On Potentially K_k -graphic Sequences *

Rong Luo[†] Morgan Warner
Department of Mathematical Sciences
Department of Mathematics
West Virginia University
Morgantown, WV, 26506-6310

Email: rluo@mtsu.edu, morganwarner@hotmail.com

Abstract

In this paper, we characterize the potentially K_4 -graphic sequences. This characterization implies the value $\sigma(K_4, n)$, which was conjectured by P. Erdös, M. S. Jacobson and J. Lehel [1] and was confirmed by R. J. Gould, M. S. Jacobson and J. Lehel [2] and Jiong-Sheng Li and Zixia Song [5], independently.

1 Introduction

An *n*-term nonincreasing nonnegative integer sequence $\pi = (d_1, d_2, \cdots, d_n)$ is said to be *graphic* if it is the degree sequence of a simple graph G of order n and such a graph G is referred to as a *realization* of π . Denote by $\sigma(\pi)$ the sum of all the terms of π . Let H be a simple graph. A graphic sequence π is said to be *potentially* H-graphic if it has a realization G containing H as a subgraph.

In [1], Erdös, Jacobson and Lehel considered the following problem about potentially K_k -graphic sequences: determine the smallest positive even integer $\sigma(K_k, n)$ such that every n-term graphic sequence $\pi = (d_1, d_2, \dots, d_n)$ without zero terms and with degree sum $\sigma(\pi) = d_1 + d_2 + \dots + d_n$ at least $\sigma(K_k, n)$ is potentially K_k -graphic. The graph G(n, k) on n vertices

^{*}This paper is a result of an undergraduate research project by a math major student Mr. Morgan Warner under the supervision of Dr. Rong Luo at WVU. This undergraduate research project was administrated by Dr. John Goldwasser and Dr. Cun-Quan Zhang and was partially supported by the undergraduate Academic Enrichment Program of the Eberly College of Arts and Sciences, West Virginia University.

[†]Current Address: Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37130

with k-2 vertices with degree n-1 and every edge incident to one of these k-2 vertices has degree sequence $\pi_0 = ((n-1)^{k-2}, (k-2)^{n-k+2})$ (where $(n-1)^{k-2}$ means n-1 repeats k-2 times), but does not contain a K_k . Notice that π_0 has unique realization G(n,k). So, $\sigma(K_k,n) \geq$ (k-2)(2n-k+1)+2. They further conjectured that the lower bound is the exact value of $\sigma(K_k, n)$ for n sufficiently large. They also proved the conjecture for k=3 and $n\geq 6$, because it is false for n=4 and 5. Gould et al. [2] and Li and Song [5] independently confirmed this conjecture for k=4 and n>8. The conjecture is confirmed in [6] and [7] for any k>5and for n sufficiently large. Li et al. [7] and Mubayi [10] also independently determined the values $\sigma(K_k, 2k)$ for any $k \geq 3$. Recently, Li and Yin [9] determined the values $\sigma(K_k, n)$ for any $k \geq 3$ and $n \geq k$. In [2], Gould, Jacobson and Lehel generalized the above problem: given simple graph H, determine the smallest positive even integer $\sigma(H, n)$ such that every n-term graphic sequence $\pi = (d_1, d_2, \dots, d_n)$ without zero terms and with degree sum $\sigma(\pi) = d_1 + d_2 + \cdots + d_n$ at least $\sigma(H, n)$ is potentially H-graphic. They determined the values $\sigma(pK_2, n)$ and $\sigma(C_4, n)$ where pK_2 is a matching of p edges and C_4 is a cycle of length 4.

Motivated by the above problems, we consider the following problem: characterize the potentially H-graphic sequences without zero terms. In [8], R. Luo characterized the potentially C_k -graphic sequences for each k=3,4,5. In [11], Niu characterized the potentially (K_4-e) -graphic sequences. In this paper, we characterize the potential K_4 -graphic sequences. From this characterization, it is straightforward to find the values of $\sigma(K_4,n)$.

2 Lemmas

In order to prove our main theorem, we need the following results.

Lemma 2.1 (D. J. Kleitman and D. L. Wang [4] and Hakimi [3]) π is graphic if and only if π' is graphic.

The following corollary is obvious.

Corollary 2.2 Let H be a simple graph. If π' is potentially H-graphic, then π is also potentially H-graphic.

