ON THE COMBINATORICS OF
MULTI-RESTRICTED NUMBERS

J1 Youne CHol! AND JONATHAN D.H. SMITH

ABSTRACT. The so-called multi-restricted numbers generalize and extend
the role of Stirling numbers and Bessel numbers in various problems of com-
binatorial enumeration. Multi-restricted numbers of the second kind count
set, partitions with a given number of parts, none of whose cardinalities may
exceed a fixed threshold or “restriction”. The numbers are shown to satisfy
a three-term recurrence relation. Both analytic and combinatorial proofs
for this relation are presented. Multi-restricted numbers of both the first
and second kinds provide connections between the orbit decompositions of
subsets of powers of a finite group permutation representation, in which the
number of occurrences of elements is restricted. An exponential generating
function for the number of orbits on such restricted powers is given in terms
of powers of partial sums of the exponential function.

1. Introduction.
Let G be a finite group. A G-set (Q,G) or permutation representation
of the group G consists of a set @, together with a (right) action of G on

Q@ via a homomorphism

(1.1) G-Ql5 g~ (g q9)

from G into the group Q! of all permutations of the set Q. A G-set (Q,G)
may be construed as an algebra of unary operations on the set Q. The
subalgebra Q™ of Q™ consisting of all n-tuples of distinct elements of Q
is called the n-th irredundant power of the G-set (Q,G), and denoted by
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(Q,G)™. The subalgebra QU™ of Q" consisting of all n-tuples in which
no element is repeated more than once is called the n-th bi-restricted power
of the G-set (Q,G), and denoted by (Q,G)!™l. Orbit decompositions of
direct powers (@, G)™ were discussed in [S1]. In [CS], the orbit decomposi-
tions of irredundant powers and bi-restricted powers were presented. The
decompositions of the irredundant powers are related to the decompositions
of the direct powers by the Stirling numbers of the first and second kinds
(CS, (4.2)]. The decompositions of the bi-restricted powers are related to
the decompositions of the irredundant powers by means of the so-called
Bessel numbers, reparametrized coefficients of Bessel polynomials [Br; Gr;
KF; CS, §4].

The exponential generating functions for the numbers of orbits in the

various irredundant powers and bi-restricted powers are

m(9)
(1.2) @ Z (1+ 8™ and lé‘l > (1+t+ 2|)

9€G 9€G
respectively, where 7(g) is the number of points of @ fixed by an ele-
ment g of G [CS, Th.5.2 and Th.5.3 . These generating functions may

be considered as drastic truncations of the exponential generating function

IGI7! 3 e €™ for the numbers of orbits in the direct power G-sets, since
) 1 Z xied Z 3 n(g)
(1.3 = ™) = ( +t + + +. )
Gl 9€G 1G| 9€CG 3l
(2, (5.1)].

In this paper, we consider the general case of such truncations, i.e. for

each positive integer m, we consider
gm w(g)
(1 +1 + -I- -+ —= ) .

In Section 6, an appropriate G-subset of (Q",G) is defined, the so-called

(1.4) lGi 9€G

m-restricted power G-set (Q, G)I™™, so that (1.4) becomes the exponential
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generating function for the number of orbits in it (Theorem 6.5). For each
positive integer m, the subset QU™ of Q" consists of all n-tuples in which
no element appears more than m times. Then orbit decompositions of the
m-restricted powers (@, G)™™! are related to the orbit decompositions of
the irredundant powers (Q, G)" via the so-called m-restricted numbers of
the second kind, as introduced analytically in Definition 5.1.

