Z;) < 2k — 2 —2|L N E(X: N Z;)| +&: and |IX:nZ;} <3
(iaj = 1a2)'

Proof. By (2.2), e(X: N Z;) < e(X;) + e(Z;) — eX:NZ;) < e(Xi) <
9k — 2 — 2|L| +&: < 2k —2—2|LN E(X: N Z;)| +&:. I |XaNZy| > 4, then
by (5.15), we have e(X2 N Z;) > k|X2N Z,| — 2e(s2) > 2k, a contradiction.

(5.17) If Zo := Z1NZ2 # 0, then |Zo| =2, |Zo N Xi| =1 (i = 1,2), and
for ZoN X; =: {w} (i=1,2), e(ur,u2) = and e(u;, X; —ui) =a+ 1.

Proof. Let Yo := Z1, Y; be a minimal k-set with ¥;1 ZY: C Zy(1<i<n)
and let Y, = Zo. For 1 < j <n,let z; € Y;-Y;_1. By e(z;,¥;-1) < aand
e(z;,Y ;) < a, forsome y; € Y;-Y;_1, e(z;j,y;) > 0. Then 1 X:n{z;,y;} =
1 (i = 1,2) and e(z;,y;) = o by (5.5) and (5.8). Thus and by (5.4),
Zo € X1 UXs, lZonX1| = |ZonX2| and e(ZoﬂXl,ZoﬂX2) = a|Zor1X1|.
Since e(Z;) = e(Z; N X1) + e(Z; — X1) — 2e(X1 N 24, Z; — X1), we have
2e(X1 N Z;, Z; — X)) > kand e(X1 N Z;, Z; — X1) 2 a+1 (i =1,2). Then

2%k — 2> e(X1) > e(X1N 21,21 — X1) +e(X1N 22,2, — X1) +
e(X1n Zy, Xa N Zo) > 2(0: + 1) + aIZo n Xll’

and so |Zo nX;|= ‘ZoﬂXz =1. Let ZoNX; = {u,-} ('I, =1,2). By (5.4),
e(up, Xi—w;) =a+1(E=12).

(5.18) If for simple paths Py[s1,t1] and Pys2,t2], V(P;) C X, LiNE(F;) =
0 and |E(P;) N3(Z;)| = 1 (i, = 1,2), then for some | = 0,1 or 2 and
somez; EV(P)NZ —T (i =1,2), e(z1,22) = .

Proof. M(G/Z, — E(PLUPR,)) <k-3,\NG/Z,-E(PLUPR))<k-3or
MG/2:/ 2, — E(PyUPy)) < k-3, otherwise A(G — E(P,UP,)) > k—2 and
(Pl,Pz) € J(G) If )\(G/Zl - E(P1 UPQ)) < k — 3, then Z; contains z; €
ZiNX:NV(P,)—T (i = 1,2) and a (k+1)-set Y with |3(Y)NE(P,UP,)| = 4
by (5.15). We may let z, € Y C Z; — 81. By (5.2), e(X1 ~Y) > e(X1). By
(2.1), e(Y = X3) < e(X1)+e(Y)—e(X1-Y) < k, and s0 e(Y — X1) = {2}
Similarly e(Y — X2) = {z1} and we have e(x1,22) = a. For other cases,
the proof is similar.

(5.19) |E(X: — Zo)| > |Li| + (1Xi — Zo| — 2)a + (|Xi — Zo| - 1 — &:)/2
(i=1,2).

Proof. By Lemma 7(2), |E(X:)| > |Lil+(|1Xi|~2)a+(1X:| —€:)/2 (i = 1,2).
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Thus we may let Zy # 0. By (5.17), |[E(X;)| = |E(X;: — Zo)| + e(u;, X; —
u;) = |BE(X; — Zp)| + @ + 1 and | X;| = | X; — Zp| + 1, and so we have

|E(X;— Zo)|+a+1 > |Li|+(|Xi — Zo| + 1 - 2)a+ (| X: — Zo| + 1 —¢;) /2.
Thus (5.19) follows.
(5.20) Ifve X;NZ;NT andz € X;iNZ; — T, then 8(v,z) — L; # 0
(i,j = 1,2).

Proof. If | X; N Z;| = 2, then the result follows by (5.16) and Lemma 7(4).
By (5.16), let X;N Z; = {v,z,y}. I (v,z) C L, then |E(X; N Z;)| <
|LNE(X;NZ;)|+e(v,y) < |LNE(X;NZ;)| + a, contrary to Lemma 7(2).

(5.21) If | X2 — Zo| > 3, then G — L contains paths Pi[s1,t1] and Pa[sz, 5]
such that for some x; € X;NZ, —T andy; € X;NZ,-T, V(B) C
{8i,2i,43,t:} (possibly X; N Z; — T = 0) and in this order in P; (i =1,2) .