Theorem 2.3 (Gould et al. [2]) Let $\pi = (d_1, \dots, d_n)$ be a graphic sequence and G be a graph with the vertex set $V(G) = \{v_1, \dots, v_k\}$. If H is a realization of π with $G \subseteq H$, then there is a realization H' of π with $G \subseteq H'$ so that the two multisets $\{d_H(v_1), \dots, d_H(v_k)\}$ and $\{d_1, \dots, d_k\}$ are the same.

Lemma 2.1, Corollary 2.2 and Theorem 2.3 will be applied repeatedly and implicitly in the proof of our main theorem.

Lemma 2.4 Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence with $n \geq 4$ and $d_1 = d_2 = d_3 = d_4 = 3$. Then π is potentially K_4 -graphic if and only if (d_5,\cdots,d_n) is graphic.

Proof. This follows immediately from Theorem 2.3.

Let $\pi = (d_1, d_2, \dots, d_n)$ be a nonincreasing positive integer sequence. The residual sequence, denoted by π'_k , obtained from π by laying off d_k is

 $\begin{aligned} &\text{defined as follows:} \\ &\pi_k' = \left\{ \begin{array}{l} (d_1-1,\cdots,d_{k-1}-1,d_{k+1}-1,\cdots,d_{d_k+1}-1,d_{d_k+2},\cdots,d_n), if \ d_k \geq k, \\ (d_1-1,\cdots,d_{d_k}-1,d_{d_k+1},\cdots,d_{k-1},d_{k+1},\cdots,d_n), if \ d_k \leq k-1. \end{array} \right. \end{aligned}$

Theorem 2.5 (Rong Luo [8]) Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence with $n \geq 3$. Then π is potentially C_3 -graphic if and only if $d_3 \geq 2$ except for 2 cases: $\pi = (2^4)$ and $\pi = (2^5)$.

Lemma 2.6 Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence with $d_4 \geq 3$ and $n \geq 4$. If π is not K_4 -graphic and $\pi'_1 \neq (2^4), (2^5)$, then $n-2 \geq d_1 \geq d_2 \leq d_1 \leq d_2 \leq d_2$ $d_2 > d_3 \ge d_4 = \cdots = d_{d_1+2} \ge \cdots \ge d_n$.

Proof. By way of contradiction, we assume that there exists an integer $4 \le$ $t \leq d_1 + 1$ so that $d_t > d_{t+1}$. Since $d_4 \geq 3$ and $\pi \neq (2^4), (2^5)$, the residual sequence $\pi'_1 = (d'_1, d'_2, \dots, d'_{n-1})$ satisfies the conditions in Theorem 2.5. Notice that $d'_i = d_{i+1} - 1$ for each $i = 1, 2, \dots, t$. Therefore, π'_1 has a realization G containing a K_3 so that the degrees of vertices of K_3 in Gare d'_1, d'_2, d'_3 . Thus we can obtain a realization H of π from G by adding a vertex to G which is adjacent to each vertex whose degree is decreased by one in G. Then, H contains K_4 as a subgraph.

Lemma 2.7 Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence with $d_1 = n - 1$ and $n \geq 4$. Then π is potentially K_4 -graphic if and only if $d_4 \geq 3$ and $\pi \neq (n-1, 3^s, 1^{n-s-1})$ for each s = 4, 5.

Proof. This follows from Lemma 2.6.

Main Theorem 3

Theorem 3.1 Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence without zero terms and with $d_4 \geq 3$ and $n \geq 4$. Then π is K_4 -graphic if and only if $d_4 \geq 3$ and $\pi \neq (n-1,3^s,1^{n-s-1})$ for each s=4,5 except the following sequences:

```
\begin{array}{l} n=5:(4,3^4),\ (3^4,2);\\ n=6:(4^6),\ (4^2,3^4),\ (4,3^4,2),\ (3^6),\ (3^5,1),\ (3^4,2^2);\\ n=7:(4^7),\ (4^3,3^4),\ (4,3^6),\ (4,3^5,1),\ (3^6,2),\ (3^5,2,1);\\ n=8:(3^7,1),\ (3^6,1^2). \end{array}
```

Before we present the proof of Theorem 3.1, we give an application of the theorem.

Theorem 3.2 (Gould, Jacobson and Lehel[2] and Li and Song[5])
$$\sigma(K_4, n) = 4n - 4$$
 for $n \ge 8$.