General properties of the m-restricted numbers of the second kind are
investigated in Section 5. Proposition 5.2 shows how they approximate
the Stirling numbers of the second kind. Proposition 5.3 gives one explicit
computation of the numbers, as well as a combinatorial interpretation in
terms of set partitions. Theorem 5.4 states the key property of the multi-
restricted numbers of the second kind, the three-term recurrence relation
that they satisfy. This relation is the analogue of the two-term recurrence
relation (2.5) satisfied by the Bessel numbers, or the well-known two-term
recurrence relation satisfied by the Stirling numbers of the second kind [Ai,
3.29(ii)). The multi-restricted numbers may then be computed by the three-
term recurrence relation, subject to the boundary conditions specified by
Proposition 5.2. The paper offers two alternative derivations of the three-
term recurrence relation in Theorem 5.4. The first is purely analytic. The
second is combinatorial, based on the interpretation of the multi-restricted
numbers given by Proposition 5.3.

As a dual to the m-restricted numbers of the second kind, Section 7
defines the m-restricted number of the first kind M{*(n, k) to be the (n, k)-
entry of the inverse of the matrix whose (p, j)-entry for each p,j is the
m-restricted number of the second kind MJ*(p, ). This provides an inverse
relation between the m-restricted powers and the irredundant powers. The
paper concludes with Theorem 7.6 using both kinds of multi-restricted num-
bers to describe the general relationship between the orbit decompositions

of any pair of m;- and ma-restricted power G-sets.
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Introductory sections briefly recall the Stirling numbers and Bessel poly-
nomials (Section 2), the duality between direct powers and irredundant
powers (Section 3), and the previously studied bi-restricted powers (Sec-
tion 4).

2. Stirling numbers and Bessel numbers.

For each positive integer n, the product X(X —1)}(X -2)... (X —n+1)
in the integral polynomial ring Z{X] over an indeterminate X is denoted
by [X]n. Since {X® | n € N} and {[X]. | n € N} are free generating

sets for Z[X] as a Z-module, each can be uniquely expressed as a linear

combination of the others.

Definition 2.1. The Stirling numbers of the first kind Sy(n,k) and the
Stirling numbers of the second kind Sz(n, k) are given by

(2.1) X"=i32(n, k) X}  and [X],.:is,(n, KXk O

k=0 k=0

Proposition 2.2. (Cf. [Ai, 3.14).) The Stirling number of the second
kind Sa(n, k) is the number of partitions of an n-set into exactly k many

nonempty subsets. 0O

For each natural number n, the Bessel polynomial y,(z) is defined to be

the (unique) polynomial of degree n with unit constant term

(n+ k) k
(2.2) yu(x) Z (n +k)l)k| ( )

which satisfies the differential equation 229" + (22 + 2)y’ = n(n + 1)y [Br,
Gr, KF]. Then for each positive integer n, the n-th Bessel polynomial may

be written in the form

o
(2.3) Py(z) =Y Buxz"%,
k=0
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where the Bessel coefficient B, ; is given by

(2n — k)

(2.4) Bu.k = m

for n > k, and by B, x = 0 for n < k. For non-negative integers n and k,
the (n, k)-th Bessel number B(n, k) is defined to be the Bessel coefficient

By 2k —n. The combinatorial significance of the Bessel numbers is given by
the following.
Proposition 2.3. For any positive n and k, the Bessel number B(n, k) is

the number of partitions of an n-set into k nonempty subsets, each of size

at most 2. 0O

Proposition 2.4. The Bessel numbers satisfy the recursion
(2.5) B(n,k)=B(n-1,k—-1)+(n-1)B(n—2,k-1)

forn>k, O
Theorem 2.5 [CS, Th. 2.1). For an indeterminate X, let f(t) = (1 + t + £2/21)% .
Then

(2.6) F™©) =3 B(n, k)[X]s,

k:l
where f)(0) is the n-th derivative of f with respect tot att =0. [

3. Direct powers and irredundant powers.

For a finite group G, let G be the variety of G-sets, construed as a
category with homomorphisms (G-equivariant maps) as morphisms. For
an object @ of G, let [Q] denote the isomorphism class of @ in G. Let
A*(G) be the set of isomorphism classes of finite G-sets. This set becomes
a commutative, unital semiring (A*(G),+,-,0,1) under [P} + [Q] = [P +
Q), [P]-[Q =[P xQ], 0=[2)], and 1 = [1]. It embeds canonically into a
commutative ring, the integral Burnside algebra of the group G [TD, §1.2).
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For each positive integer n, the irredundant power G-set Q™ is defined to
be the complement in the direct power Q™ of the subset consisting of all n-
tuples comprising at most n—1 distinct elements of @ (cf. [Hu,IL1.10]). The
following proposition shows that the irredundant power G-sets (Q, G)" are
dual to the direct power G-sets (Q, G)" via the Stirling numbers of the first

and second kinds.

