Minimum Degree and the Orientation of a Graph

P.Katerinis
Athens University of Economics
Department of Informatics
76 Patission Str., Athens 10434, Greece

Abstract

Let G be a simple graph such that $\delta(G) \geq \left\lfloor \frac{|V(G)|}{2} \right\rfloor + k$, where k is a non-negative integer, and let $f: V(G) \to Z^+$ be a function having the following properties: (i) $\frac{d_G(x)}{2} - \frac{k+1}{2} \leq f(x) \leq \frac{d_G(x)}{2} + \frac{k+1}{2}$ for every $x \in V(G)$, (ii) $\sum_{x \in V(G)} f(x) = |E(G)|$. Then G has an orientation D such that $d_D^+(x) = f(x)$, for every $x \in V(G)$.

All graphs considered are assumed to be simple and finite. We refer the reader to [1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree $d_G(u)$ of a vertex u in G is the number of edges of G incident with u. The minimum degree of a vertex in G is denoted by $\delta(G)$. For any set S of vertices of G, we define the neighbour set of S in G to be the set of all vertices adjacent to vertices in S; this set is denoted by $N_G(S)$. If S and T are disjoint sets of vertices of G, we write $E_G(S,T)$ and $e_G(S,T)$ for the set and the number respectively of the edges of G joining S to T. If we replace the edges of G by arcs, we will get a directed graph D, which is called an orientation of G. An edge G of G is

said to be subdivided when it is deleted and replaced by a path of length two connecting its ends, the internal vertex of this path being a new vertex.

Let f(x) be an integer valued function defined on the set V(G) such that $0 \le f(x) \le d_G(x)$ for each $x \in V(G)$. A spanning subgraph F is called an f-factor of G if $d_F(x) = f(x)$ for each vertex $x \in V(G)$.

Let D be a directed graph. The indegree $d_D^-(u)$ of a vertex u in D is the number of arcs with head u, the outdegree $d_D^+(u)$ of u is the number of arcs with tail u.

The following theorem is the main result of this paper.

Theorem 1: Let G be a graph such that $\delta(G) \geq \left\lfloor \frac{|V(G)|}{2} \right\rfloor + k$, where k is a non-negative integer, and let $f: V(G) \to Z^+$ be a function having the following properties: (i) $\frac{d_G(x)}{2} - \frac{k+1}{2} \leq f(x) \leq \frac{d_G(x)}{2} + \frac{k+1}{2}$ for every $x \in V(G)$, (ii) $\sum_{x \in V(G)} f(x) = |E(G)|$.

Then G has an orientation D such that $d_D^+(x) = f(x)$, for every $x \in V(G)$.

For the proof of Theorem 1, we will use the following lemmas.

<u>Lemma 1</u> [2]: Let G be a graph and let function $f:V(G)\to Z^+$. We subdivide every edge of G and define f to be 1 for the new vertices. The resulting graph G^* will have an f-factor if and only if G has an orientation D such that $d_D^+(x)=f(x)$ for every $x\in V(D)$.

<u>Proof</u>: Suppose first that G^* has an f-factor F. Clearly every edge of G^* has an end-vertex in V(G) and the other in $V(G^*) - V(G)$. Define S to be the set of edges belonging to F and $S' = E(G^*) - E(F)$. We orient the elements of S in the following way: the tail of every arc to belong to V(G) and the head to belong to $V(G^*) - V(G)$. We also orient the elements of S' as follows: the tail of every arc to belong to $V(G^*) - V(G)$ and the head to belong to V(G). By considering such an orientation of G^* , we get a directed graph D^* such that $d_{D^*}^+(x) = f(x)$, for every $x \in V(D^*)$.

Now we apply to every element of $V(G^*)-V(G)$ the following procedure: For $u \in V(G^*)-V(G)$, let a_1 be the arc of D^* having u as a tail and let a_2 be the arc having u as a head. Let v_1 also be the tail of a_2 and v_2 the head of a_1 . We delete u, a_1 , a_2 from D^* and we add an arc having v_1 as a tail and v_2 as a head. The resulting directed graph D is an orientation of G satisfying $f(x) = d_{D^*}^+(x) = d_D^+(x)$ for every $x \in V(D)$.

By reversing the arguments we can prove easily that if G has an orientation D such that $f(x) = d_D^+(x)$ for every $x \in V(D)$, then G^* has an f-factor.