Proof. In [1], by taking the extremal example $\pi_0 = ((n-1)^{k-2}, (k-2)^{n-k+2})$, Erdös et al. gave a lower bound for $\sigma(K_k, n)$, i.e., $\sigma(K_k, n) \ge (k-2)(2n-k+1)+2$. In particular, $\sigma(K_4, n) \ge 4n-4$. It is sufficient to show that $\sigma(K_4, n) \le 4n-4$ for $n \ge 8$. Let π be a graphic sequence with $\sigma(\pi) \ge 4n-4$ and without zero terms. We only need to prove that π is potentially K_4 -graphic.

(I)
$$\pi \neq (n-1, 3^s, 1^{n-1-s})$$
 for each $s = 4$, 5 since $\sigma(\pi) \geq 4n-4$ and $n \geq 8$.

(II) We claim that $d_4 \geq 3$.

By way of contradiction, we assume that $d_4 \leq 2$. Let G be a realization of π with the vertex set $V = \{v_1, \cdots, v_n\}$ so that $d(v_i) = d_i$ for each $i = 1, \cdots, n$. Denote $V_1 = \{v_1, v_2, v_3\}$ and $V_2 = V \setminus V_1$. Denote by $[V_1, V_2]$ the set of edges with one endvertex in V_1 and the other endvertex in V_2 . Then, $|[V_1, V_2]| \leq d_4 + \cdots + d_n$. On the other hand, it is easy to see that $d_1 - 2 + d_2 - 2 + d_3 - 2 \leq |[V_1, V_2]|$. Therefore, $\sigma(\pi) = d_1 + d_2 + d_3 + d_4 + \cdots + d_n \leq 2(d_4 + \cdots + d_n) + 6 \leq 4(n-3) + 6 = 4n-6 < 4n-4 \leq \sigma(\pi)$ since $d_4 \leq 2$. This contradiction implies that $d_4 \geq 3$.

(III) For n=8, we have that $\sigma(\pi) \geq 4 \times 8 - 4 = 28$. Therefore, $\pi \neq (3^7, 1)$, $(3^6, 1^2)$. By Theorem 3.1, π is potentially K_4 -graphic.

Proof of Theorem 3.1. The necessary condition is obvious. Therefore we only need to prove the sufficient condition. Let $\pi = (d_1, d_2, \dots, d_n)$ be a graphic sequence satisfying the conditions of the theorem. It suffices to show that π has a realization containing K_4 as a subgraph. If $d_1 = n - 1$, then, by Lemma 2.7, π is potentially K_4 -graphic. Therefore, we assume that $d_1 \leq n-2$. We consider the following cases:

Case 1: n = 4. This case is obvious.

Case 2: n = 5.

Then $d_1 = 3$. Therefore, $d_1 = d_2 = d_3 = d_4 = 3$. Since $\sigma(\pi)$ is even, we have that $d_5 = 2$. Therefore, $\pi = (3^4, 2)$, which is an exception.

Case 3. n=6.

Then $3 \le d_1 \le 4$. If $d_1 = 3$, then $d_1 = d_2 = d_3 = d_4 = 3$. Since $\pi \ne (3^6)$, $(3^5,1)$, $(3^4,2^2)$, π must be $(3^4,1^2)$, which is potentially K_4 -graphic. Now assume that $d_1 = 4$. Then $\pi'_1 \ne (2^5)$ otherwise $\pi = (4,3^4,2)$, which is an exception. It is easy to see that $\pi'_1 \ne (2^4)$. By Lemma 2.6, we may assume that $d_4 = d_5 = d_6$. Therefore, $\pi = (4^6)$, $(4^2,3^4)$, which are exceptions.

Case 4: n = 7.

Then $3 \le d_1 \le 5$. If π'_1 has at most five positive terms, then $d_6 = d_7 = 1$ since $d_1 \le 5$, and therefore, π'_1 contains 1 as a term. Thus $\pi'_1 \ne (2^4), (2^5)$. By Lemma 2.6, we may assume that $d_4 = d_5 = \cdots = d_{d_1+2}$. Since $d_1 \ge 3$, we have that $d_4 = d_5 \ge 3$. We consider the following three subcases.

