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Abstract

We investigate the supereulerian graph problems within planar
graphs, and we prove that if a 2-edge-connected planar graph G
is at most three edges short of having two edge-disjoint spanning
trees, then G is supereulerian except a few classes of graphs. This
is applied to show the existence of spanning Eulerian subgraphs in
planar graphs with small edge cut conditions. We also determine
several extremal bounds for planar graphs to be supereulerian.

1 Introduction

Graphs in this note are finite and loopless. Undefined terms and notations
are from [1]. As in [1], the edge-connectivity of a graph G is denoted by
#'(G) and dg(v) denotes the degree of a vertex v in G. A graph G is
essentially k-edge-connected if |E(G)| > k + 1 and if for every Ey C
E(G) with |Ey| < k, G — Ep has exactly one component H with E(H) # 0.
The greatest integer k such that G is essentially k-edge-connected is the
essential edge-connectivity «.(G) of G. For each 1 =0, 1,2, - ., denote
D;(G) = {v € V(G)|da(v) = i}, and for any integer ¢ > 1, denote D} (G) =
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U Di(G). The edge arboricity a,(G) of G is the minimum number of

edge-dls_]omt forests whose union equals G. The girth of G, denoted by
g(@), is the length of a shortest cycle of G, or oo if G is acyclic. We use
H C G (H C G) to denote the fact that H is a subgraph of G (proper
subgraph of G ). Let V,W be disjoint subsets of V(G). Then [V, W]¢
denotes the set of edges in G that has one end in V and the other end
in W. Let X C E(G). The contraction G/X is obtained from G by
contracting each edge of X and deleting the resulting loops. If H C G, we
write G/ H for G/E(H). Note that even if G is a simple graph, contracting
some edges of G may result in a graph with multiple edges. A graph with
at least two vertices is called a nontrivial graph.

A subgraph H of a graph G is dominating if G — V(H) is edgeless.
Let O(G) denote the set of odd degree vertices of G. A graph G is Eulerian
if O(G) = 0 and G is connected. A graph G is supereulerian if G has a
spanning Eulerian subgraph.

In [4] Catlin defined collapsible graphs. Given a subset R of V(G), a
subgraph I of G is called an R-subgraph if both O(T") = R and G — E(T")
is connected. A graph G is collapsible if for any even subset R of V(G),
G has an R-subgraph. Catlin showed in [4] that every vertex of G lies in a
unique maximal collapsible subgraph of G. The reduction of G, denoted
by &, is obtained from G by contracting all maximal collapsible subgraphs
of G. A graph G is reduced if G has no nontrivial collapsible subgraphs,
or equivalently, if G = G’, the reduction of G. A nontrivial vertex in G’
is a vertex that is the contraction image of a nontrivial connected subgraph
of G. Note that if G has an O(G)-subgraph I, then G — E(T') is a spanning
Eulerian subgraph of G. Therefore, every collapsible graph is supereulerian.

Jaeger in [12] showed that if G has two edge-disjoint spanning trees,
then G is supereulerian. Defining F(G) to be the minimum number of
additional edges that must be added to G so that the resulting graph has
two edge-disjoint spanning trees, Catlin [4] and Catlin et al. [8] improved
Jaeger’s result. We put these former results in the following theorem.

Theorem 1.1 Let G be a graph. Each of the following holds.

(i) (Jaeger, [12]) If F(G) =0, then G 1is supereulerian.

(i) (Catlin, [4]) If F(G) < 1 and if G i3 connected, then G is col-
lapsible if and only if the reduction of G is not a Ko.

(iit) (Catlin, Han and Lai, (8]) If F(G) < 2 and if G is connected,
then either G is collapsible, or the reduction of G is a K3 or a Ky for
some integer t > 1.

Theorem 1.1(iii) was conjectured in [4] and [5]. In [5}, Catlin also
conjectured that if F(G) < 3 and if G is 3-edge-connected, then G is col-
lapsible if and only if the reduction of G is not the Petersen graph. Noting
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that planar graphs cannot be contracted to the Petersen graph, we in this
note prove the following.

Theorem 1.2 Let G be a 3-edge-connected planar graph. If F(G) < 3,
then G 1is collapsible.

81
81 82
K4(s1, 82, 33) T(sy, s2) Cs(s1,52)
f : l; : 82
S(s1, s2) K3 3(s1,s2)

Figure 1
Let s; > 1(i = 1,2,3) be integers. Denote K,(sy, sz, ss), T(s1,s2),
C3a(s1, 82), S(s1,s2) and Kp 3(s1, s2) to be the graphs depicted in Figure 1,

where the s; (i = 1, 2, 3) vertices and the two vertices connected by the two
lines shown in each of the graphs forms a K3 s, graph. Denote

fl = {K4(81, 82, 83): T(sl; 82)’ 03(81’ 32); S(sla 32)?

K3 3(s1,82)

8 21(i=1,2,3) is an integer }

and F = Fy U{Ky;: | t > 2 }. Clearly, each graph G in F is reduced and
F(G) < 3. We prove the following results.