Proposition 3.1 [CS, Prop. 4.2].
3.1) [@Y) =Y SMmKQM] d [@M]= Y Sin,K)QY . O
k=1 k=1
For a G-set (Q,G), let 7(g) be the number of points of @ fixed by an
element g of G. By Burnside’s Lemma[Hu, V.20.4], the average number of
fixed points

(3.2) 5 2

9€G

is the number of orbits of G on the n-th direct power @*. By Proposition
3.1,
1
(33) T2l Z [ﬂ(g)]u
IGl %
is the number of orbits of G on the n-th irredundant power Q*[C1, Lemma
6.3). '
Recall that the exponential generating function for a sequence (2,)2%,
is Ponro ”'n:.—':-
Theorem 3.2[51,(5.1); CS,Th. 5.2]. The exponential generating functions
for the numbers of orbits on the direct power G-sets (Q,G)" and the irre-
dundant power G-sets (Q,G)!™ are respectively
1 1
(3.4) — et)m(9) and — 148",

92€G 2€G
where w(g) is the number of points of Q fized by an element g of G. O
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4. Bi-restricted powers.

Consider the n-th direct power Q" as the set of functions from the n-set
{1,2,3,...,n} to Q. Then the n-th irredundant power Q™ is the subset
consisting of injective functions from the n-set into Q. For each positive

integer n, the n-th bi-restricted power set Q™ of the set ) is defined to be

(4.1) QUM = {f:{1,2,3,...,n} = Q| Vg€ Q,|f {a}| < 2}.
For a G-set (@, G), the restriction of the direct power action of G on Q" to
Q")) i called the n-th bi-restricted power of (Q,G), denoted by (Q,G)l*])
(CS, Def. 4.3 |. Thus Q" c Ql#ll ¢ @™ .

The following proposition shows how the Bessel numbers yield a dual

relation between the irredundant powers and the bi-restricted powers .
Proposition 4.1 [CS, Props. 4.4, 5).

(1) (@] = 3., B(n, )(QWM) ;

@) (@] = Thoy(-1)"*B(2n— k- L,n - DRI . O
Bringing in the Stirling numbers, one obtains relations with the direct pow-
ers.
Proposition 4.2 [CS, Cor. 4.6].

(1) (@) = %y 305 Bln, m)S1 (m, K)[Q¥] ;

(2) [@"] = Xikar Zonar (-1 *S2(n, m)B(2m ~ k — 1,m — 1)[QUM]
]

The following theorem shows that the exponential generating function
for the number of orbits on the bi-restricted powers is an intermediate

function between the exponential generating functions in (3.4).
Theorem 4.3 [CS, Th. 5.3 ]. The exponential generating function for the

number of orbits on the n-th bi-restricted powers (Q,G)I is

1 £2 w(g9)
(4.2) f() = @ (1 +t+ 5)
9€G :

51



where (g) is the number of points of Q fized by an element g of G. O

5. Multi-restricted numbers.
The multi-restricted numbers are defined analytically by an extension of

the relation (2.5) satisfied by the Bessel numbers.

Definition 5.1. For a given positive integer m and for an indeterminate
X, set

t‘"l
(5.1) F(t) = [g(t)]* with g(t) = 1+t+ + +—
Then the multi-restricted numbers M}*(n, k) of the second kind are given
by

(5-2) FO(0) = Y M3 (m, ) (X ]k,
k=1
where f("(0) is the n-th derivative of f with respect to ¢ at £ = 0.