Subcase 4.1. $d_1=3$. Then $d_1=d_2=d_3=d_4=d_5=3$. Notice that $d_5+d_6+d_7$ is even. Since $3=d_5\geq d_6\geq d_7\geq 1$, we have that (d_5,d_6,d_7) is one the following sequences: $(3^2,2),(3,2,1)$. Therefore, $\pi=(3^6,2)$ or $(3^5,2,1)$, both of which are exceptions.

Subcase 4.2. $d_1 = 4$. Then $d_4 = d_5 = d_6$. If $d_4 = 4$, then $\pi = (4^6, 2)$ since $\pi \neq (4^7)$. It is easy to see that $(4^6, 2)$ is potentially K_4 -graphic. If $d_4 = 3$, then π must be either $(4^2, 3^4, 2)$ or $(4^3, 3^3, 1)$ since $\pi \neq (4^3, 3^4), (4, 3^6), (4, 3^5, 1)$. It is easy to see that both $(4^2, 3^4, 2)$ and $(4^3, 3^3, 1)$ are potentially K_4 -graphic.

Subcase 4.3. $d_1 = 5$. Then $d_4 = d_5 = d_6 = d_7 \ge 3$. Notice that $d_2 + d_3$ is odd. Since $\sigma(\pi)$ is even, we have that $d_4 \le 4$. If $d_4 = 4$, then $d_2 = 5$ and $d_3 = 4$. Therefore $\pi = (5^2, 4^5)$, which is potentially K_4 -graphic. If $d_4 = 3$, then either $d_2 = 4$, $d_3 = 3$ or $d_2 = 5$, $d_3 = 4$. That is, either $\pi = (5, 4, 3^5)$ or $\pi = (5^2, 4, 3^4)$. It is easy to see that both of them are potentially K_4 -graphic.

Case 5: n = 8.

If π_1' has at most six positive terms, then it must contain 1 as a term since $d_1 \leq n-2$. Therefore, $\pi_1' \neq (2^4), (2^5)$. By Lemma 2.6, we may assume that $d_4 = d_5 = \cdots = d_{d_1+2}$. Since $d_1 \geq 3$, we have that $d_4 = d_5 \geq 3$. We may further assume that π_8' is not K_4 -graphic. If in the sequence π_8' , $d_4' = 2$, then $d_8 \leq 2$. Since $d_2 \geq d_3 \geq d_4 = d_5 \geq 3$, we have that $d_8 = 2$. Then $d_2 = 3$ and $d_6 = d_7 = d_8 = 2$. Therefore, $d_1 + 2 \leq 5$. Thus $d_1 = 3$ and $\pi = (3^4, 2^4)$, which is potentially K_4 -graphic. Therefore, in the sequence π_8' , $d_4' \geq 3$ and π_8' has seven positive terms.

Then, by Case 4, π'_8 must be one of the following sequences:

$$(4^7)$$
, $(4^3, 3^4)$, $(4, 3^6)$, $(4, 3^5, 1)$, $(3^6, 2)$, $(3^5, 2, 1)$;

 $\pi'_8 = (4^7)$ implies that π is one of the sequences $(5^4, 4^4)$, $(5^3, 4^4, 3)$, $(5^2, 4^5, 2)$, $(5, 4^6, 1)$. It is easy to see that these are all K_4 -graphic.

Notice that $\pi \neq (3^7, 1)$, $(3^6, 1^2)$. $\pi'_8 = (4, 3^5, 1)$ or $(3^6, 2)$ or $(3^5, 2, 1)$ implies that π is one of the following sequences:

$$(5, 3^5, 1^2), \ (4^2, 3^4, 1^2), \ (4, 3^4, 2, 1^2), \ (4, 3^5, 2, 1), \ (4, 3^6, 2), (4^2, 3^4, 2^2).$$

 $\pi_{\rm R}'=(4^3,3^4)~or~(4,3^6)$ implies that π is one of the following sequences:

$$(5,4^2,3^4,1), (5,3^6,1), (4^4,3^3,1), (4^2,3^5,1), (5^2,4,3^4,2), (5,4^3,3^3,2), (4^5,3^2,2),$$

 $(4^3,3^4,2), (5^3,3^5), (5^2,4^2,3^4), (5,4^4,3^3), (4^6,3^2), (5,4^2,3^5), (4^4,3^4).$

It is easy to check that all the above 20 sequences are potentially K_4 -graphic.

Case 6: $n \geq 9$.