Theorem 1.3 Let G be a 2-edge-connected planar graph. If F(G) < 3,
then either G is collapsible or the reduction of G is a graph in F.
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Theorem 1.4 Let G be an essentially 8-edge-connected planar reduced graph
with k'(G) > 2. If F(G) < 5, then G has a dominating Eulerian subgraph
H such that D}(G) C H.

Theorem 1.5 Let G be a simple graph of order n with x'(G) > 2.
(i) (Catlin and Li, [9]) If for every edge cut S C E(G) with |S| <3

we have that every component of G — S has order at least —, then G is

supereulerian if and only if G cannot be contracted to K 3.

(i) (Broersma and Xiong, [2]) If n > 13 and if for every edge cut
S C E(G) with |S| < 3 we have that every component of G —S has order at

least 1‘—5:-%, then G is supereulerian if and only if G cannot be contracted

to K2'3 or K2,5.

Applying Theorem 1.4, we can improve Theorem 1.5 within planar
graphs.

Theorem 1.6 Let G be a simple planar graph of order n with x’(G) > 3.
If for every edge cut S C E(G) with |S| = 3 we have that every component

of G — S has order at least —1%,

In [3], Cai considered this problem: Find the best possible bound f(n)
for a simple graph G with n vertices such that if | E(G)| > f(n), then G is
supereulerian. Let Qs denote the cube (K3 x C4) and Q3 — v denote the
cube minus a vertex. Cai proved the following result.

Theorem 1.7 (Cai, [3]) Let G be a simple graph of order n > § and
K(G)>2. If

then G is supereulerian.

BNz (5" )+

then ezactly one of the following holds:
(i) G is supereulerian.
(#) G can be contracted to a Ka3.
(iii) G is the graph Ko 5 or Q3 —v.

In [3], Cai conjectured that when restricted to the 3-edge-connected
simple graphs, the lower bound can be improved. In [7] and [10], Catlin
and Chen settled this conjecture.

Theorem 1.8 (Catlin and Chen, [7], [10]) Let G be a simple graph with
n > 11 vertices and with '(G) 2 3. If

1B(C)] 2 ( i ) +16,

then G is collapsible.

316



Graphs contractible to the Petersen graph indicate the sharpness of
this result. In this note, we prove the following related results among planar

graphs.

Theorem 1.9 Let G be a planar graph with n vertices, with £'(G) > 3 and
9(G) > 4. If|E(G)| 2 2n -5, then G 1is collapsible.

Theorem 1.9 cannot be relaxed to 2-edge-connected planar graphs
since Ky is not collapsible.

Theorem 1.10 Let G be a planar greph with &'(G) > 3 such that every
edge of G i3 in a face of degree at most 6. If either G has at most two faces
of degree 5 and no faces of degree bigger than 5, or G has ezactly one face
of degree 6 and no other faces of degree bigger than 4, then G is collapsible.

Theorem 1.10 is related to a former conjecture of Paulraja ([15], [16]):
If G is a 2-connected graph with §(G) > 3 such that every edge of G lies in
a cycle of length at most 4, then G is supereulerian. This conjecture was
proved in [13].

Theorem 1.11 If G is a 2-edge-connected simple planar graph with order
n > 6 and |E(G)| > 3n — 8, then F(G) =0.

Theorem 1.12 If G is a 2-edge-connected simple planar graph withn > 9
vertices and |E(G)| 2 3n—12 edges, then ezactly one of the following holds:
(i) G is supereulerian.
(i) G has a mazimal collapsible subgraph H with order n — 4 such
that G/H i3 a K2'3.

In this paper, we present the proofs of Theorem 1.2 and Theorem
1.3 in Section 2. Theorems 1.3 and 1.2 will be applied to prove Theorems
1.4 and 1.6 in Section 3, to prove Theorems 1.9 and 1.10 in Section 4,
respectively. The proofs for Theorems 1.11 and 1.12 are in Section 5.

2 Proofs of Theorem 1.2 and Theorem 1.3

The proofs need the help of a reduction technique of the 4-cycle, first in-
troduced by Catlin in [6]. Let G be a graph and let C = vjvav3v4v; be a
4-cycle of G. Let G, denote the graph obtained from G — E(C) by identi-
fying v; and v3 to form a single vertex wj, and by identifying vy and v4 to
form a single vertex wsy, and by joining w; and wy with a new edge e,.

Theorem 2.1 Each of the following holds:
(i) (Catlin, [6]) If G is collapsible, then G is collapsible; if G, is
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supereulerian, then G is supereulerian.
(i) (Catlin, Han and Lai, [8]) If G is reduced, then F(G,) = F(G)-1.
(iii) (Catlin, [6]) If G is K33 minus an edge, then G is collapsible.

Applying Theorem 2.1(i), we have the following lemma.