Proof. By (5.20), it suffices to prove that 8(X; N Z;,X; N Zs) — L; # 0
(i=1, 2). If IX:nz,X;N Zy) C L;, then

|E(X,- - ZO)I < IL,'l +e(s;, XiNZy — 8,‘) + e(t,-,X,- NZy— t,')
S |Lil + (1X: 0 21| = e+ (1X: N 23| = D = |Li| + (1X: ~ Zo| — 2)a.

On the other hand, by (5.19), |E(X; — Zo)| > |L:| + (|Xi — Zo| — 2)a+ 1/2,
a contradiction.

In what follows, let
P} [s1,t1] be a path given in (5.21) with its length minimized.

P3[s2,t2] be a path given in (5.21) with its length minimized if
|X2 — Zo| > 3.

(5.22) | X2 — Zo| > 3.

Proof. Otherwise X, — Z; = {s5,t3}. By Lemmas 7(4) and 8(1), either
thereis f € 9(s2,t3)~ L2 or XoNZp = {u2} and there are g € 9(s2,uz)— Ly
and h € 3(t2,u3) — Ly. Let P, := {f} or {g,h}. For P! and P, we have a
contradiction by (5.18).

By (5.18),(5.21) and (5.22), wemay let z; € V(P?)NZ,—-T (i = 1, 2) and
e(z1,72) = @. Then 8(s;,t;) C L; by the minimality of |E(P?)| (i =1,2).

(5.23) B(Xl n Zl - zl,Xl ﬂZz) - Ll ?5 (0

Proof. Otherwise
IE(X] - Zo)l < lLll +€($1,X1 - $1) +€(81,X1 Nz, - {81,271}) +e(t1,
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X,NZy—t1) < |L1|+(a+1)+a(| X1 —Zo]-3) = |L1|+(|X1—Zo| -2)a+1,

By (5.19), | X1 — Zo| = 3. By Lemma 8(2), X1 NZp = {v} and by Lemma
9(2), there are f € 8(s1,u1) — Ly and g € d(t1,u1) — L. For {f,g} and
Pj, we have a contradiction by (5.18).

By (5.20) and (5.23), G — L contains a simple path P;[s1,t1] such that
V(P,) C X1—Zo—z1. By (5.18) for P, and Py, thereare z; € V(P )NZy,-T
and y2 € V(P3)NZy — T and e(z1,%2) = .

(5.24) 6(X2 NZ —x2, X2 NZ2 — y2) — Lo 75 0.

Proof. Otherwise
|E(Xy — Zo)| < |L2| + e(z2,y2) + e(x2, Xo — Zo — {x2,12}) + e(y2,
Xo— Zo—{Z2,y2}) +e(s2, X202y — {32, 22}) +e(tz, X2N 22— {t2,92}) £
|Lo| + e(z2, y2) + 2(a + 1 — e(z2,42)) + (| X2 — Zo| — 4)a = | Lo| + 22 +
2- e(.’b‘z,yz) + (|X2 - Zol - 4)0 < |L2| + (|X2 - Zol - 2)(! + 1.

By (5.19), | X2 — Zo| = 4. If Zo = @, then by Lemma 9(2), G — L contains
a path Py[sg,ts] with V(P) = {s2,92,t2}, contrary to the minimality of
|E(P;)|. Thus Zo # 0. If there are f € 3(s2,uz)—L2and g € O(ta,u2)—La,
then (P}, {f,g}) € J(G). Thus let 8(s2,u2) C L. Then

|E(X2)| < |Lo| +e(z2,y2) + e(22, X2 — {z2,42}) +e(y2, X2 — {22,521+
e(uz, tz) < |Lo| + e(z2,y2) + 2(a + 1 — e(z2,¥2)) + @ < |L2| + 3 + 1,
contrary to Lemma 7(2).

By (5.24) and by the minimality of |E(P;)|, G — L contains a path
P2[82,t2] such that V(Pz) = {82,102,22,t2} for wy € XoaN Zy — {82,3}2}
and zp € Xz N Zy — {t2,¥2}. By (5.18) for P} and P,, we have y; €
V(P})N Z2 — {t1,z1} and e(y1,22) = a. By (5.18) for P, and P, there is
wy € V(P1) N Zy — {s1,71} and e(w;, w2) = a. Then e(X;) > e(z1,72) +
e(z1,¥2) + e(y1,22) + e(w1,w2) > 4a = 2k — 2, and so L, = 0,2Z0=10
and e(sy, X1) = 0. e(81,X1 N Zz) = 0 by the minimality of |E(P;')| and
e(sy, X1 N Z;) < 2, then e(s;) < k — 1, a contradiction.

6 Proof of Corollary 3

Let X := {81,t1,v}. Thene(X) < 3k—2e(v, {s1,11}) < 3k—(k+3) < 2k-3.
The result follows by Theorem 1.
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