Proposition 5.2. For any positive integers m and n,
(1) M*(n,k)=0 +f k<[Z];
(2) Mi*(n,n)=1;
(3) M*(n, k) = Sa(n, k) o m>n—k.

Proof. Use the notation of (5.1). If n < m, the n-th derivative of g with
respect to ¢ is exactly the same as the n-th derivative of et at t = 0, since
9(0) =1 = ¢'(0) = --- = g™}(0). So the n-th derivative of f at t = 0 is
the same as the n-th derivative of e!X at ¢t = 0 if n < m. By (2.1),

n
(5.3) B gex

=Y Sa(n, B)[X]s.
k=1

Hence M3*(n,k) = Sa(n, k) if n < m. Also, the first m terms in f(™(¢),
which contains [X]i for all & > n — m, do not have any higher derivative

of g beyond the m-th derivative. So the n-th derivative of f has the same
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first m derivatives as e'X at t = 0, whence (3) holds. By (3), M§*(n,n) =
S3(n,n). -So (2) holds. Since g™)(t) = 0if n > m, (1) readily follows by

induction. O

Table 1 shows the general scheme for the first few m-restricted numbers
of the second kind. Each S, and M3" entry is to be replaced respectively
by Sa(n, k) and Mj*(n,k) for the appropriate n and k. The empty cells
are to be filled with 0’s. As an illustration of this general scheme, Table 2
exhibits the case m = 3.

The next result gives a combinatorial interpretation of the multi-restricted

numbers.

Proposition 5.3. For any positive integers m and n,

nl
54) MI(n, k)= — : ,
( ) 2 ( ) * +kz§|-km=k (l!)"' (2!)"2 e (m!)""-kl !kz! e km'
k1+2k2+4Fmhm=n

i.e. for any positive integers m and n, M3*(n,k) is the total number of

k-partitions of an n-set of type 112*2 . . mi= (m+1)°...n°.

Proof. Use the notation of (5.1). The terms with [X]; in f(™)(2) take the

form

(5.5) > [X1k(a(8))* (g ) (" (&))*2 ... (g™ (2))*.
kytkad-thg =k
ki 42k 4+ -+mkp,=n
For all nonnegative Aj,Az,... A, such that Ay + Ap + .-+ + A = k and
A1 +2X3 + -+ + nA,, = n, the number of k-partitions of an n-set of type
1hMor2 | phn g
n!
(A 2022 (nh)Aa (A A (W)

Hence the number of terms of the form

(5.6)

(XTe(a(2)* ~ (")) (" (8))*2 ... ("™ (1))
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in f™)(t) is

n!
(1)kr(20)k2 .. (mlYremEy ko) .. Ky
Since g(0) = ¢'(0) = ¢"(0) = - - - = g"™(0) = 1, one then has
(5.7)
n ‘
™)(0) = = Xk
S7A0) ; k1+k;§;+km=k e @)e - Gl tal .t | X

k1 42ka+---+mkp=n

as required. O

The following theorem presents the three-term recurrence relation for the
multi-restricted numbers of the second kind. The immediate proof given is
analytical, and depends on Lemma 5.5 which appears below the rest of the
proof. Following Lemma 5.5, an alternative combinatorial derivation of the

recurrence relation is given, depending on Proposition 5.3.

Theorem 5.4. For any positive integers n > m, one has
(5.8)
M3 (n, k) = MP(n—1,k—1)+kM}"(n—1,k)— ("; 1)1\45"(n_m-1, k—1).

