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Abstract

Given an acyclic digraph D, the phylogeny graph P(D) is de-
fined to be the undirected graph with V(D) as its vertex set and
with adjacencies as follows: two vertices z and y are adjacent if one
of the arcs (z,y) or (y,z) is present in D, or if there exists another
vertex z such that the arcs (z,2) and (y, z) are both present in D.
Phylogeny graphs were introduced by Roberts and Sheng [6] from
an idealized model for reconstructing phylogenetic trees in molecu-
lar biology, and are closely related to the widely studied competition
graphs. The phylogeny number p(G) for an undirected graph G is
the least number r such that there exists an acyclic digraph D on
|[V(G)| + r vertices where G is an induced subgraph of P(D). We
present an elimination procedure for the phylogeny number analo-
gous to the elimination procedure of Kim and Roberts [2] for the
competition number arising in the study of competition graphs. We
show that our elimination procedure computes the phylogeny num-
ber exactly for so-called “kite-free” graphs. The methods employed
also provide a simpler proof of Kim and Roberts’ theorem on the
exactness of their elimination procedure for the competition number
on kite-free graphs.

*Supported by a National Defense Science and Engineering Graduate Fellowship.

ARS COMBINATORIA 75(2005), pp. 297-311



1 Introduction

Given an acyclic digraph D, the phylogeny graph P(D) is defined to be
the undirected graph with V(D) as its vertex set and with adjacencies as
follows: two vertices z and y are adjacent if one of the arcs (z,y) or (y,z) is
present in D, or if there exists another vertex z such that the arcs (z, z) and
(y, 2) are both present in D. Phylogeny graphs were introduced by Roberts
and Sheng [6] from an idealized model for reconstructing phylogenetic trees
in molecular biology. For a simple graph G, the phylogeny number p(G) is
the least number r such that there exists an acyclic digraph D on [V(G)|+r
vertices where G is an induced subgraph of P(D). Phylogeny graphs and
phylogeny numbers are closely related to the widely studied competition
graphs introduced by Cohen [1} and the competition numbers introduced
by Roberts [5]. There are many results and research questions about phy-
logeny numbers and graphs analogous to those about competition graphs
and numbers. For a survey, see Roberts [4]. In this paper, we present an
elimination procedure for the phylogeny number similar to the elimination
procedure for the competition number.

Roberts [5] was the first to consider using an elimination procedure to
calculate the competition number of a graph. Given an acyclic digraph
D, the competition graph C(D) is the undirected graph with V(D) as its
vertex sets and where vertices z and y are adjacent if there exists another
vertex z such that the arcs (z,z) and (y, z) are both present in D. Roberts
noted that for any graph G, G along with r isolated vertices is the competi-
tion graph of some acyclic digraph if r is sufficiently large. The competition
number k(G) is defined to be the least such r. An elimination procedure
takes as input G and an ordering O = v;,...,v, of the vertices of G and
produces an acyclic digraph D such that C(D) is G along with some iso-
lated vertices. The procedure “eliminates” each vertex in order by ensuring
that all of the edges incident on the vertex will appear in C(D). The goal is
to create an elimination procedure that outputs an acyclic digraph D where
[V(D)\ V(G)| = ¥(G). Opsut [3] found an example of a graph G where
Roberts’ original elimination procedure does not calculate the competition
number k(G), thus giving a counterexample to Roberts’ conjecture that
the procedure always calculates k(G). Kim and Roberts [2] then modified
the elimination procedure and were able to show that the modified ver-
sion exactly calculates the competition number for a large class of graphs,
the so-called “kite-free” graphs. No example is known where the modified
elimination procedure does not calculate exactly the competition number.

In this paper, we present an elimination procedure for the phylogeny
number analogous to the elimination procedure of Kim and Roberts. The
phylogeny number p(G) for an undirected graph G is the least number r
such that there exists an acyclic digraph D on |V(G)| + r vertices where
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G is an induced subgraph of P(D). We will show that our elimination
procedure calculates the phylogeny number exactly for the same class of
kite-free graphs. From the methods that we develop, we will also give a
simpler proof that the elimination procedure of Kim and Roberts calculates
the competition number exactly for kite-free graphs.

