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Abstract

2

k is a non-negative integer, and let f : V(@) - 2% be a function

havmg the following properties: (i) ——= a(z) k+ 1 < flz) < == dc(a:)

"’ > for every o € V(G), (i) Y f(z) |E(G)| Then G has an
z€V(G)
orientation D such that d},(z) = f(z), for every z € V(G).

Let G be a simple graph such that §(G) > IV(G)IJ + k, where

All graphs considered are assumed to be simple and finite. We refer the
reader to (1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dg(u) of a vertex  in G is the number
of edges of G incident with u. The minimum degree of a vertex in G is
denoted by §(G). For any set S of vertices of G, we define the neighbour
set of § in G to be the set of all vertices adjacent to vertices in S; this
set is denoted by Ng(S). If S and T are disjoint sets of vertices of G, we
write Eg(S,T) and eg(S, T) for the set and the number respectively of the
edges of G joining S to T'. If we replace the edges of G by arcs, we will get
a directed graph D, which is called an orientation of G. An edge e of G is
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said to be subdivided when it is deleted and replaced by a path of length
two connecting its ends, the internal vertex of this path being a new vertex.

Let f(z) be an integer valued function defined on the set V(G) such that
0 < f(z) < da(z) for each z € V(G). A spanning subgraph F is called an
f-factor of G if dp(z) = f(z) for each vertex z € V(G).

Let D be a directed graph. The indegree dp,(u) of a vertex u in D is the
number of arcs with head u, the outdegree d,(u) of u is the number of arcs
with tail u.

The following theorem is the main result of this paper.

Theorem 1: Let G be a graph such that §(G) > ll—‘i(fJJ + k, where k is

a non-negative integer, and let f : V(G) — Z* be a function having the
da2(:c) _ k-;—l < f() < daz(x) + k+1
zeV(G), @) Y, f(z)=|EG)
zeV(G)
Then G has an orientation D such that df,(z) = f(z), for every z € V(G).

following properties: (i) for every

For the proof of Theorem 1, we will use the following lemmas.

Lemma 1 [2): Let G be a graph and let function f : V(G) =+ ZF. We
subdivide every edge of G and define f to be 1 for the new vertices. The
resulting graph G* will have an f-factor if and only if G has an orientation
D such that df;(z) = f(z) for every z € V(D).

Proof: Suppose first that G* has an f-factor F. Clearly every edge of G*
has an end-vertex in V(G) and the other in V(G*) — V(G). Define S to
be the set of edges belonging to F and S’ = E(G*) — E(F). We orient the
elements of S in the following way: the tail of every arc to belong to V(G)
and the head to belong to V(G*) — V(G). We also orient the elements of
S’ as follows: the tail of every arc to belong to V(G*) — V(G) and the
head to belong to V(G). By considering such an orientation of G*, we get
a directed graph D* such that d}.(z) = f(z), for every z € V(D*).

Now we apply to every element of V(G*)—V(G) the foilowing procedure:
For u € V(G*) — V(G), let a; be the arc of D* having u as a tail and let
as be the arc having u as a head. Let v, also be the tail of a; and v, the



head of a;. We delete u, a;, as from D* and we add an arc having v; as a
tail and v as a head. The resulting directed graph D is an orientation of
G satisfying f(z) = dj. (z) = d}(z) fox every z € V(D).

By reversing the arguments we can prove easily that if G has an orien-
tation D such that f(z) = d}(z) for every z € V(D), then G* has an
S-factor.

o

Lemma 2 [3]: Let G be a bipartite graph with bipartition (4, B) and let
f:V(G) = Z* be a function. Then G has an f-factor if and only if

@) > f@ =) f(=z)

€A z€B
and

(ii) E flz) < Z min{f(z),eq(z, X)} for every X C A.

zeX Tz€B

Lemma 3: Let G be a graph and let function f : V(G) = Z+. Then G has

an orientation D such that d},(z) = f(z) for every z € V(D) if and only if

@ > f@) =|E@) and (i) Y f(z) < ea(X, X) +ea(X, V(G) - X)
zeV(G) z€X

for every X C V(G).

Proof: We subdivide every edge of G and let G* be the resulting graph.
Clearly G* is a bipartite graph with bipartition (V(G*)-V(®), V(G)). We
define f to be 1 for the new vertices (for the elements of V(G*) - V(G)).
According to Lemma 1, G has an orientation D if and only if G* has an
f-factor. But from Lemma 2, the bipartite graph G* has an f-factor if
andonly if 37 f(2) = Y f@@) = |EG) ad Y f(a) <
zeV(G) zeV(G*)-V(G) z€X

Z min{f(z), eg-(z, X)} for every X C V(G). Now
ZEV(G*)-V(G)

> min{f(z), eq- (z, X)} = Y min{l,eq(z,X)} =
zEV(G*)-V(G) ZEV(G*)-V(G)
eq(X, X) + ea(X,V(G) — X), since if eg-(z,X) = 1, this will mean
that there exists an edge in G having exactly one end-vertex in X and
if eg- (2, X) = 2, this will mean that there exists an edge in G having both
end-vertices in X.
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Therefore G has an orientation D if and only if (i) Z f(z) = |E(G)|
zeV(G)
and (i) Y f(z) < ea(X, X) + eg(X,V(G) ~ X) for every X C V(G).
z€X

Proof of Theorem 1:

Suppose that G does not have such an orientation D. Then from Lemma
3, there exists X C V(G) such that