Proof. Use the notation of (5.1). Just two types of terms in f(*~1)(¢) yield
[X1e(a(t))* ~*(g' )" (" (E)*2 ... (g0 ()"

in f(™)(t). The first type is

(5.9) [X)k-1(g(&)* ¥+ (g" (1) (6" (1)) ... ("™ ()",

where  + b+ -+, =k—1and [, + 2l + --- 4+ ml,, = n—1. The

second type is

(5.10) (X(g(EN X (g' (1)) (" (#)"2 ... (g™ (1)),

where hy + ho+---+ hyp =k and by +2hy + -+ mh,, =n—-1.
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The derivative of the first type (5.9) yields exactly one [X]-term, namely

(X]eg()))* (5" @)1 (g" (1) ... (g™ (&))"

This gives the contribution M3*(n—1,k—1) to M3*(n, k) on the right hand
side of (5.8). The derivative of the second type (5.10) produces m terms
with [X|i, namely:

(5.11)

(X)k(g()* ~*ha(g' @) 7 (" (@) (¢ ()™ ... . ("™ ()"
+HX]e(g(8)X 74 (g ()" ha(g" (£)"* (gD (@) +E .. (g (8))
+...

+HX)k(g(0)) X * (g ()™ (" ()" (¢ (EN™ ... han(gt™ (1)) M1 gL+ D (2).

Since g(0) = ¢’(0) = g”(0) = --- = g™)(0) = 1 and g(™+)(2) = 0, (5.11) at
t = 0 becomes (hy+ho+- - +hypn—1)[X]k. Since hy+ha+- - +hpm_y = k—hyp,
one obtains the contribution of k times M3*(n— 1, k) to the right hand side

of (5.8), corrected by the subtraction of h,, times the number of occurrences

of (5.10) in f™=1)(t). Therefore

(5.12)
A’Ién(n, k) = AJz'“(n -1,k - 1) + k[u;n(n -1, k)

_ Z h.m('n - l)'
PN, P G T 1) Y ) LY S B
hy+2ha 4 +mhg,,=n—1

The analytical proof of Theorem 5.4 is completed by the following lemma. O

Lemma 5.5. For posilive integers n > m, one has

hy(n—=1)! —fn-~1
E, -’1}2.’-{-124--;4-;1".:1\: 1(,,)n,(2,)1.2‘_?,“,)1.,,.,",,,z,,__,,m,— "M (n-m—1k-1).
11 12t +Miy, =N —
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Proof. The left-hand side is equal to
(5.13)

z h.m('n. - 1)!

1\ N Nhm 1 | !
Ry hp b b=k (1) l(2.) 2 ... (m) hilho!. .. hm
h+2ho 4 4mhpg,=n-1

hm 2>
n-1)(n-2)...(n—m)(n-m-1)!
Tl TR Gt Rl (o~ DT

hi+2h2+--+m(hm~1)=n-m-1
hp—120

Let p; = h; for all i < m — 1, and let p, = hyp — 1. Then (5.13) is equal to
(5.14)
n—1 E (n-1)!
m (1)zr 2Pz ... (ml)Pmpylpa! .. pn!’

p1+p2+--+pm=k-1
p1+2p2+--+mpm=n-m-1

which by Proposition 5.3 corresponds exactly to the (",;1) M*(n —m —
1,k — 1) term on the right hand side. O

The combinatorial derivation of the recurrence relation (5.8) will now be
given. By Proposition 5.3, the left hand side of (5.8), namely M3"(n, k),
counts the number of partitions of an n-set that have exactly k parts, none
with more than m elements. Call such a set partition an “m-restricted k-
partition.” The right hand side of (5.8) represents the two distinct methods
of building up such a partition from a partition of an (n — 1)-set by the
addition of one extra element. One method is to start with an m-restricted
(k = 1)-partition of the (n — 1)-set, and to put the extra element in a part
on its own. The number of ways to do this is M3*(n — 1,k — 1), the first
term on the right hand side of (5.8). The second method is to add the
extr# element to any one of the k parts of a given m-restricted k-partition
of the (n — 1)-set. The number of ways to do this is kM3"(n - 1,k), the
second term on the right hand side of (5.8). However, in certain cases this
method will yield a k-partition of the n-set that has one part with m + 1

elements, exceeding the imposed restriction. One must thus subtract the
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number of such cases from the sum of the first two terms of the right hand
side of (5.8). Each such case arises when the extra element is added to
a part that already has m elements. There are (",;1) such subsets, and
each such subset combines with M3"(n—m— 1,k —1) different m-restricted
(k — 1)-partitions of the (n — m — 1)-set of remaining elements to produce
the m-restricted k-partition of the (n — 1)-set. The sum of the first two
terms on the right hand side of (5.8) is thus corrected by the subtraction
of the third term (" ')M3*(n —m - 1,k —1).