Note that our focus here is not on efficiency, since calculating either
the phylogeny number or the competition number with an elimination pro-
cedure requires n! runs (one for each ordering of the vertices). In fact,
calculating both the competition number ([3]) and the phylogeny number
([6]) have been shown to be NP-complete. Instead, our focus is on creating
an elimination procedure that calculates the correct value for all graphs,
since this is a widely studied question and one whose answer would be use-
ful at least for smaller graphs. Proving that the procedures are optimal for
kite-free graphs is one step towards this goal.

In the work that follows, the graph G that we wish to calculate the
phylogeny or competition number of need not be connected. We use Ng(v)
to denote the open neighborhood of v in G that is, the set of vertices in G
adjacent to v. We use Ng[v] to denote the closed neighborhood Ng(v)U{v}.
For convenience, we will sometimes also describe a subgraph H of a graph
G only as “consisting of” certain edges of G. It is understood that H has
no isolated vertices: the vertices of H are only the endpoints of edges in H.

2 The Elimination Procedure

Before presenting the formal description of the elimination procedure for the
phylogeny number, we will first give an informal description. Given a graph
G and an ordering O = vy,...,v, of the vertices of G, we will eliminate
each vertex iteratively, in the process building up an acyclic digraph D
with the desired properties. When eliminating vertex v;, we will “cover”
every edge incident to v; that has not been covered in a previous iteration.
By “covering” an edge e, we mean that the appropriate arcs and possibly
vertices have been added to D so that e is an edge in P(D). The subgraph
G; is a spanning subgraph of G that contains the edges of G that have
not been covered in an iteration prior to the ith iteration. The subgraph
G! consists of the edges of G; that are incident on v;, and so G; must be
covered in the i*? iteration. The improvement of Kim and Roberts’ modified
elimination procedure over Roberts’ original procedure was in recognizing
that the edges in G} are the only edges that must be covered in the i*h
iteration. To do this, they utilize the subgraph H; consisting of the edges
from v; to vertices of higher index. The cliques chosen to cover G are
chosen from H;, even though some of the edges in H; might already be

covered. By using maximal cliques of H;, possibly more uncovered edges
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that are not in G} will be covered.

Definition 1. Let Eg(v) denote the subgraph of G with vertex set Ng[v]
and containing only those edges of G incident to the vertex v.

The Elimination Procedure for the Phylogeny Number
Input: A graph G, and an ordering O = v;,v,...,v, of the vertices of G.

Output: An acyclic digraph D := D,, such that G is an induced subgraph
of P(D).

Initialization: Set Dy to the digraph with vertex set V(@) and no arcs.
Set G1 := G. G; is a spanning subgraph of G that contains the edges
of G that do not appear in P(D;_,).

i*® Iteration, i = 1,...,n: Set G} to Eg,(v;), and set H; to the sub-
graph of G induced by {v;} U {v; : j > i and v; € Ng(v;)}. Let
& = {Ci,...,Cs} be a minimum size edge covering of G} by maximal
cliques of H;, ordered arbitrarily. Form G;y; from G; by removing
the edges of C; from G; for all j.
Form the digraph D; by adding vertices and arcs to D;_; as follows:
Add the arcs (w,v;) to D; for all vertices w € C) \ {v;}. For each
clique C; € &; \ {C1}, add a vertex b; to V(D;), and add the arcs
(w,b;) to D; for each w € C;.

Remark 2. Note that finding a minimum size edge covering of G} by max-
imal cliques of H; is equivalent to finding a minimum size vertex covering
of the subgraph induced by Ng;(v;) by maximal cliques of H; \ {v;}. The
transformation between these procedures is as follows: For each clique Cj;
in & = {C1,...,C}, set 6,' = C; \ {vi}. Then &= {—61,...,6k} is a
minimum size vertex cover of Ng,(v;) by maximal cliques of H; \ {v;} if
and only if &; is a minimum size edge cover of G} by maximal cliques of H;.

To help analyze the workings of the elimination procedure, we now
introduce a more generalized elimination procedure. In the generalized
elimination procedure, a clique cover of the entire graph G is given, and
from this covering and the order of the vertices we construct D.

The Generalized Elimination Procedure

Input: A graph G, an ordering O = vy, vs,...,v, of the vertices of G, and
an edge clique covering G of G.