Lemma 2.1 Let Ly, Ly, L3 be the graphs given in Figure 2. Then Ly, Lo
and L3 are collapsible.

L, Ly L3
Figure 2

Theorem 2.2 Let G be a 2-edge-connected graph with |E(G)| > 0.

(i) (Catlin, [{]) If G is the reduction of a graph and H C G, then both
G and H are reduced.

(i) (Catlin, [4]) If G is reduced, then G cannot have any cycles of
length less than 4.

(iii) (Catlin, [6]) If G is reduced, then ay(G) < 2; if a1(G) < 2, then
F(G)=2|V(G)| - |E(G)| —2.

(iv) (Catlin, [4]) Let G’ denote the reduction of a graph G. Then G
is supereulerian if and only if G’ is supereulerian; and G is collapsible if
and only if G’ = K.

Proof of Theorem 1.2 Let G be a 3-edge-connected planar graph with
F(G) < 3 and let G’ denote its reduction. By Theorem 2.2(iv), we only
need to show that G’ = Kj.

By contradiction. Suppose that G’ is nontrivial. Since G is 3-edge-
connected and planar, G’ is also 3-edge-connected and planar. Since every
spanning tree of G will become a connected spanning subgraph in any
contraction of G, F(G') < F(G) < 3. We may assume that G’ is embedded
on the plane.

By Theorem 2.2(i) and (ii), G’ is reduced and cannot have any cycles
of length 2 or 3, and so G’ is a simple plane graph each of whose face has
degree at least 4. Let f denote the number of faces of G’ and let f; denote
the number of faces of G’ having degree 7, where ¢ > 1 is an integer. Note
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that fi = fo = f3 =0, and so we have

Af+3 G- fi=)_ifi =2/EQ")]. 1)
i=5 i=4

By (1) and by Euler’s formula,

2B(G")| =2IV(G)|+2f-4= 2|V(G')i+IE(G')I—4——2(2—4)f= )
i=5

Thus |E(G")] = 2JV(G")| -4 - = Z(z —4)f;. On the other hand, since
F(G") < 3 and by Theorem 2. 2(111), |E(G’ )| = 2|V(G")| — 5. It follows that

2[V(&)| -5 < |BE(@G) =2V(G)| -4~ —Z(z -4)fi. 3)

i=5

If |E(G")| = 2|V(G")| — 4, then by Theorem 2.2(iii), F(G') = 2, and
so by Theorem 1.1(iii) and by the fact that G’ is 3-edge-connected, G’
must be a collapsible graph. Thus G’ = K; by Theorem 2.2(iv). This
contradicts the assumption that G’ is nontrivial. Therefore, to obtain our
final contradiction, we only need to show that |E(G’)| = 2|V(G')| -5 is

impossible.
If |B(G")| = 2[V(G’)| — 5, then by (3), we have
either f4=f~2and fs=2,0r fy=f~1and fs6 =1. 4)

Since k'(G’) = 3, we must have fy > 1. Let C = vjv2v3v4v; denote a 4-cycle
of G’ and consider G%. Since #’(G’) > 3, G, is connected. Moreover,

if s'(G) < 2, then e, = wyws is in an edge cut of size at most 2 in G,.
(5)
Suppose first that «’(G%) > 2. Then by Theorem 2.1(ii), F(G.) <
2. It follows by Theorem 1.1(iii) that either G}, is collapsible, whence G’
is collapsible by Theorem 2.1(i), contrary to the assumption that G’ is
reduced; or the reduction of G is & K3 ; for some integer ¢ > 2, whence G’
has an edge cut of size 2, contrary to the fact that x'(G’) > 3.
Therefore by (5), ex must be the only cut edge of G.. Let G} and
G be the two components of G, — ex with w; € V(GY) and wy € V(G’z)
Then G’ — E(C) has two components G and G with vy, v3 € V(G) and
ve,v4 € V(G2) such that G can be obtained from G, by identifying v; and
vz, and Gj can be obtained from G2 by identifying ve and v4. Since G’ is
reduced, both G; and G4 are reduced.
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If F(G1) < 2, then by Theorem 1.1(iii) and by the fact that G, is
reduced, G, is either a K or a Ky, for some integer ¢t > 1. If G; = K,
then G’ has a 3-cycle, contrary to Theorem 2.2(ii); if G; = Ky, then G’
has an edge cut of two edges, contrary to the assumption that «’(G’) > 3.
Therefore F(G1) > 3. Similarly, F(G2) > 3.

By Theorem 2.2(iii), | E(G;)| < 2|V(G:)| -5 for both i =1 and i = 2.
It follows by F(G’) < 3 and by Theorem 2.2(iii) that

2
AV(E) -9 =BG -4=) |E(G))
i=1

2
<20 IV(Gy)| -5) = 2[V(G)| - 10,

i=1
a contradiction. Thus G’ must be 2 K; and so G is collapsible. ]

Proof of Theorem 1.3 Suppose that G is not collapsible, and G’ is the
reduction of G. Then G’ # K, and F(G’) < 3. By Theorem 1.2, ¥'(G’) = 2.
We apply induction on n = |V(G’)| to prove G’ € F.