Lemma 2 [3]: Let G be a bipartite graph with bipartition (A, B) and let $f:V(G)\to Z^+$ be a function. Then G has an f-factor if and only if

(i)
$$\sum_{x \in A} f(x) = \sum_{x \in B} f(x)$$
 and

(ii)
$$\sum_{x \in X} f(x) \le \sum_{x \in B} \min\{f(x), e_G(x, X)\}$$
 for every $X \subseteq A$.

<u>Lemma 3</u>: Let G be a graph and let function $f: V(G) \to Z^+$. Then G has an orientation D such that $d_D^+(x) = f(x)$ for every $x \in V(D)$ if and only if (i) $\sum_{x \in V(G)} f(x) = |E(G)|$ and (ii) $\sum_{x \in X} f(x) \le e_G(X, X) + e_G(X, V(G) - X)$ for every $X \subset V(G)$.

<u>Proof</u>: We subdivide every edge of G and let G^* be the resulting graph. Clearly G^* is a bipartite graph with bipartition $(V(G^*)-V(G), V(G))$. We define f to be 1 for the new vertices (for the elements of $V(G^*) - V(G)$). According to Lemma 1, G has an orientation D if and only if G^* has an According to Lemma 1, G has an orientation D if and only if G^* has an f-factor. But from Lemma 2, the bipartite graph G^* has an f-factor if and only if $\sum_{x \in V(G)} f(x) = \sum_{x \in V(G^*) - V(G)} f(x) = |E(G)| \text{ and } \sum_{x \in X} f(x) \le \sum_{x \in V(G^*) - V(G)} \min\{f(x), e_{G^*}(x, X)\} \text{ for every } X \subseteq V(G). \text{ Now } \sum_{x \in V(G^*) - V(G)} \min\{f(x), e_{G^*}(x, X)\} = \sum_{x \in V(G^*) - V(G)} \min\{f(x),$

$$\sum_{x\in V(G^{ullet})-V(G)} \min\{f(x),e_{G^{ullet}}(x,X)\}$$
 for every $X\subseteq V(G)$. Now

 $e_G(X,X) + e_G(X,V(G)-X)$, since if $e_{G^*}(x,X) = 1$, this will mean that there exists an edge in G having exactly one end-vertex in X and if $e_{G^{\bullet}}(x, X) = 2$, this will mean that there exists an edge in G having both end-vertices in X.

Therefore G has an orientation D if and only if (i) $\sum_{x \in V(G)} f(x) = |E(G)|$

and (ii)
$$\sum_{x \in X} f(x) \le e_G(X, X) + e_G(X, V(G) - X)$$
 for every $X \subseteq V(G)$.

Proof of Theorem 1:

Suppose that G does not have such an orientation D. Then from Lemma 3, there exists $X \subseteq V(G)$ such that

$$\sum_{x \in X} f(x) > e_G(X, X) + e_G(X, V(G) - X).$$

Thus if we let X = T and V(G) - X = S, we have

$$\sum_{x \in T} f(x) > e_G(T, T) + e_G(T, S) \tag{1}$$

For $x \in V(G)$, define $d_T(x) = |N_G(x) \cap T|$ and $d_S(x) = |N_G(x) \cap S|$. We note that

$$e_G(T,T) + e_G(T,S) = \sum_{x \in T} \frac{d_T(x)}{2} + \sum_{x \in T} d_S(x).$$

So (1) implies

$$\sum_{x \in T} f(x) > \sum_{x \in T} \frac{d_T(x)}{2} + \sum_{x \in T} d_S(x)$$
 (2)

and hence by condition (i) of the theorem

$$\sum_{x \in T} \left(\frac{d_G(x)}{2} + \frac{k+1}{2} \right) > \sum_{x \in T} \frac{d_T(x)}{2} + \sum_{x \in T} d_S(x)$$
 (3)

At this point we consider the following two cases.

Case 1:
$$|T| \le \left\lfloor \frac{|V(G)|}{2} \right\rfloor$$

We note first that

$$d_S(x) \ge k + 1 \tag{4}$$

for every $x \in T$, since $\delta(G) \ge \left| \frac{|V(G)|}{2} \right| + k$.

We also have from (3),

$$\sum_{x \in T} \left(\frac{d_T(x)}{2} + \frac{d_S(x)}{2} + \frac{k+1}{2} \right) > \sum_{x \in T} \frac{d_T(x)}{2} + \sum_{x \in T} d_S(x)$$

which implies $\left(\frac{k+1}{2}\right)|T|>\sum_{x\in T}\frac{d_S(x)}{2}$. Thus using (4), $\left(\frac{k+1}{2}\right)|T|>$ $\left(\frac{k+1}{2}\right)|T|$ which is a contradiction.