> f(z) > ea(X, X) + ec(X,V(G) - X).
zeX

Thus if we let X =T and V(G) — X =S, we have

3 £() > ea(T,T) + (T, ) )

z€T

For z € V(G), define dr(z) = |Ng(z) N T} and ds(z) = |[Ng(z) N S|. We
note that

ea(T,T) +ec(T,8) = ), =5~ drle) > ds(a).

zeT z€T

Y 1@ > 3 EE 4 3 dsta) @

z€T z€T z€T

So (1) implies

and hence by condition (i) of the theorem

Z (dG2($) +_k_;'_{) > Z dT(x) + Zd (z) (3)

z€T z€T z€T

At this point we consider the following two cases.

e 1. 171 < | V49|

We note first that
ds(z) 2 k+1 (4)

for every z € T, since §(G) > ll‘/—gc:ﬁJ + k.
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We also have from (3),
> (de(w) + dséx) + k';l) >3 %@ + 3 ds(z)

z€T z€T z€T

1
which implics (k;—l) i > Z ds2( ) Thus using (4), (k+ ) 7| >

zeT
(E;—l) |T| which is a contradiction.

V(G)|

Q_|T|>l J+1

V(G
2

Suppose that |T'| = J +1, where ! is a positive integer. This implies

obviously that |S| = [I—V(?C:ﬂ-l — 1. We also have, from condition (ii) of the

Y de()

Theorem, Z f(z) = |E(G)| = %—
z€V(G)
Thus
Y@+ Y i) = Y 222y 3 dola)
z€T z€S z€T 2 z€S
and so da(z)
PFIOEDIES ZED P L SPTe (%)
zeT z€T T€S z€S

But using condition (i) of the theorem, (5) implies,

d d k+1
S s TR n oy (a2

z€T z€T TES €S
and hence do ) i
T +
Y@<y R (B s (6)
z€T zeT

Now we have from (2) and (6),

ze€T zeT z€T

The above can be written as

z€T z€T zeT
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and hence

(552 ) s> L =2 )

ze€T
But |S| = ['—V—(g)—'] and §(G) > ['V(G)IJ +k. So eg(z,T) > k+1 for

every & € S, which implies (k + 1)|S] < (k+1)|S| < ec(S,T) = Y _ ds(z).
z€T
Therefore we have from (7), (k * 1) |S] > (%) |S} which is again a

contradiction.

O

The conditions of Theorem 1 are in some sense best possible. We will
describe first a family of graphs G having slightly lower minimum degree
and not having the properties implied by the theorem. We construct such
graphs G as follows. We start from a k—regular bipartite graph with bi-
partition (A, B) where |A| = |B| =m > k+ 1, m is an even number and
A = {u;,uz,...,unm}. We add edges to this graph having both end-vertices
in A, so that A induces a graph in which the vertices u;,u2,. .., um-2 have
degree m — 2 and the vertices um—_1, um have degree m — 1. We also add
edges having both end-vertices in B, so that B induces a graph in which all
vertices have degree m — 2. Finally we add a new vertex u which is joined
to ug,ua,..., Um—2 and to all the elements of B. For the resulting graph

G,wehave §(G) = (m—-1)+k= I'2m2+1J+k~1= {J@J +k-1
since [V(G)| = |A| +[B]| +1=2m + 1.

Now let function f : V(G) = Z% such that f(z) = _dgz(z) + _k; L =
k+1;1—1 + k;—l _ 2k+m when z € A, f(z) = dGT(x)_k_;_l_ —
E+m—-1 k+1 m-2 do(u) _ 2m 2

. =% when z € B and f(u) = ) 7
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Clearly

Y f@=d f@+) f@)+flw)=

zeV(Q) z€A z€B
_ da(a:) E+1 dg(z) k+1 + dg(u) -
s (2S5 -) %
-y L, s deln) 2o L2 Y dot) =BG
z€A z€B er(G)

On the other hand G, by Lemma 3, does not have an orientation D such
that d,(z) = f(z) for every z € V(G), because

> f@) > ea(A, A) +ec(4,V(G) - A)

zEA
since
dc,v(a:) k+1 2k+m
f(@) = = (=) m,
Sra=3 (92+57) - (%57)
ec(A4,V(G)-A)=km+m—2
and

(m—=2)(m—-2)+2(m—1)

€@ (A’ A) = 2

We will show next that the bounds in condition (i) are also best possible.
For this purpose we construct a family of graphs G as follows. We start from
a k—regular bipartite graph with bipartition (A, B) where |A| = |B| =
and m is an even number. We join every element of A to all the other
elements of A and every element of B to all the other elements of B.
Finally we add a new vertex u, which is joined to each element of A U B.
For the resulting graph G, we have

@) =(m-1)+k+l=m+k= V”‘THJ +k= VV(G)‘J +k

Now let function f : V(G) = Z* such that f(z) = [

I'm+2k+1'| when = € 4, f(z) = l@g_ﬁj = lm__lJ when

2 2
mEdef(u):%EZ:m
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Clearly

2

z€V(Q)

flz) =

S 1@+ Y =) + f(w)

z€EA z€EB

ml'm+22k+1] +m[m2-1J +m

m(m+§k+2) +m<m;2)+m

(S0 2) o (403 50

z€EA z€EB
da(z) de(z) | da(u)

LT LTy vy

% > de(2)

zeV(G)

|E(G)I

On the other hand by Lemma 3 G does not have an orientation D such
that df,(z) = f(z), for every z € V(G) because

since

S £(2) > ea(4, 4) +ea(4,V(G) - 4)

z€EA
2 = do(z)  k+1
(i)
_ m+2k+1
- o=
_ m(m + 2k + 2)
2 )
eG(A,A)=m("”2' D and eg(4,V(G) - A) = km +m.
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