Output: An acyclic digraph D := D, such that G is an induced subgraph
of P(D).
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Initialization: Set Do to the digraph with vertices V(G) and no arcs.

i*P Iteration, i = 1,...,n: Let G; = {C1,...,Ci} be the subset of G
where for each C; € G;, v; is the vertex in C; of least index. Order
G; arbitrarily.
Form the digraph D; by adding vertices and arcs to D;_; as follows:
Add the arcs (w,v;) to D; for all vertices w € C; \ {v;}. For each
clique C; € G; \ {C1}, add a vertex b; to V(D;), and add the arcs
(w, b;) to D; for each w € Cj.

We will first show that the generalized elimination procedure produces
an acyclic digraph, and then show that for the digraph D produced by the
generalized elimination procedure, G is an induced subgraph of P(D).

Lemma 3. Let D be the digraph produced by the generalized elimination
procedure for a graph G, a vertez ordering O = v;,...,v,, and an edge
clique covering G. Then all vertices in V(D)\V(G) are sinks, and if (ve, vg)
is an arc, then k < €. Thus, D is acyclic.

Proof. If b is a vertex in V(D) \ V(G), then the only arcs added to D
involving b are oriented towards b. Thus b is a sink. Now, if (ve,v) is an
arc, then it is added to D in the k*! iteration, where v, is a vertex in C},
a clique in Gi. Since vy is the vertex of least index in Cy, k < £. O

Proposition 4. The generalized elimination procedure produces an acyclic
digraph D such that the phylogeny graph P(D) has an induced subgraph
isomorphic to G.

Proof. Let G be a graph, O = v;,s,...,v, an ordering of the vertices of
G, and G an edge clique covering of G. From the initialization, the vertices
of G are a subset of the vertices of D. Let v and v, k < ¢, be vertices of
D that are also vertices of G. Suppose that v, and v, are adjacent in G.
Let i be the least index such that G; contains a clique C that contains the
edge {vk,v.}. Since G is an edge clique cover of G, i is well-defined. Now if
C = C) € G;, then both the arcs (vk, v;) and (v¢,v;) are added to D; in the
ith iteration (or ¢ = k, in which case the arc (v¢,v) is added), and so v
and v, are adjacent in P(D). Otherwise, the arcs (vx,b;) and (ve,b;) are
added to D; for some bj;, and again vy and v, are adjacent in P(D).

Now suppose that v; and v, are not adjacent in G. Suppose for con-
tradiction that vx and v, are adjacent in P(D). If v; and v, have an arc
connecting them in D, then by Lemma 3, the arc is oriented towards vy.
Thus, in the k! iteration, v, € C; for a clique C; € Gi. Since both v, and
v are in Cy, v and v, must be adjacent in G, generating a contradiction.
Now, if v and vy have incident arcs oriented towards a common vertex z,
where & # vy, ve, then these arcs are added in some it iteration of the
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procedure. Then both v, and v, are in the same clique C; € G;, and so
must be adjacent in G, generating a contradiction. Therefore, if vy and v,
are not adjacent in G, they are not adjacent in P(D). O

We now show that the standard elimination procedure is a special case
of the generalized elimination procedure.

Lemma 5. Let £; be the sets generated by the elimination procedure for a
graph G and a vertez ordering O = vy,...,v,. Then the set £ = Ui, & is
an edge clique covering of G.

Proof. Since each &; is chosen to be a set of cliques of H; and H; is a
subgraph of G, € is a set of cliques of G. We now show that £ covers all
the edges of G. Let {vi,v,} be an edge in G, where k < £. Suppose that
{vk, v} is not an edge in any clique of Uf;ll &;. Then Gy contains the edge
{vk,ve}, and so does G}. Since & is an edge clique covering of G}, there
will exist a clique C; € & that contains {vx,v,}. Therefore, £ = Ui, &iis
an edge clique covering of G.

Proposition 6. Let G be a graph and O = vy, ...,v, be an ordering of the
vertices of G. Then the digraph produced by the elimination procedure is
the same as the digraph produced by the generalized elimination procedure,
where the edge clique covering G is chosen to be £ as defined in Lemma 5.

Proof. The proposition follows from Lemma 5 and the observation that the
subsets G; used in the generalized elimination procedure are exactly the
subsets &; used in the elimination procedure. For the digraphs generated
to be the exact same, at each i*! iteration the same clique C; must be
chosen from G; = &;. (]

In order to analyze the number of additional vertices needed by the
elimination procedure to construct D, we would like a formula expressing
this number in terms of the cliques chosen. We will give such a formula
and show its correctness via the generalized elimination procedure.

Definition 7. Let G be a graph, G = {C},C3,...,C}} be an edge clique
covering of G, and O = vy,v;,...,v, be an ordering of the vertices of G.

