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Abstract

In a paper of Harary and Plantholt, they concluded by noting that they
knew of no generalization of the leaf edge exchange (LEE) transition se-
quence result on spanning trees to other natural families of spanning sub-
graphs. Now, we give two approaches for such a generalization. We define
two kinds of LE E-graphs over the set of all connected spanning k-edge sub-

graphs of a connected graph G, and show that both of them are connected
for a 2-connected graph G.

1 Introduction

In [1], Harary and Plantholt investigated the classification of interpolation theo-
rems for spanning trees and other families of spanning subgraphs. They gener-
alized the tree graph T'(G) [2] of a graph G to the single edge exchange graph,
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simply called SEE-graph, defined over the set of all connected spanning k-edge
subgraphs of G; whereas they generalized the adjacency tree graph T,(G) (3] of
a graph G to the adjacent edge exchange graph, simply called AEE-graph, de-
fined also on the same set of subgraphs of G. They proved that the SEE-graph
is connected for any connected graph G; whereas the AEE-graph is connected
for any 2-connected graph G. Recently, lower bounds for the connectivity of the
SEE-graph and the AE E-graph were obtained by X. Li [4]. However, Harary
and Plantholt concluded [1] by noting that they knew of no generalization of the
leaf edge exchange transition sequence result on spanning trees to other natural
families of spanning subgraphs. In this paper, by viewing leaf edges of a sub-
graph of a graph G in two different ways, we define two kinds of LEE-graphs,
and show that both of them are connected for any 2-connected graph G.

Throughout this paper, all graphs may have multiple or parallel edges but do
not have loops. We define a (multi-)graph G to be 2-connected if G has at least
2 vertices and every pair of vertices of G lies in a common cycle of G. So, the
definition of the 2-connectedness for a graph is as usual, with only one exception
that the graphs with two vertices and multiple edges are 2-connected under our
definition. A block of a connected graph G is defined as usual, including the
block K, with two vertices connected by only one edge. Let H be a subgraph
of a graph G. The graph obtained by contracting H from G is the graph that is
obtained by identifying all the vertices in H into one vertex, deleting all the loops
if there are any, and keeping all the other edges including multiple edges.

2 The First Approach

Definition 2.1 Let G be a graph and F a subgraph of G. An edge e of F is called
a leaf edge of Type 1, or simply T\-leaf edge whenever F \ {e} has the same
number of components as F' does, or one more single vertex component than F
does.

Definition 2.2 Let F be the set of all connected spanning k-edge subgraphs of a
connected graph G. We define the LEE-graph T} (G) as follows: The vertex set
of T;(G) is F; whereas two vertices F and H are adjacent whenever FAH =
{e, f} such that e and f are T-leaf edges of F and H, respectively, where A
stands for the symmetric difference of two sets.

In order to show the connectedness of the LEE-graph T;*(G), we fit it into
the skeleton of the basis graph of a greedoid.

We refer to [5] for terminology and results on greedoids, but repeat the defi-
nition for the notions used in this paper.
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A greedoid on a finite set E is a pair (E, Z), where Z is a nonempty collection
of subsets of E satisfying

(1).0€Z.
(2). For every nonempty X € Z, thereisanz € X such that X \ {z} € Z.

(3). For X,Y € I such that |X| > |Y|, there is an z € X \ Y such that
YU{z} e

The sets in 7 are called feasible. Thus, a greedoid is a matroid if and only if every
subset of a feasible set is again feasible. The maximal feasible sets of a greedoid
are called its bases. Like in the case of matroid, (3) implies that all bases of a
greedoid have the same cardinality, which is called the rank of the greedoid. Two
bases X and Y of a greedoid (E, Z) are called adjacentif | X (Y| = |X|—1and
X NY € Z, thatis, if X and Y differ in exactly one element and their intersection
is feasible. This gives rise to the basis graph G(A) of a greedoid A on the set of
bases of A, whose edges represent pairs of adjacent bases.

A greedoid (E, Z) with rank k is called 2-connected if for each X € Z with
|X| < k—2thereexistz,y € E\X suchthat X J{z}, X | {y}, X U{z,y} € T.

With G = (V, E,r) we denote a finite rooted graph with vertex set V, edge
set E, and a specified vertex 7 € V, which we call the root of G. If X is a subset
of E, we denote by G[X] the subgraph of G induced by X.

Lemma 2.1 Let G = (V, E,r) be a rooted graph, and k a positive integer at
least |V| — 1. Denote by T the set of edge sets of all connected subgraphs of G
containing the root r such that for X € I we have |X| < kand V(G[X]) = V
if |X| = k. Then, (E,I) defines a greedoid, and moreover, the basis graph
of (E,I) is a spanning subgraph of the LEE-graph T} (G) over F, defined in
Definition 2.2.