Case 2:
$$|T| \ge \left| \frac{|V(G)|}{2} \right| + 1$$

Suppose that $|T| = \left| \frac{|V(G)|}{2} \right| + l$, where l is a positive integer. This implies obviously that $|S| = \left\lceil \frac{|V(G)|}{2} \right\rceil - l$. We also have, from condition (ii) of the

Theorem,
$$\sum_{x \in V(G)} f(x) = |E(G)| = \frac{\displaystyle\sum_{x \in V(G)} d_G(x)}{2}$$
.

$$\sum_{x \in T} f(x) + \sum_{x \in S} f(x) = \sum_{x \in T} \frac{d_G(x)}{2} + \sum_{x \in S} \frac{d_G(x)}{2}$$

and so

$$\sum_{x \in T} f(x) = \sum_{x \in T} \frac{d_G(x)}{2} + \sum_{x \in S} \frac{d_G(x)}{2} - \sum_{x \in S} f(x)$$
 (5)

But using condition (i) of the theorem, (5) implies,

$$\sum_{x \in T} f(x) \le \sum_{x \in T} \frac{d_G(x)}{2} + \sum_{x \in S} \frac{d_G(x)}{2} - \sum_{x \in S} \left(\frac{d_G(x)}{2} - \frac{k+1}{2} \right)$$

and hence

$$\sum_{x \in T} f(x) \le \sum_{x \in T} \frac{d_G(x)}{2} + \left(\frac{k+1}{2}\right) |S| \tag{6}$$

Now we have from (2) and (6),

$$\sum_{x \in T} \frac{d_G(x)}{2} + \left(\frac{k+1}{2}\right)|S| > \sum_{x \in T} \frac{d_T(x)}{2} + \sum_{x \in T} d_S(x)$$

The above can be written as

$$\sum_{x \in T} \frac{d_G(x)}{2} + \left(\frac{k+1}{2}\right) |S| > \sum_{x \in T} \frac{d_G(x)}{2} + \sum_{x \in T} \frac{d_S(x)}{2}$$

and hence

$$\left(\frac{k+1}{2}\right)|S| > \sum_{x \in T} \frac{d_S(x)}{2} \tag{7}$$

But $|S| = \left\lceil \frac{|V(G)|}{2} \right\rceil - l$ and $\delta(G) \ge \left\lfloor \frac{|V(G)|}{2} \right\rfloor + k$. So $e_G(x, T) \ge k + l$ for every $x \in S$, which implies $(k+1)|S| \le (k+l)|S| \le e_G(S, T) = \sum_{x \in T} d_S(x)$.

Therefore we have from (7), $\left(\frac{k+1}{2}\right)|S| > \left(\frac{k+1}{2}\right)|S|$ which is again a contradiction.

The conditions of Theorem 1 are in some sense best possible. We will describe first a family of graphs G having slightly lower minimum degree and not having the properties implied by the theorem. We construct such graphs G as follows. We start from a k-regular bipartite graph with bipartition (A,B) where $|A|=|B|=m\geq k+1$, m is an even number and $A=\{u_1,u_2,\ldots,u_m\}$. We add edges to this graph having both end-vertices in A, so that A induces a graph in which the vertices u_1,u_2,\ldots,u_{m-2} have degree m-2 and the vertices u_{m-1},u_m have degree m-1. We also add edges having both end-vertices in B, so that B induces a graph in which all vertices have degree m-2. Finally we add a new vertex u which is joined to u_1,u_2,\ldots,u_{m-2} and to all the elements of B. For the resulting graph G, we have $\delta(G)=(m-1)+k=\left\lfloor\frac{2m+1}{2}\right\rfloor+k-1=\left\lfloor\frac{|V(G)|}{2}\right\rfloor+k-1$ since |V(G)|=|A|+|B|+1=2m+1.

Now let function $f: V(G) \to Z^+$ such that $f(x) = \frac{d_G(x)}{2} + \frac{k+1}{2} = \frac{k+m-1}{2} + \frac{k+1}{2} = \frac{2k+m}{2}$ when $x \in A$, $f(x) = \frac{d_G(x)}{2} - \frac{k+1}{2} = \frac{k+m-1}{2} - \frac{k+1}{2} = \frac{m-2}{2}$ when $x \in B$ and $f(u) = \frac{d_G(u)}{2} = \frac{2m-2}{2}$.