For each vertex v;, let §; be the subset of G where for each C; € G;, v; is
the vertex in C; of least index. Define

n
f6(G,0) = " max{|G;| - 1,0}.
=1
Lemma 8. Let G be a graph, G = {C1,C2,...,Ci} be an edge clique
covering of G, and O = v),vy,...,v, be an ordering of the vertices of G.
Then |[V(D)\ V(G)| = fc(G,0), where D is the digraph produced by the
generalized elimination procedure on G, G, and O.
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Proof. Note that G; is defined exactly the same in both the generalized
elimination procedure and in Definition 7. Note that in the i*! iteration, if
G; is empty, no arcs or vertices are added to D;. If G; is not empty, then
|Gi] ~ 1 new vertices are added as sinks to D;. Thus, in the ih iteration,
max{|G;| — 1,0} vertices are added to D;, and, summing over all iterations,

V(D) \ V(G)| = )_ max{|Gi| — 1,0} = f&(G, O).

i=1
(]

By taking a minimum over all edge clique covers and vertex orders of
G, we can use fg(G, O) to calculate the phylogeny number of G.

Lemma 9. For a graph G, the phylogeny number p(G) equals ming minp
fc(G,0), where G ranges over all edge clique coverings of G, and O ranges
over all orderings of the vertices of G.

Proof. Let G = {C1,C3,...,Ci} be an edge clique covering of G, and
O = v,v,,...,v, be an ordering of the vertices of G. By Lemmas 3
and 4, the generalized elimination procedure produces an acyclic digraph
D such that P(D) has an induced subgraph isomorphic to G. By Lemma 8,
V(D) \ V(G)| = fe(G,0), and so p(G) < ming mine fe(G,O).
Now let F be an acyclic digraph that attains the phylogeny number for
G, that is, P(F) has an induced copy of G and |V (F) \ V(G)| = p(G). Let
O = v,,vs,...,v, be an ordering of the vertices of G such that if (ve, vg) is
an arc in F, then k < £. We construct an edge clique covering G of G from
F as follows: For a vertex v; € V(G), Ni*[v;] induces a clique in G, and for
a vertex b € V(F)\ V(G), Ni?(b) induces a clique in G. Since these are the
only two ways edges-can be present in G, G is an edge clique cover of G.
Now observe that the digraph D produced by the generalized elimination
procedure with G and O has the same number of vertices as F. In fact, if
C\ € G; is chosen to be the clique induced by Ni®[v;], then D is isomorphic
to F.
Therefore, p(G) = |[V(F)\V(G)| = [V(D)\V(G)| 2 ming minp
fe(G,0), and so p(G) = ming mine fg(G, O). a

Definition 10. The phylogeny elimination number e,(G) of a graph G is
the minimum of |V (D) \ V(G)|, taken over all orderings O of the vertices
of G. Here D is the output of the elimination procedure with G and O as
inputs.

The determination of sufficient and necessary conditions for when e,(G) =
p(G) is an interesting question. In the next section, we will show that a
kite-free graph has the property that e,(G) = p(G).
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Figure 1: A kite and a kite-body.

3 Kite-free Graphs

Kim and Roberts introduced the idea of considering kite-free graphs in [2]
when considering the elimination procedure for competition numbers.

Definition 11. A kite is the left graph shown in Figure 1. In a kite,
the solid edges must be present, and the dotted edges cannot be present.
The edge between vertices z and y may or may not be present. A kite-
free graph does not have a kite as a configuration. A kite-body is the right
graph shown in Figure 1. Again, the solid edges must be present, the dotted
edges cannot be present, and the edge between = and y may or may not
be present. Similarly, a kite-body-free graph does not have a kite-body as
a configuration.

The following lemma is Lemma 3 from (2].

Lemma 12. Let G be a kite-body-free graph, S a subset of V(G), H an
induced subgraph of G, and Cy,Cs, .. .,Ci a vertex cover of S using mazrimal
cligues of H. If a subset T of S forms a clique in H, then T is contained
in some Cy.

Lemma 13. Let G be a kite-free graph, and O = v4,...,v, be an ordering
of the vertices of G. In the elimination procedure, an edge {vj,vx} with
vj, vk € Ng(v;i) appears in some clique of £, where £ < 1.