Proof. It is not difficult to verify that the definitions of a greedoid and its basis
graph are satisfied by (E, Z). The details are omitted. [ |

Theorem 2.1 The LEE-graphT;(G) of a graph G is connected if G is 2-connected.
Proof. In [6, Theorem 3.1], Korte and Lovész showed that the basis graph of
a 2-connected greedoid is connected. Obviously, if G is 2-connected, then the
greedoid (E, I) is 2-connected. Therefore, the basis graph G(E,Z), and hence
the LEE-graph T;*(G) by Lemma 2.1, is connected, if G is 2-connected. [ ]

Notice that in the definition of T;*(G), we do not impose the condition that
two Tl-lgaf edges e and f of F and H, respectively, are adjacent.
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Definition 2.3 We define the adjacent T)-leaf edge exchange graph, or simply
ALEE-graph, T}(G) as follows: the vertex set is F; whereas two vertices F'
and H are adjacent whenever FAH = {e, f} such that e and f are Ty-leaf
edges of F and H, respectively, and e and f share one common vertex.

Notice that the basis graph of the greedoid (E, Z) is no longer a subgraph of
T2 (G). However, the latter is a spanning subgraph of T;*(G). As a consequence
of Theorem 3.1 in Section 3, we have

Theorem 2.2 If G is 2-connected, then the ALEE-graph T,(G) is connected.

Remark 1. From an algorithmic point of view, the definition of a T}-leaf edge
for a subgraph F' of a graph G, in Definition 2.1, is acceptable. This is because
the concept of greedoids was introduced for algorithms. For r = n — 1, where
and in what follows n denotes the number of vertices of G, (E, Z) is exactly the
undirected branching greedoid [5]. So, a Tj-leaf edge z is exactly an edge of
an X € T such that X \ {z} remains inducing a connected subgraph. Thus,
for k > n, (E,T) is indeed a natural generalization of the undirected branching
greedoid.

Remark 2. The greedoid (¥, Z) and its basis graph can be naturally generalized
for the directed case. We leave the details to the reader(s).

3 The Second Approach

Definition 3.1 Let G be a graph, and F a subgraph of G. An edge e = uv of F
is called a leaf edge of Type 2, or simply Ta-leaf edge whenever one of the two
end-vertices u and v of e is not a cut vertex of F.

Definition 3.2 Let F denote the set of all connected spanning k-edge subgraphs
of a connected graph G. We define the LEE-graph T;**(G) of G as follows: the
vertex set is JF; whereas two vertices F and H are adjacent whenever FAH =
{e, f} and e and f are T,-leaf edges of F and H, respectively.

Notice that a T2-leaf edge is a T -leaf edge; however, the inverse does not
hold. Therefore, T;**(G) is a spanning subgraph of T;*(G).

In a similar way to Definition 2.3, we can give
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Definition 3.3 We define the adjacent T»-leaf edge exchange graph, or simply
ALEE-graph, TX'(G) as follows: the vertex set is F, whereas two vertices F
and H are adjacent whenever FAH = {e, f} such that e and f are T,-leaf edges
of F and H, respectively, and e and f share one common vertex which is not a
cut vertex of F and H.

Obviously, T3 (G) is a spanning subgraph of Tpy(G), T;*(G) and T}*(G).
The connectedness of T (G) and therefore Ty (G), T;"*(G) and T;*(G) can be
derived from a stronger result which we shall give in the following.

Let G = (V,E,r) be a graph rooted at r. If we never exchange pairs of
adjacent T -leaf edges with the common vertex r, then we get a restricted adjacent
Ty-leaf (or simply, ral) edge exchange graph T7'7,(G). In the following we shall
show that 7%,(G) is connected if G is 2-connected. Before proceeding, we recall
some facts.

Fact 1. If C is a minimal edge cut, then G \ C has exactly two (connected)
components, Or parts.

Fact 2. Let G be 2-connected. If C is a minimal edge cut which separates G into
two parts G; and G, then by contracting any part of G, and G2, the resultant
graph G’ is still 2-connected.

Fact 3. Let G be a 2-connected graph with at least 3 vertices, and let e, f and g
be three pairwise non-parallel edges of G. Then, there is a minimal edge cut of G
containing two of e, f and g, say e and f, but not the other one. In fact, since G is
2-connected, any edge cut must contain at least two edges. If {e, f} is an edge cut
of G, then we are done. If {e, f} is not an edge cut, then G \ {e, f} is connected.
Consider a spanning tree T of G \ {e, f} which contains the edge g. Since G has
at least 3 vertices, there is an edge h € T \ {g}. It is easy to see that there is a
minimal edge cut containing e, f and h but not g.