Clearly, n > 4. If n = 4, then G = K33 and the result holds. We
suppose that the result holds for fewer vertices.

Note that «'(G’') = 2. Let X C E(G’) be an edge cut of G’ with | X| =
2. Pick an e € X, and denote [e] = {e’ € E(G’)|{e, €’} is an edge cut of G’}
U{e}. Then for any {e1,ea} C [e], {e1,e2} is also an edge cut of G. Let
|le]] = k = 2. Then there are k connected subgraphs H;, Hy,- -, Hy such
that H;, Hiy1 (i =1,2,---,k — 1) and H,, Hy are joined by one edge in
[¢](see Figure 3), and each H; (i = 1,2,---,k) is either a K; or 2-edge-
connected.

Hj Hi,

Hy H
Figure 3

Thus, we have

k
,z"l F(H) =Y @V(H)| - |BH) - 2)
= i=1
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k k
=2) IV(H)| - Y_|E(H:)| - 2
i=1 i=1

— 2V(G")] - (E(C)| - k) — 2k = 2V(C")| - |B(C)| ~ k
= F(G) —k+2.

We break it into four cases.
Casel k> 5.
Note that F(G’) < 3, we have F(H;) =0 (i=1,2,---,k) and k = 5.
Thus H,' =K1 (i=1,2,---,k) and G’=Cs =03(1,1).
Case 2 k =;1.

Then 3 F(H:) = F(G") — 2. If F(G') < 2, then F(H;) = 0 (i =
i=1

1,2,3,4) and G’ = Cy = Ky . If F(G') = 3, then z F(H;) = 1. Without

loss of generality, we assume that F(H;) = 1. By Theorem 1.1(ii), either
H, is nontrivial and collapsible, contrary to the fact that G’ is reduced, or
H, = K, contrary to the assumption that x'(G’) > 2 or k = 4.

Case 8 k= 3

Then Z F(H;) = F(G') — 1. Note that a triangle is collapsible, we

have F(G’) = 3 and there doesn’t exist some H; such that F(H;) = 1.
Without loss of generality, we let F(H;) = 2 and F(H;) = F(H3) = 0.
Then Hy = H3 = K. Note that H) is 2-edge-connected, we have H; = Ky,
(t > 2) by Theorem 1.1(iii). Thus G’ must be one of the following graphs
shown in Figure 4.

G’ = C3(2,1)(when t = 2)

r __
G’ = Cs(t,1) G' = K33(1,t — 2)(when ¢ > 3)
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CE RIS

G =8@t-1,1)
Figure 4

Case 4 k=2.
Let H,, H be the two components of G’ — [e] and we assume that

F(H,) < F(H3). Since 2 F(H;) = F(G') <3, F(H;) < 1. Note that for

i = 1,2, either H; = K 1 or H; is 2-edge-connected, we have H; = K by
Theorem 1.1(ii), and Hs # K; since C; is collapsible. Therefore F(Hz) < 3
and x’'(Hz) > 2.

Note that Hy is reduced, we have H» € F by induction. Thus there
exists a vertex v € V(G’) such that dg/(v) = 2 and v is one vertex of a
4-cycle of G'. Let G, = G’ —v. Then G; € F by induction.

When G, = Ky(s1, s2, s3), there are 4 possible way for v to join G (see
Figure 5). Let {si, s, sk} = {51, 52, s3}. Then for the first graph in Figure
5, in which case G' = Ky(si + 1,35,s¢). By Lemma 2.1 and Theorem
2.1(iii), each of the other graphs in Figure 5 contains a collapsible graph,
and so G’ could not be these three graphs.

Si
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83

Figure 5

Similarly, we can check other 5 cases. If G; = Ka; (¢t > 2), then
G = Koygyr. If Gy = T(s1,s2), then G’ € {T(s1 + 1,s2),T(s1,52 +
1), K4(31,82, 1), 5(2, 31), 5(2, 82)}. If G1 = 03(81, 82), then G' € {03(31 +
1, 82), Cs(sy, 82 + 1),K23(81, 1),K2,3(82, 1)} If G, = S(s1,82), then G’ €
{S(s1 + 1, 82),5(s1,52 + 1), T(2,51), T(2, 82), K4(1,1, 81), K4(1,1, s2)}. If
G1 = Ka3(s1, 82), then G’ € {K3,3(s1+1,52), Ka3(s1,82 + 1)}. []

3 Proofs of Theorems 1.4 and 1.6

The following theorem and lemma. are needed in the proof of Theorem 1.4.

Theorem 3.1 (Chen et al., [11]) If G is a 3-edge-connected planar graph
with |V(G)| < 23, then G is supereulerian. '

Lemma 8.1 Let C = vjvavsvsv; be a cycle of a graph G with N(v;) —
V(C) = {wi} (i = 1,2,3,4), and with either uy # us or u; # us. If
a,(G) < 2, then a1 (G,) < 2.