Proof. Suppose that {'v,,vk} with v;, v € Ng(vi) does not appear in any
clique of &, where £ < i. Observe that in the elimination procedure all edges
incident on a vertex v, are covered by U.-—~1 E,. Thus, k >iand j > ¢, and
so {v;,vx} is an edge in H; \ {vi}. We now consider three different cases.
Suppose that both v; and v, are in Ng, (v.) Let & = {Cy,...,C,}, and
set Cy = C; \ {v:}. As stated in Remark 2, &; = {C},...,C,} is a vertex
cover of Ng;(v;) by maximal cliques of H; \ {v,} Smce vj and v are in
Ng;(v;), the edge {v;, v} forms a clique in Ng,(v;). Since G is kite-free,
H; \ {v;} is kite-body-free. By Lemma 12, {v;, v} is a clique contained in
some C, and so appears in clique C; of &;.

304



For the second case, suppose that one of v; and v is not in Ng,(v:).
Suppose, without loss of generality, that v; is not in Ng,(v;). Then the
edge {v;,v;} appears in some clique of £, where £ < i. If vy is also not
in Ng,(v;), then {vx,v;} appears in some clique of &,,, where m < i. By
the first case applied to ve, {v;,ve} would appear in a clique of £ = &, if
£ =m. Thus, £ # m. This implies that the edges {vj,vm} and {vi,v¢} do
not appear in G. But then the vertices v;,v;, vk, v¢, vm form a kite in G,
contradicting the kite-free-ness of G. Therefore, v, € Ny, (v;).

We now consider the third case, where v; ¢ Ng,(v;) and v € Ng,(v;).
Since v € Ng,(v;), there exists a clique C of £ that contains the edge
{vx,v;}. Since C does not contain {v;,v;}, there must exist a vertex v,
such that v, is not adjacent to v;. Otherwise, C' could be expanded to
include v;, contradicting the fact that C is a maximal clique of H;. Thus,
the edges {v;,vp} and {vi,v,} do not appear in G. But then the vertices
i, Vj, Uk, V¢, Vp form a kite in G, again contradicting the kite-free-ness of

]

Definition 14. Let G be a graph, and O = v,...,v, be an ordering of
the vertices of G. For each i = 1,...,n, define

T; = {v; : j > i, v; is adjacent to v;, and
3 k < i where vy, is adjacent to both v; and v;}.

Define G; to be the subgraph of G with vertices T; U {v:} and edges
{{=z,vi} :z € Ti}.

Lemma 15. Let G be a graph, O = vy, ...,v, be an ordering of the vertices
of G, and G be an edge clique covering of G. Then the cliques of G; must
cover G;.

Proof. Let e = {v;,v;} be an edge of @,-, and C a clique of G that covers e.
Note that i < j. Since v; is an endpoint of e, the least index of a vertex in
C is at most i. Suppose the vertex of least index in C is vz, where k < i.
But then v is adjacent to both v; and vj, contradicting the construction
of 5’;. Thus, @,- is covered by cliques of G;. O

Lemma 16. Let G be a kite-free graph, and O = v,...,v, be an or-
dering of the vertices of G. Then f{ze subgraphs G of G generated by

the elimination procedure are ezactly G;.

Proof. Observe that only edges whose endvertices are adjacent to v; can
appear in cliques of &;. Let {v;,v;} be an edge, where j > 7 and where there
exists a k < ¢ such that v, is adjacent to both v; and v;. By Lemma 13,
{vj,vi} appears in some clique of £, and so {v;,v;} is not in G}. Thus,
the definition of G; precisely describes Gi. O
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Lemma 17. Let G be a kite-free graph, and O = v,,...,v, be an ordering
of the vertices of G. Then fg(€,O) = ming fa(G, 0), where £ is the edge
clique cover produced by the elimination procedure on G and O, and where
the right-hand side minimum is taken over all edge clique covers G of G.

Proof. Let G be an edge clique cover of G such that f¢(G, O) is minimized.
By Lemma 15, G; must cover G; for all i. But by Lemma 16, G} = G..
Since &; is chosen to be a minimum size cover of G}, |€;| < |Gi|. Thus,
max{|€;] — 1,0} < max{|G;| — 1,0}, and summing over i gives fg(£,0) <
f G (g7 0) a

Theorem 18. For a kite-free graph G, the phylogeny number p(G) equals
the phylogeny elimination number e,(G).