I. We claim that $\pi'_1 \neq (2^4), (2^5)$.

Otherwise, $d_n = 1$ and π'_1 contains at least one term with the value 1 since $d_1 \le n - 2$, a contradiction.

II. We may assume that $d_4=d_5=\cdots=d_{d_1+2}$. Since $d_1\geq 3$, we have that $d_4=d_5\geq 3$.

III. In π'_n , we claim that $d'_4 \geq 3$.

By way of contradiction, we assume that $d_4' \leq 2$. Then $d_4' = 2$. Therefore $d_n \leq 2$. Then $d_n = 2$ since $d_2 \geq d_3 \geq d_4 = d_5 \geq 3$. Thus, $\pi_n' = (d_1 - 1, d_2 - 1, d_3, d_4, \cdots, d_{n-1})$. Since $d_3 \geq d_4 = d_5 \geq 3$ and $d_4' = 2$, we have that $d_1 = d_2 = d_3 = d_4 = d_5 = 3$ and $2 \geq d_6 \geq \cdots \geq d_n = 2$. Therefore, $\pi = (3^5, 2^{n-5})$, contradicting the fact that $\sigma(\pi)$ is even.

We use induction on n to prove this case. We first prove the case n = 9. Let π be a graphic sequence satisfying $d_4 \geq 3$ and $\pi \neq (8, 3^4, 1^4)$ or $(8, 3^5, 1^3)$. We will show that π is potentially K_4 -graphic.

IV. By III and Case 5, we may assume that π'_9 is one of the following four sequences: $(3^7,1)$, $(3^6,1^2)$, $(7,3^4,1^3)$, $(7,3^5,1^2)$ since otherwise π'_9 is potentially K_4 -graphic by Case 5 and therefore, so is π .

Since each of the four sequences contains 1 as one of its terms, we have that $d_9 = 1$. Therefore, π must be one of the following:

$$(4, 3^6, 1^2), (4, 3^5, 1^3), (8, 3^4, 1^4), (8, 3^5, 1^3).$$

Since π is not $(8, 3^4, 1^4)$ or $(8, 3^5, 1^3)$, π is either $(4, 3^6, 1^2)$ or $(4, 3^5, 1^3)$, and it is easy to see that both of them are potentially K_4 -graphic.

IV. Now we assume that $n \ge 10$. Since $\pi \ne (n-1,3^s,1^{n-s-1})$ for each $s=4,5, \pi'_n \ne (n-2,3^s,1^{n-s-2})$ for each s=4,5 either. By III and induction hypothesis, π'_n is potentially K_4 -graphic and therefore, so is π .

References

- [1] P. Erdös, M. S. Jacobson, J. Lehel, Graphs realizing the degree sequences and their respective clique numbers. In: Y. Alavi et al ed, Graph Theory, Combinatorics & Applications Vol.1. New York, John Wiley & Sons Inc, 1991, 439-449.
- [2] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphic degree sequences, in: Y. Alavi, et al. (Eds.) Combinatorics, Graph Theory, and Algorithms, Vol. 1, New Issues Press, Kalamazoo, Michgan, 1999, 387-400.
- [3] S. L. Hakimi, On realizability of a set of integers and the degrees of the vertices of a linear graph, I, II, SIAM J. Appl. Math, 10(1962), 496-506; 11(1963), 135-147.
- [4] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors. Discrete Math, 1973, 6(1): 79-88.
- [5] Jiong-Sheng Li, Zi-Xia Song, An extremal problem on the potentially P_k -graphic degree sequences, *Discrete Math.*, 2000, 212(3): 223-231.
- [6] Jiong-Sheng Li, Zi-Xia Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory, 29(1998),63-72.
- [7] Jiong-Sheng Li, Zi-Xia Song, Rong Luo, The Erdös-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Science in China, 1998, 41(5): 510-520.
- [8] Rong Luo, On Potentially C_k -graphic Sequences, Ars Combin. 64(2002), 301-318.
- [9] Jiong-Sheng Li, Jiahua Yin, The Threshold for the Erdös, Jacobson and Lehel Conjecture Being True, preprint.
- [10] D. Mubayi, Graphic Sequence that have a Realization with Large Clique Number, J. Graph Theory, 34 (2000), 20-29.
- [11] Jianbin Niu, On Potentially K_4 e-graphic sequences, to appear in Australasian Journal of Combinatorics.