Fact 4. Let G be a 2-connected graph, S a connected spanning subgraph of G. If
B is a block of S not isomorphic to K3, then for any two edges e and f of B there
is a minimal edge cut C of G containing e and f such that C separates S into

exactly two components. Obviously, any minimal edge cut of S can be extended
into a minimal edge cut of G.

Fact 5. Let G and S be as in Fact 4, and C be a minimal edge cut of G that
separates S into exactly two components. Suppose the two parts of G \ C be G,
and G,. Contract any part of G; and G2, say G, into one vertex 7. Then, the
graph S’ contracted from S is a connected spanning subgraph of the graph G’
contracted from G. More important, any non-cut-vertex, other than #, of S’ is a
non-cut-vertex of S. '
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Theorem 3.1 If G = (V, E,r) is a 2-connected graph rooted at r, then the re-
stricted adjacent leaf edge exchange graph T} (G) of G is connected.

Proof. Let F' and H be any two vertices of T (G) that represent two connected
spanning k-edge subgraphs of G. Since the SEE-graph of G is connected by
[1], we can assume that F and H are adjacent in the SEE-graph of G, i.e., H =
F + e\ f, for some two edges e and f of G such that f € F bute ¢ F. Since
Fand F + e\ f are connected, we know that both e and f are not cut edges of
F + e. Thus, e is in a block of F' + e which is not isomorphic to K5, and so is f.

We shall use induction on |V| to complete the proof.

Obviously, G has at least 2 vertices. If |V| = 2, then, since G is 2-connected,
G is a multi-graph with 2 vertices and at least 2 edges. The conclusion is clear.

Suppose |V| > 3, and the conclusion holds for any G = (V, E, r) with |V| <
n.

Assume now G = (V, E, r) with |V'| = n > 3. First we consider the case that
e and f are not parallel edges of G. We distinguish the following cases.

Case 1. edges e and f are not parallel, but are in the same block B of F' + e.

Then, from Fact 4, we consider a minimal edge cut C of G containing e and
f such that C separates F' + e into exactly two components. Let the two parts of
G\ C be G; and G,. Without loss of generality, we assume that r € Go.

Subcase 1.1. |V(G2)| > 2.

Then, contract G into one vertex 7. The graph G’ contracted from G is 2-
connected by Fact 2, and has less than n vertices. By the induction hypothesis,
one can transform the graph F' contracted from F into the graph H' contracted
from H by exchanges of ral edges in G'. From Fact 5, one can also do the same
exchanges of ral edges in G to transform F into H.

Subcase 1.2. |V (G)| = 1.

Then, V(G2) = {r}, i.e., e and f share one common vertex r. Let the other
vertex of e and f be v and v, respectively. Since e and f are not parallel, we have
u # v. Since e and f are in a same block B of F + e, there is a path P, in B
connecting v and v such that r ¢ V(P,,). Let h be an edge on P,,. From Fact
3, there are two minimal edge cuts C; and C; of F + e such thate,h € C; but
f ¢ Cy,and f,h € Cybute ¢ Cs.

Step 1. Let the two parts of G \ C} be G1; and G2 with 7 € Gy2. Then, contract
G2 into one vertex 77. Since {V(G12)| > 2, the graph G contracted from G
has less than n vertices. By the induction hypothesis, one can transform the graph
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F' contracted from F' into the graph (F + e \ h)' contracted from F + e\ h
by exchanges of ral edges in G}. From Fact 5, one can also transform F into
F + e\ h by exchanges of ral edgesin G.

Step 2. Let the two parts of G \ Cz be G2; and Ga withr € Gaa. Then, contract
G into one vertex 73. Since |V (Gzz)| > 2, the graph G contracted from G
has less than n vertices. By the induction hypothesis, one can transform the graph
(F + e\ h)' contracted from F + e\ h into the graph (F + e\ f)' contracted from
(F+e\h)+h\ f=F +e\ f by exchanges of ral edges in G5. From Fact 5,
one can also transform F + e \ hinto F + e\ f by exchanges of ral edgesin G.

From Steps 1 and 2, one can successively transform F into F' + e \ f by
exchanges of ral edges in G.

Case 2. edges e and £ are not parallel, and are in different blocks of F' + e which
are not isomorphic to K>, say e € B and f € By.

Suppose in F'+e the unique block sequence from By to B is By,By, -+ By =
B, We use induction on the number m to complete the proof.

If m = 1, then By and B share one common vertex w that is a cut vertex
of F + e. Consider the components A4;,--- , A; of (F +¢) \ {w}. Since G is
2-connected, there is a path Py, in G \ {w} connecting the edges f and e in G.
Let the edges of E(Py.) \ (F +¢€) be ey, ez, - , €, in a successive order from f
to e. Notice that here we assume that the number of edges in E(Py.) \ (F +¢) is
as small as possible. First, consider F' + e;. It is easy to see that f and e; are in
the same block of F + e;. From Case 1 we know that one can transform F into
F + e, \ f by exchanges of ral edges in G. Then, consider (F +e; \ f) +e2. It
is easy to see that e; and e, are in a same block of (F' + €, \ f) + e2. From Case
1, one can transform F +e; \ finto (F +e; \ f) +ea\e1 = F +e2 \ f by
exchanges of ral edges in G. By successively considering e3, - - - , e, and finally

e, one can successively transform F into F + e \ f by exchanges of ral edges in
G.