Proof. By Lemma 9, p(G) = ming ming f¢(G, O), where G ranges over all
edge clique coverings of G, and O ranges over all orderings of the vertices
of G. By Lemma 17, e,(G) = ming |V(D) \ V(G)| = minp ming fg(G, 0),
and therefore, p(G) = e,(G). a

4 The Elimination Procedure for the Com-
petition Number

The phylogeny number problem is essentially a problem about minimum
edge clique covers, where the “value” of a cover is computed in a weighted
manner. The competition number problem is similar in this regard. Thus,
we can apply the methods of the previous sections to provide an alternate
proof of the theorem of Kim and Roberts [2] that the elimination procedure
for competition numbers is exact for kite-free graphs.

Definition 19. Let D = (V, A) be an acyclic digraph. The competition
graph C(D) is a simple graph with vertex set V where two vertices = and
y are adjacent in C(D) if there exists a vertex z such that both (z, z) and
(y,2) are arcs in D. From the ecological origins of competition graphs, z is
known as a prey of z and y.

Definition 20. For a simple graph G, the competition number k(G) is the
least number r such that there exists an acyclic digraph D on |V(G)| +r
vertices where C(D) is G along with r isolated vertices.

We now give the elimination procedure for the competition number. The
procedure is described here using our terminology; however, its workings
are the same as the elimination procedure described in [2]). Note that the
only difference from the elimination procedure for the phylogeny number is
how edges of G are “accounted for” in D.
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The Elimination Procedure for the Competition Num-
ber

Input: A graph G, and an ordering O = v;,v2,. .., v, of the vertices of G.

Output: An acyclic digraph D := D, such that C(D) is G with some
additional isolated vertices.

Initialization: Set Dy to the digraph with vertex set V(G) and no arcs.
Set G := G. G is a spanning subgraph of G that contains the edges
of G that do not appear in P(D;_;).
Set S :=0. S; is a set of vertices available as prey.

i*h Iteration, i = 1,...,n: Set G} to Eg,(v;), and set H; to the sub-
graph of G induced by {v;} U {v; : j > ¢ and v; € Ng(vi)}. Let
& = {C,...,Ci} be a minimum size edge covering of G, by maximal
cliques of H;, ordered arbitrarily. Form G;y; from G; by removing
the edges of C; from G; for all j.
Form the digraph D; by adding vertices and arcs to D;_; as fol-
lows: Pick k distinct vertices ui,...,ur from S;. If |S;] < k, then
add k — |S;| additional vertices uz_|s;|,- .., us to D;. For each clique
C; € &, add the arcs (w,u;) to D; for each w € C;. Form S;;; by
Sivr = (S \ {ug, ..., ux}) U{vi}.

We also give a generalized elimination procedure for the competition
number.

The Generalized Elimination Procedure for the Compe-
tition Number

Input: A graph G, an ordering O = v;,vs,..., v, of the vertices of G, and
an edge clique covering G of G.

Output: An acyclic digraph D := D, such that C(D) is G with some
additional isolated vertices.

Initialization: Set Dy to the digraph with vertices V(G) and no arcs.
Set Sy := 0. S; is a set of vertices available as prey.

i*® Iteration, i = 1,...,n: Let G; = {Cy,... ,Cr} be the subset of G
where for each C; € G;, v; is the vertex in C; of least index. Order
G; arbitrarily.
Form the digraph D; by adding vertices and arcs to D;_; as follows:
Pick k distinct vertices uy,...,ux from S;. If |S;| < k, then add
k —|S;| additional vertices ug_|s;|,---, % to D;. For each clique C; €
&;, add the arcs (w,u;) to D; for each w € C;. Form S;4; by Si+; :=

(Si\ {u1,...,ux}) U {v;}.
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The following proposition is Proposition 1 from [2], noting that though
the proof is worded only for the elimination procedure, it also applies to
the generalized elimination procedure.

Proposition 21. The generalized elimination procedure for the competition
number produces an acyclic digraph D where C(D) is G along with some
additional isolated vertices.

Note that Remark 2, Lemma 5, and Proposition 6 all carry over to the
competition number case.