Proof Let (E;, E2) be a partition of E(G) such that each G[E;] (i =1,2)
is acyclic, and let

E = E(C) U {u1v1, ugvy, ugv3,uqvs}, By =E1 - E, E}=FE, - E
7]
By = Ej U {u1v1,u4v4, v102, 0203}, E12 = E5 U {ugv, ugus, vavs, vav: }
74
E31 = E{ U {uyvy,uov2, vau3, vava}, Faz = E5U {ugvs, usvs, v1v2,v4v; }

E31 = Ej U {ugvg, uavs, vava, vav1}, Esa = E5 U {uqvy, ugvs, v192,v203}

1’ 14
Ey1 = E; U {ugvs, uqvg, v1v2,v4v1}, Ega = E5 U {u1vy, ugvy, vovs, vave}
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Then for each 1 =1,2,3,4, (Ei1, Ei) is also a partition of E(G) such that
each G[Ey] (7 = 1,2) is acyclic. Let ey = wywy be the new edge in G,
and for i = 1,2,3,4, let

Ej, = E; — E(C), E{;=(Ei2a—E(C))U{es}

Then (E;, El,) is a partition of E(G,). Suppose that a;(Gr) > 3. Note
that G[E/ ] is acyclic by the construction of (E;1, Ei2), Gx[E1s), Gx[F32],
G"[Eézl, G.,r [Eég] contain cycl% UQPI'IJ.;;wl’leuQ, u3P2u4'w2'w1u3,

ug Paujwiwouy, w1 Pyuswowiu, respectively, where Py, Po, Ps, Py respec-
tively are (uz,us)-path, (us,us)-path,(us, u;)-path and (uy,uz)-path in G.
As either u; # u2 or u; # ug, G[E2] contains a cycle C C P,UP,UP3UP;,
a contradiction.

Proof of Theorem 1.4 By contradiction, suppose that G is a smallest
counterexample. Then G is reduced.

Claim 1 «'(G) = 3.

Since x¢(G) > 3, that is, G is essentially 3-edge-connected, we only
need to prove that dg(v) > 3 for any v € V(G). Suppose that there
exists v € V(G) such that dg(v) = 2. Let e; = vuj, ez = vua. Note
that G is reduced, G doesn’t contain triangle. Thus uyus € E(G). Let
G1 = G/e;. Then «/'(G1) 2 2, ke(Gy) 2 3 and F(G1) < 5. Note that G is
smallest, there exists a dominating Eulerian subgraph H’ in G such that
D3(Gy) C V(H'). By ujug € E(G) and k.(G) 2 3, we have dg(u;) > 3
and dg(uz) = 3. Thus dg,(uw:) > 3 (¢ = 1,2) and uy,up € H. Let

_ H', if ujuy ¢ E(H’)
o= { GUE(H) - {uruz}) U fouy, vua)], i wyup € B(H') © TPon H
is a dominating Eulerian subgraph of G such that D§(G) C H, a contra-
diction.

Claim 2 x.(G) > 4.

Suppose that S is a 3-edge cut and G, G5 are two components of G~ S
with F(G;) £ F(Gz) and E(G,) # 0, E(G2) # 0. Then F(G,) + F(G3) =
F(G) +1 < 6 by Theorem 2.2(iii). Thus we have F(G;) < 3.

If G; has an cut edge e, let H; and Hs be two components of G; — e
and H; be the component adjacent to at least two edges of S. Then either
[V(H1),V(G)-V(Hy)]e =eor [V(H,),V(G)—V(H,)]¢ is a 2-edge cut in
G, contrary to Claim 1. So we have «/(G;) > 2. Note that G, is reduced
and |{V(G,)| 2 2, by Theorem 1.3, Gy € F. Since |[D2(G,)| < 3 and by
planarness of G, G1 = K4(1,1,1). Similarly, G2 = K4(1,1,1). So G must
be the graph shown in Figure 6. Clearly, G is supereulerian, a contradiction.
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D=}

Figure 6

Claim 3 G has at least 13 4-faces.

By Claim 1 and Theorem 3.1, we have n = |V(G)| > 24. Let z be the
number of 4-faces, m the number of the edges, f the number of faces. Then
2m > 4z +5(f —z). Thus 2m > 5f —z. Note that n —m + f = 2, we have
5n—3m > 10—z. Since F(G) =2n—m—2 <5, we have z > n—11 > 13.
Thus G has at least 13 4-faces.

Claim 4 No two 4-faces C; = v1v2v3v4v1 and Cy = vyvovsvev; in G satisfy
do(v;) =3(i=1,2---,6).

By contradiction. Suppose that there exist two 4-faces Cy = vyvov3v4v1
and Cy = vywpvgvgy; in G such that dg(v;) = 3 (i = 1,2..-,6). Let
H = G - {v1,vs,---,v6}. Then we can get the new graph (G, ). by using
w—collapsible 2 times (see the graphs in Figure 7).