Clearly

$$\sum_{x \in V(G)} f(x) = \sum_{x \in A} f(x) + \sum_{x \in B} f(x) + f(u) =$$

$$= \sum_{x \in A} \left(\frac{d_G(x)}{2} + \frac{k+1}{2} \right) + \sum_{x \in B} \left(\frac{d_G(x)}{2} - \frac{k+1}{2} \right) + \frac{d_G(u)}{2} =$$

$$= \sum_{x \in A} \frac{d_G(x)}{2} + \sum_{x \in B} \frac{d_G(x)}{2} + \frac{d_G(u)}{2} = \frac{1}{2} \sum_{x \in V(G)} d_G(x) = |E(G)|.$$

On the other hand G, by Lemma 3, does not have an orientation D such that $d_D^+(x) = f(x)$ for every $x \in V(G)$, because

$$\sum_{x \in A} f(x) > e_G(A, A) + e_G(A, V(G) - A)$$

since

$$\sum_{x \in A} f(x) = \sum_{x \in A} \left(\frac{d_G(x)}{2} + \frac{k+1}{2} \right) = \left(\frac{2k+m}{2} \right) m,$$

$$e_G(A, V(G) - A) = km + m - 2$$

and

$$e_G(A,A) = \frac{(m-2)(m-2) + 2(m-1)}{2}.$$

We will show next that the bounds in condition (i) are also best possible. For this purpose we construct a family of graphs G as follows. We start from a k-regular bipartite graph with bipartition (A,B) where |A|=|B|=m and m is an even number. We join every element of A to all the other elements of A and every element of B to all the other elements of B. Finally we add a new vertex u, which is joined to each element of $A \cup B$. For the resulting graph G, we have

$$\delta(G) = (m-1) + k + 1 = m + k = \left\lfloor \frac{2m+1}{2} \right\rfloor + k = \left\lfloor \frac{|V(G)|}{2} \right\rfloor + k$$

Now let function
$$f: V(G) \to Z^+$$
 such that $f(x) = \left\lceil \frac{d_G(x)}{2} + \frac{k+1}{2} \right\rceil = \left\lceil \frac{m+2k+1}{2} \right\rceil$ when $x \in A$, $f(x) = \left\lfloor \frac{d_G(x)}{2} - \frac{k+1}{2} \right\rfloor = \left\lfloor \frac{m-1}{2} \right\rfloor$ when $x \in B$ and $f(u) = \frac{d_G(u)}{2} = m$.

Clearly

$$\sum_{x \in V(G)} f(x) = \sum_{x \in A} f(x) + \sum_{x \in B} f(x) + f(u)$$

$$= m \left\lceil \frac{m + 2k + 1}{2} \right\rceil + m \left\lfloor \frac{m - 1}{2} \right\rfloor + m$$

$$= m \left(\frac{m + 2k + 2}{2} \right) + m \left(\frac{m - 2}{2} \right) + m$$

$$= \sum_{x \in A} \left(\frac{d_G(x)}{2} + \frac{k + 1}{2} \right) + \sum_{x \in B} \left(\frac{d_G(x)}{2} - \frac{k + 1}{2} \right) + \frac{d_G(u)}{2}$$

$$= \sum_{x \in A} \frac{d_G(x)}{2} + \sum_{x \in B} \frac{d_G(x)}{2} + \frac{d_G(u)}{2}$$

$$= \frac{1}{2} \sum_{x \in V(G)} d_G(x)$$

$$= |E(G)|$$

On the other hand by Lemma 3 G does not have an orientation D such that $d_D^+(x) = f(x)$, for every $x \in V(G)$ because

$$\sum_{x\in A} f(x) > e_G(A, A) + e_G(A, V(G) - A)$$

since

$$\sum_{x \in A} f(x) = \sum_{x \in A} \left(\left\lceil \frac{d_G(x)}{2} + \frac{k+1}{2} \right\rceil \right)$$

$$= \sum_{x \in A} \left\lceil \frac{m+2k+1}{2} \right\rceil$$

$$= \frac{m(m+2k+2)}{2},$$

$$e_G(A, A) = \frac{m(m-1)}{2} \quad \text{and} \quad e_G(A, V(G) - A) = km + m.$$

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
- [2] L. Lovász, Combinatorial Problems and Exercises, North Holland, 1979.
- [3] O. Ore, Theory of Graphs, American Mathematics Society College Publishers, 1962.