Definition 22. Let G be a graph, G = {C},C,...,C} be an edge clique
covering of G, and O = vy,vs,...,Vn be an ordering of the vertices of G.
For each vertex v;, let G; be the subset of G where for each C; € G;, v; is
the vertex in C; of least index. Recursively define the sequences {af}2,

and {bg}._l
ag =0,
big = max{|G;| - “ig—l’o}’
aof =af | — (G| —b§) +1.
Define n
ha(G,0) =) bf.
i=1

Lemma 23. Let G be a graph, G = {C1,C4,...,Ci} be an edge clique
covering of G, and O = vy,v,...,v, be an ordering of the vertices of G.
Then |V(D)\ V(G)| = hg(G,O), where D is the digraph produced by the
generalized elimination procedure for the competition number on G, G, and

0.

Proof. Note that G; is defined exactly the same in both the generalized
elimination procedure and in Definition 22. For each %, af = |S;|, and so

b¢ = max{|G:| — af_,,0} is the number of vertices added to D; in the i*h
1tera.tlon. Summing over all iterations,

IVID)\V(G)| = Db = ha(G,0).
i=1
O

Lemma 24. For a graph G, the competition number k(G) equals ming mingp
hc(G, 0), where G ranges over all edge clique coverings of G, and O ranges
over all orderings of the vertices of G.
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Proof. Let G = {C1,C3,...,Cx} be an edge clique covering of G, and
O = v1,vs,...,V, be an ordering of the vertices of G. By Proposition 21,
the generalized elimination procedure produces an acyclic digraph D such
that C(D) is G with some additional isolated vertices. By Lemma 23,
[V(D)\ V(G)| = fo(G,0), and so0 k(G) < ming mino he(G, 0).
Now let F be an acyclic digraph that attains the competition number for
G; that is, C(F) is G with isolated vertices and |V (F) \ V(G)| = k(G). Let
O = v,,vs,...,V, be an ordering of the vertices of G such that if (ve, v) is
an arc in F, then k < £. We construct an edge clique covering G of G from
F as follows: For a vertex v; € V(G), Ni®(v;) induces a clique in G, and
for a vertex b € V(F)\ V(G), Ni?(b) induces a clique in G. Since these are
the only two ways edges can be present in G, G is an edge clique cover of G.
Now observe that the digraph D produced by the generalized elimination
procedure with G and O has the same number of vertices as F. In fact, if
the appropriate u,,...,u; are chosen from S;, then D is isomorphic to F.
Therefore, k(G) = |V(F)\V(G)| = |V(D)\V(G)| > ming minp
ha(G,0), and so k(G) = ming minp hg(G, O O

Definition 25. The competition elimination number M(G) of a graph G
is the minimum of |V(D) \ V(G)|, taken over all orderings O of the vertices
of G. Here D is the output of the elimination procedure for the competition
number with G and O as inputs.

With our formula for evaluating different edge clique covers in hand, we
can turn our attention to kite-free graphs. Lemmas 13, 15, and 16 carry
over exactly to the competition number case. Thus we have

Lemma 26. Let G be a kite-free graph, O = v,...,v, be an ordering of the
vertices of G. Then hg(€, 0) = ming hg(G, O), where £ is the edge clique
cover produced by the elimination procedure for the competition number on
G and O, and where the right-hand side minimum is taken over all edge
clique covers G of G.

Proof. Let G be an edge clique cover of G such that hg(G, ©O) is minimized.
By Lemma 15, G; must cover G; for all i. But by Lemma 16, G} = G..
Since &; is chosen to be a xmmmum size cover of G}, |&;| < |Gil.

We now show that af > a and b < b? for all 4. Suppose, for contra-
diction, that there exists an ¢ such that our desired conditions fail. Let ¢
be the least such index. Now,

bf = max{|&;]| - af_,,0}
< max{|G;| — a£_,,0} since |S| <16

< max{|G;| —af_,,0} sinceaf , > af_, by assumption
= b?.
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But
af =af_; — (& —bf)+1

af_y — (|G —b)+1 since |&] < |Gil
aig—l —(J&| -bf)+1 sinceaf ; >af ,

ad , - (& —bf)+1 from above

v v |l

by assumption

A%

Q

=ai0

Thus o > af and bf < b¢ for all i. Summing over i gives hg(€,0) <

1

ha(G,0). o

Theorem 27. For a kite-free graph G, the competition number k(G) eguals
the competition elimination number M(G).

Proof. By Lemma 24, k(G) = ming mine hg(G, O), where G ranges over all
edge clique coverings of G, and O ranges over all orderings of the vertices
of G. By Lemma 26, M(G) = minp |V(D) \ V(G)| = minp ming hg(G, O),
and therefore, k(G) = M(G). O
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