U3
Y2 kY g v g /
H| = Hf = e H
1
'U4 t : \
G Gr (Gx)/m
Figure 7

Let e = wyw; denote the new edge in (G )x. Clearly, (Gr)r is 2-edge-
connected, otherwise, e is a cut edge of (G )r and X = {v1v2, v3v4,vsvs} is
a 3-edge cut in G in which both sides of G— X have edges, contrary to Claim
2. Next we want to prove that G is 3-edge-connected. Suppose that G is not
3-edge-connected. Then {e, e;} is a 2-edge cut, where e; = wawy € E(H).
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Let Hy, Hz be two components of (Gx)r — {e,e1}, and wy, w3 € V(H,),
wa, wy € V(H3). Then E(H; — {w,}) =0 and E(H; — {wz}) = @ by Claim
2. Thus N(G,,),.. (wl) = w3 and N(Gﬂ_)" (‘wz) = wy. Hence V(H) = {w3,w4},
Ng(v3)NH = Ng(vs) N H = {ws} and Ng(ve) N H = Ng(va) N H = {wy}.
So G is supereulerian, a contradiction. Thus G is 3-edge-connected. Clearly,
(Gx)x is planar with F((Gr)r) = F(G)—2 < 3 by Lemma 3.1 and Theorem
2.2(iii). By Theorem 1.3, (G ), is supereulerian. Thus G is supereulerian
by Theorem 2.1(i), a contradiction. So Claim 4 holds.
Claim 5 Suppose that C' = vyvovsvav; is a 4-face of G. Then for i =
1,2,3,4, dg(v;) = 3.

Let G, = (G - {vl'vg, 1)31)4})/{'01'04, 1)2'03} and
Ga = (G—{v1v4,v2u3})/{v1v2,v3v4}. First we prove that either x.(G;) > 3
or ke(G2) > 3. Suppose that x.(G;) = 2 for 1 = 1,2. Then G must have
the structure in Figure 8.

Figure 8

For i = 1,2,3, [[V(H)), V(Hiy el = 1 and [[V(HL), VD]l = 1. Let
H; = H{ U {‘Ui} (’!, =1,2, 3,4) Then

4
_i:‘l F(H) =S (@IV(Hs)| - |E(H:)| —2)
= i=1
=2n—-(m-8)-8=22n-m=F(G)+2<7.

Note that |V (H;)| > 2, there are at least three of these H;’s, say H;, Hy, Hj,
such that F(H;) £ 2 (i = 1,2,3). Since x'(G) > 3, we have H; # Ko,
(i = 1,2,3). Thus H; = H = H3 = Kj by Theorem 1.1(iii). This
contradicts Claim 4. So without loss generality, we assume that x.(G;) >
3 and wy, ws are two new vertices. By the assumption of G, G; has a
dominating Eulerian subgraph H’ such that D3(G;) C H’. If either w; €
H’ or wy € H', then we can always get a dominating Eulerian subgraph H
of G such that D3(G) C H, it is impossible. Thus w;, w2 & H'. Therefore
Claim 5 holds.
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By Claim 3, let Cy,Cs,C3,C4,Cs be five 4-faces of G. By Claims
4,5, no two of these 4-faces have common vertices or edges. Applying
m—collapsible to each of these five 4-faces, we get the graph Gs3 with
F(G3) = 0 by Lemma 3.1 and Theorem 2.2(iii). Note that Gs is connected,
G3 is supereulerian by Theorem 1.1(i). Thus G is also supereulerian, a
contradiction.

Proof of Theorem 1.6 Let G’ be the reduction of G. If G’ = K, then
G is supereulerian. Next we suppose that G’ # K;. Then G’ is 3-edge-
connected and nontrivial. Denote d; = |D;(G")] (z > 3).

If d3 > 17, then we assume that v;,vs,---,v17 are the vertices of
V(G") in D3(G"), ie. dg(v;) = 3 for each i, and the corresponding pre-
images are Hy, Hy, - -+, Hy7. Each H; is joined to the rest of G by an edge
cut consxstmg of dg/(v;) = 3 edges. By the hypothesis of Theorem 1.6,

n= V@) 2 SV H 2 =,

i=1

a contradiction. So d3 < 16.
By Theorem 1.4, we only need to consider F(G') > 6. Note that

V(@)=L & 2B = Y dev) =} id;, and F(G') =2|V(G)]
i>3 veV(G) i>3
—|B(G")| — 2, we have the following
d3s 216+ Y (i —4)di.
i>5

Thus n = d3 = 16. By Theorem 3.1, G is supereulerian. []

4 Proofs of Theorems 1.9 and 1.10

We shall apply Theorem 1.2 to prove both Theorems 1.9 and 1.10. First,
we need one more lemma in this section.

Lemma 4.1 Let G be a planar graph such that every face of G has degree
at least 4. Then |E(G)| < 2|lV(G)| —4.