Now, consider the case m > 2. Let the shared cut vertex of By and By be w.
Consider (F + €) \ {w}. Since G is 2-connected, there is a path Py.in G \ {w}
connecting f and e in G. Suppose the number of edges in E(Py.) \ (F + e€) is
as small as possible. Let the edges of E(Ps.) \ (F +e) be e1,€2, -+ ,€e, ina
successive order from f to e. Then, among the edges ¢; fori = 1,2,--- ,¢, e is
the unique edge with one end vertex in | Ji, B;. By the same proof technique as
for the case m = 1, one can transform F into F + e; \ f by exchanges of ral
edges in G. Now, consider F + e, \ fand (F +e;\ f) +e\e,=F +e\ f.
Since in (F' + e; \ f) + e the number of blocks from e; to e is less than m, or
e; and e are in the same block, by induction hypothesis on m, or Case 1, one can
transform F +e; \ f into (F +e; \ f) +e\ e, = F + e\ f by exchanges of ral
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edges in G. Thus, one can successively transform F into F + e\ f by exchanges
of ral edges in G.

Finally, since G may have multiple edges, we have to consider the case that e
and f are parallel edges of G. Let e = uv and f = uv. Obviously, e and f are in
the same block of F + e, say e, f € B.

Case 3. edges e and f are parallel edges uv, in a block B of F, with |V (B)| > 3.

Then, there is a vertex w € B, other than u and v, and there is a path P,,,, in
B\ {v} connecting v and w. Let h be an edge on Py,,. Then, e and h are not
parallel edges, and so are f and h. Since e and k are in the same block B of F'+e,
from Case 1 one can transform F into F' + e \ h by exchanges of ral edges in G.
Again, since f and h are in the same block B of (F + e\ k) + h = F + e, from
Case 1 one can transform F + e\ hinto (F+e\h)+h\ f=F +e\ f by
exchanges of ral edges in G. Therefore, one can successively transform F into
F + e\ f by exchanges of ral edges in G.

Case 4. edges e and f are parallel edges uv, in a block B of F'+e with |V(B)| =
2.

Then, V(B) = {u,v}. Since |V(G)| > 3, one of u and v is a cut vertex
of F + e, say v. Then, (F + €) \ {v} has at least two components. Since G is
2-connected, there is an edge h in E(G) \ (F + ) such that h = uw for some
block B'(# B) of F + e with w € B’. Then, h and f are not parallel edges,
and so are & and e. It is easy to see that h and f are in a same block of F + h.
From Case 1, one can transform F into F' + h \ f by exchanges of ral edges in
G. Again, h and e are in a same block of (F' + h \ f) + e. So, one can transform
F+h\finto(F+h\ f)+e\h=F +e)\ fbyexchanges of ral edges in G.
Therefore, one can successively transform F into F + e \ f by exchanges of ral
edgesin G.

Because all possibilities are covered by Cases 1-4, our proof is complete. W

Corollary 3.1 If G is 2-connected, then all the four leaf edge exchange graphs
TMG), T;(G), T;*(G) and T,;*(G), and the AEE-graph defined in [1] are
connected.

Proof. It follows from Theorem 3.1 and the fact that T, (G) is a spanning sub-

ral

graph of all the five graphs in the corollary. |

By induction on |V|, similar to the proof of Theorem 3.1, and the fact that the
SEE-graph is connected, we can derive the following corollary, which is similar
to a result in [7].
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Corollary 3.2 The diameter of T+ (G) of a 2-connected graph G is upper bounded
by kn?, where n is the number of vertices of G and k is the number of edges in
the considered k-edge subgraphs, representing the vertices of T,3(G).

Remark 3. If in Definition 3.3 we only require that e and f are leaf edges of F
and H, respectively, and share one common vertex, but drop the condition that the
shared vertex is not a cut vertex of F' and H, then we get another variation of leaf
edge exchange graphs. Since this variation has T};5(G) as a spanning subgraph,
it is connected if G is 2-connected.

Remark 4. One can also obtain the same result of Theorem 3.1 for directed
graphs. The details are left to the reader(s).

Remark 5. One can naturally generalize our definitions of leaf edges and their
exchanges to other families of subgraphs, mentioned in Corollary 4a of [1]. One
can also consider applications of our results for interpolations of graph invariants.
We leave out the details.
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