6. Multi-restricted power set actions.

Definition 6.1. For a set  and given positive integers m and n, the n-th

m-restricted power set is

61) QM ={f:{1,2,3,...,n} > Q|Vge Q,|f {q} < m}).

For a G-set (Q,G), the restriction of the diagonal action of G on Q" to
QU™ is called the n-th m-restricted power of (Q,G), and denoted by

(Q, G) [non]

Lemma 6.2. For any posilive integer n,

(6.2) QM =i c g QI coc...c otrnl = Qn' O

Multi-restricted powers are related to irredundant powers via the multi-

restricted numbers of the second kind.

Proposition 6.3. For positive integers m and n, one has

(63 Q) = 37 M (m, QM)
k=1

Proof. Let Qp = {f € Q" | k = [Im(f)|} and

x ={f€Q"|k=Im(f)] and Vg € Q,|f~(g)| < m}.
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Then A} = Q% AQ"™™ and Q™™ is the disjoint union of the A. For any
partition 7 of the n-set {1,2,3,...,n} of type 1M mArn(m+1)0...0"
let Qr = {f € Q" | ® = ker(f)}. Then Qy is in A}, and is G-isomorphic to
Q™. Since the number of partitions of an n-set of type 1M2%2 | mAm(m+
1)°...n% is M3"(n, k), the G-set A} is G-isomorphic to the disjoint union
of M3*(n, k) copies of Q. Thus

(6.4) Qi = U Ay U M3 (n, k)QW.

k=1 k=1
Considering the isomorphism classes from (6.4), the desired result (6.3) is

obtained. O

By Propositions 3.1 and 6.3, the multi-restricted powers can be expressed

in terms of the direct powers as follows.

Corollary 6.4. For positive integers m and n, one has

n n

(6.5) @) =Y ) M3 (n,p)Si(p,R)Q"). O

k=1p=k

One concludes that the truncation (1.4) of |G|™' ¥ e e!™(9) generates

the numbers of arbits in the multi-restricted powers of a G-set (Q,G).

Theorem 6.5. The exponential generating function for the number of or-
bits on the n-th m-restricted power G-set (Q,G)™™ s

fm n(g)
(l+t+ +- ) ,

where w(g) is the number of points of Q fized by an element g of G.

(6.6) f() = Tl G| 2

Proof. By Definition 5.1, the n-th derivative of f with respect totatt =0
is

(6.7) F&(0) = Z (ZM"‘(n, [vr(gl)

oec‘

n

=Y M3(n,k) (IGi Z[W(g)h)

k= 9€G
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By (3.3) and Proposition 6.3, it then follows that f(*)(0) gives the number
of orbits of G on the n-th m-restricted power QI*™. O

7. Inverse relationships.

Proposition 5.2 shows that multi-restricted numbers of the second kind
approximate Stirling numbers of the second kind. To obtain corresponding
approximations to Stirling numbers of the first kind, consider the matrix
M3* whose (n, k)-th entry is M3"(n, k) for each n, k. By Proposition 5.2(2),
M3 is a lower triangular matrix whose diagonal elements are all 1. One

may thus consider the matrix M]" inverse to M}".

Definition 7.1. The m-restricted number of the first kind MM™(n, k) is
defined to be the (n, k)-entry of the matrix M.

Proposition 7.2. For positive integers m and n > 1,

(7.1) M7*(n,m) + M{*(n,m — 1) +--- + M{"(n,1) = 0.

Proof. Since M3* and M]™ are mutually inverse, M™ - M3 = I, where I is
the identity matrix. Thus the (n, p)-th entry of M- M s

e 1 if n=
(72) Somrm ke ={ ) Bn=F
k=p

0 otherwise.