Proof Let f denote the number of faces of G. Since every face of G has
degree at least 4, 4f < 2|E(G)| and so the lemma follows from Euler’s
formula.

Proof of Theorem 1.9 Let G be a planar graph with «’(G) > 3 and with
n vertices. Assume that |E(G)| > 2n — 5. Let G’ denote the reduction of
G. By Theorem 2.2(iv), it suffices to show G’ = Kj.
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By contradiction, assume that G’ is nontrivial. Then by Theorem
2.2(ii), G’ also has girth at least 4. Note that G’ is planar and «'(G’) > 3,
let Hy,--- H; denote the nontrivial maximal collapsible subgraphs of G
and let p denote the number of vertices of G’. Then by Lemma 4.1, each
|E(H:)| < 2|V (Hy)| -4,

l l
2 -5 < |E(G)| =) |E(H) +|E(G)| <2 [V(H:)| - 4l + |E(G")],

=1 i=1

and so |F(G’)| = 2p — 5+ 2l. By Theorem 1.1(iii) and «’(G’) > 3, we have
F(G") 2 3. Thus, by Theorem 2.2(iii), 2p — 5 > | E(G’)| > 2p — 5+ 2l, and
so ! =0 and F(G’) = 3. Therefore by Theorem 1.2, G’ must be collapsible,
contrary to the fact that G’ does not have nontrivial collapsible subgraphs.
This proves Theorem 1.9. ]

Proof of Theorem 1.10 Let G’ be the reduction of G. Again we argue
by contradiction and assume that G’ # K;. Note that «'(G’) > 3, by
Euler’s formula, by Theorem 2.2(iii) and by (1) in the process of the proof
of Theorem 1.2, one concludes that F(G’) = 3 and so Theorem 1.10 follows
from Theorem 1.2. ]

5 Proofs of Theorems 1.11 and 1.12

A few more lemmas and a former theorem of Nash-Williams and Tutte are
needed in the proofs in this section.

Theorem 5.1 (Nash-Williams [14] and Tutte {17]) A graph G = (V, E)
contains | edge-disjoint spanning trees if and only if for each partition
(W1, Va,---, Vi) of V, the number of edges which have end in different parts
of the partition is at least l(k — 1).

Proof of Theorem 1.11 Suppose V = (V;, V3, ---, V) is any partition
of V. Without loss of generality, let {V1| = |Vo|=---= V|| =1, [Vig|=
o= |Viym| =2, and for I+ m+1 < j <k, |V;| > 3. Since G is a 2-
connected simple planar graph, |E(G[V;])| < 3|V;|—6 for I+m+1 < j < k;
|[E(GVi])| <1forl+1<i<l+m;and B(G[V;])=0for 1 <j <l Then,
we have

L _ MYilel =IBG)|- 3 IEGW;)I

1<i<5<
>3 —-8—-—m—[3(n—-2m—-1)-6(k—1—m))
=6k-3l-m—38
=2(k—1)+4k-3l—m—6.
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We consider the following cases:
Casel [=0.
Byn>6and k>2,4k~38—-m—6=3k+(k—m)—-62=>0.
Case2 m=0.
Ifl=k,then4k -3l —m —6=k —6 > 0since k=n > 6. If Il <k, then
4k —3l—m —6=3(k—1)+k —6 > 0 except for [ =1,k = 2. But when
=1,k =2, since G is a 2-edge-connected simple graph, |[V},V3]g| > 2 =
2(k - 1).
Case3 !>0and m>0.
If k = l4+m, then 4k—3l—m—6 = 3m+l—6 = (2m+1)+m—6 = n+m—6 > 0
sincen=2m+0>6. Ifk>l4+m,thenk—-Il>m+1>2andk-m >0.
It follows that 4k —3l —-m -6 =3(k~l)+(k—m) -6 > 0.

Therefore, in any case, 3, I[V., Vile| 2 2(k — 1), and so G must
1<i<j<k
have two edge-disjoint spanning trees by Theorem 5.1. []
We shall prove a stronger result than Theorem 1.12, as stated below.

Theorem 5.2 If G is a 2-edge-connected simple planar graph with n > 9
vertices and with |E(G)| = 3n — 12 edges, then ezactly one of the following
holds:

(i) G is collapsible.

(%) The reduction of G is a 4-cycle.

(iii) The reduction of G is isomorphic to Ky 3 with ezactly one non-
trivial vertex whose pre-image i3 a mazimal planar graph of n — 4 vertices.

We need two more lemmas.

Lemma 5.1 If G is a simple planar graph with n > 9 vertices and with
|E(G)| = 3n — 12, then G is not reduced.

Proof If G is reduced, then by Theorem 2.2(ii) and Lemma 4.1, 2n — 4 >
|E(G)| = 3n — 12, whence n < 8, contrary to the assumption that n > 9.
Therefore, G is not reduced. []

Lemma 5.2 Let C > 0 be a constant, and let G be a simple planar graph
with n vertices and with | nontrivial mazimal collapsible subgraphs. Let G’
denote the reduction of G. If |E(G)| = 3n — C, then

|E(G))| = 3|V(G')| - C + 3L
Proof Let H 1, - - H; be nontrivial maximal collapsible subgraphs of G. Let
=G/( U E(H;)) be the reduction of G with n’ vertices. Since each H;

isa nontrlv1a1 planar graph for each ¢ with 1 <i <,

|E(H;)| < 3|V(H;)| ~6. (6)
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i
Note that [V(G")[=n - )" |V(H;)|+ L. It follows from (6) that
i=1

|E(G")| = |E@G)|- 2 |E(H:)| 2 |E(G)| - E(SIV(H )| —6)
> 8n-C=3(n— V(G +1)+ 6= 3V(C)| - C+3L.

This proves the lemma.
Proof of Theorem 5.2 Since the 4-cycle and K, 3 are not collapsible,
(i),(ii) and (iii) are mutually exclusive. We assume that both Theorem
5.2(i) and Theorem 5.2(ii) are false, and want to prove that Theorem 5.2(iii)
must hold.

By Lemma 5.1, G is not reduced. Let Hj,-- H¢ be the nontrivial

maximal collapsible subgraphs of G. Let G’ = G/( U E(H;)) be the re-
duction of G with n’ vertices. By Theorem 2.2(i), G’ is reduced and so by
Lemma 5.2 with C =12 and | > 1, we have
|[B(G")| = 3|V(G’)| — 12+ 3L. (7)
By Theorem 2.2(ii) and Lemma 4.1,
V(@) -4 =2 |B(G"). 8
It follows from (7) and (8) that
V(G -4z |B(G)] 2 3[V(G")] - 12+ 3L (9)

By (9), [V(G’")| < 8-3l. Since any 2-edge-connected graph with 3 vertices is
collapsible, and since any simple graph with 4 vertices is either collapsible or
is isomorphic to the 4-cycle, we must have [ = 1 and |V(G’)| = 5. Therefore,
equalities must hold everywhere in (9), and so by Theorem 1.1(iii) and by
[V(G")| =5, G’ = K, 3 with exactly one nontrivial vertex, named by H.
Note that |E(H)| > |E(G)| — 6 > 3n — 18 and that |V(H)| =n —4.
It follows that |E(H)| > 3(n —4) — 6 = 3|V(H)] — 6, and so H must be a
maximal planar graph with n — 4 vertices.
Proof of Theorem 1.12 Note that 4-cycles are supereulerian, and so
Theorem 1.11 follows from Theorem 2.2(iv) and Theorem 5.2. ]

References

(1] J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”.
American Elsevier (1976).

330



[2] H.J. Broersma and L. M. Xiong, A note on minimum degree conditions
for supereulerian graphs, Discrete Applied Math, to appear.

[3] X. T. Cai, Connected Eulerian spanning subgraphs, Chinese Quarterly
J. of Mathematics, 5 (1990) 78-84.

[4] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs,
J. Graph Theory, 12 (1988) 29-44.

[5] P. A. Catlin, Double cycle covers and the Petersen graph, J. Graph
Theory, 13 (1989) 465-483.

[6] P. A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles,
Congressus Numerantium, 56 (1987) 223-246.

[7] P. A. Catlin and Z. H. Chen, Nonsupereulerian graphs with large size,
“Graph Theory, Combinatorics, Algorithms and Applications”, eds. by
Y. Alavi, F. R. K. Chung, R. L. Graham and D. F. Hsu, SIAM (1991)
83-95.

[8] P. A. Catlin, Z. Han and H.-J. Lai, Graphs without spanning closed
trails, Discrete Math. 160 (1996) 81-91.

[9] P. A. Catlin and X. W. Li, Supereulerian graphs of minimum degree
at least 4, J. Advances in Mathematics 28(1999), 65-69.

[10] Z. H. Chen, On extremal non supereulerian graph with clique number
m, Ars Combinatoria, 36 (1993) 161-169.

[11] Z. H. Chen, H.-J. Lai, X. W. Li, D. Y. Li and J. Z. Mao, Circuits
containing 12 vertices in 3-edge-connected graphs and Hamiltonian
line graphs, submitted.

[12] F. Jaeger, A note on subeulerian graphs, J. Graph Theory, 3 (1979)
91-93.

[13] H.-J. Lai, Graphs whose edges are in small cycles, Discrete Math. 94
(1991) 11-22.

[14] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite
graphs, J. London Math Soc. 36 (1961) 445-450.

[15] P. Paulraja, On graphs admitting spanning Eulerian subgraphs, Ars
Combinatoria, 24 (1987) 57-65.

[16] P. Paulraja, Research Problem 85, Discrete Math. 64 (1987) 109.

[17] W. T. Tutte, On the problem of decomposing a graph into n connected
factors, J. London Math Soc. 36 (1961) 80-91.

331