By Proposition 5.2(3), M3*(n,1) = Sa(n, 1) if m > n— 1,ie. M3*(n,1) =1

if n < m, and 0 otherwise. Thus if p = 1, one has
n m
(7.3) > MM (n, k)M (k, 1) = > M (n, k).
k=1 k=1

Combining (7.2) and (7.3), (7.1) is obtained. O

Since the matrices [M3*(n, k)] and [M{"(n, k)] are mutually inverse, one

obtains an inverse to the formula of Proposition 6.3 as follows.
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Proposition 7.3. For positive integers m and n, one has

(7.4) Q") = Z M7 (n, B)[Q¥ ™). O

k=1

Proposition 7.3 yields a counterpart to Proposition 5.2.

Corollary 7.4.

(1) M*(n,n) =1.
(2) Mi*(n, k)= Si(n, k) i m>n-k

Proof. Since M3" is a lower triangular matrix whose diagonal entries are
all s, the eigenvalues of MZ® are all 1's, and the inverse matrix is also a
lower triangular matrix whose diagonal entries are all 1’s. Hence, (7) holds,
and (2) for n — k < 0 also holds. The rest of (2) i.e. the case of n —k >0
is done by induction on n. The base case n = 1 follows from (). Suppose
that for all p < n, M*(p, k) = S1(p, k) if p— k < m. Let 7 be the n-th row
of the matrix MJ®, and let € be the k-th column of the matrix M7". Since
M3*(n, k) = Sz(n, k) for m > n— k by Proposition 5.2, 7" and the transpose

of € are as follows:

7= (*;"' t*aSZ(n1n~m+ 1)1 ,Sg(‘n.,n— 1)152(n)n)10)"');
('::t = (0’... ’O’Sl(n—m.*. 1.,’;),... ’Sl(n- l'k),A/Il(n’k)’*,...),
n—m

for some number *. Since the matrices MJ* and M]® are mutually inverse

and n # k,

(7.5) 0=F-&
n-1

= Z 32("‘: p) - Sl(p' k) + SZ(nl n)A'[;n(n', k)

p=n—m-+1



Similarly, the n-th row of the matrix [S2(n, k)] and the k-th column of the
matrix [Sy(n, k)] for n # k yield the following:

(7.6) 0= Y Snp)-Silpk)
=n—-m+1

n-1

= Y S(mp)-Si(p,k) + Sa(n,n)Si(n, k).
p=n-m+1

Comparing (7.5) and (7.6), M{*(n,k) = Si(n, k). O

By Propositions 3.1 and 7.3, direct powers can be expressed in terms of m-
restricted powers, yielding the following inverse to the formula of Corollary

6.4.

Corollary 7.5.

n n

(7.7) @)= Sa(n,p)M7*(p, K)[Q¥ ™). O

k=1 p=k

Multi-restricted power sets are related to one another. The following re-
sult, which is easily proved by combining Propositions 6.3 and 7.3, exhibits
the relation between general m,-restricted powers and mo-restricted pow-

ers. This relation subsumes all the relations introduced earlier in Sections

3 and 4.

Theorem 7.6. For positive integers n,m) and my, one has

n n

8 QMM =303 M (n,p) M (0, B)QH ).

k=1p=k
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m+1
m+2

m+3

2m
2m+1
2m+2

3 see m m+1 m42 m+3

1

S2 PN 1

S2 P Sa 1

Sz v+ Sz S 1
MP . Sa S, 5 1
M;"' e Mi" S2 S2 S2 S2
M7 e M ‘M;" S2 S2 Sz
Mmoo MT M MP S2 S2

TABLE 1: The m-restricted numbers of the second kind

n

M3(n,k) k=1

ey
=0 Nw—

DN T W
o o

1
6 1
25 10 1

7 65 15 1

175 3156 140 21 1

280 1225 980 266 28 1
280 3780 5565 2520 462 36 1

TABLE 2: The 3-restricted numbers of the second kind
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