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Abstract

We consider point-line geometries having three points on every
line, having three lines through every point (bi-stim geomeltries), and
containing triangles. We give some (new) constructions and we prove
that every flag-transitive such geometry either belongs to a certain
infinite class described by Coxeter o long titme ago, or is one of three
well defined sporadic ones, naunely, the Mobius-Kantor geometry on
8 points, the Desargues geometry on 10 points, or a unique infinite
example related to the tiling of the real Euclidean plane in regular
hexagons. We also classify the possible groups.

1 Introduction

In incidence geometry the classification of certain types of geometries (i.c..
geomerries satisfying common axioms) is a central problem. In most cases,
however. one needs additional asswmptions, and often some transitive action
is hypothesized. hecanse the standard examples usually have a large group
of collineations.  Oue of the most popular hypotheses is withont doubt
the asswmiption of flay transitivity. One of the reasons is that a geometry
can be reconstructed in a canonical way using a flag-transitive group and
the various stabilizers of the clements of a fixed Hag. Many results thus
characterizing classical and sporadic simple groups are available. see (4] for
examples. Note. though. that in many cases flag transitivity is not (vet)
enough to classify. A good example is the class of finite projective planes,
where a full classification of the Hag-transitive ones is so far only possible
it one hypothesizes a nontrivial fHag stabilizer. In the present paper we are
concerned with point-line geometries of small order and gonality. A point-
line geomerry is a system I' = (P. L.I) cousisting of a point set P, a line
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set £ and a syinmetric incidence relation I between P and £ expressing
precisely when a point is incident with a line. Usually we think of a line
as the set of points incident with it and we accordingly use plirases like
“a point is on a line”. “a line goes throngh a point™, ete. If all lines of T
carry the same munber s + 1 of points and all points are incident with the
same munber ¢ + 1 of lines, then we say that T has order (s.t). If s = 1,
then the geometry is nsually called then, while if both s and £ are at least
2. the geometry is thick., If 3 = 2. then we call 1" slisn. If also the dual of
[ is slin. i.c.. if also ¢ = 2. then we call T bi-slim. Note that the dual of T
is obtained from I' by interchanging the point set with the line set. Note
that finiteness of s and # does not imply finiteness of I'. In particular, there
are lots of bi-slim ifinite geometries. The incidence graph I(I') or Lew
graph. of T is the graph with vertex set. PUL and adjacency relation I, The
gonality of T is half of the girth of Z(I'). where the girth is the length of the
smallest eyele in Z(I'). The girth is indeed an even munber since Z(T') is
obviously bipartite. If the gonality is at least 3, then lines are determined
by their point sets. A fleg is an incident point-line pair. The distance of
elements in T is measured in the Levi graph. If z € P U L. then [';{x)
denotes the set of elements of I' at distance ¢ from 2. In this paper, our
primary aim is to classify all (not necessarily finite) bi-slim flag-transitive
point-line geometries of gonality 3. But first. we want to give the examples.
A secondary aim is to provide unexpected geowmetric constructions for some
of these. It will turn out that all examples must be found in an infinite class
of finite geometries depending on two natural parameters already described
by Coxceter in [3]. except for three notable exceptions, two of which arc finite
and the other the unique infinite example. Without going into detail yer.
about the examples. we can already state our main resuls.

Theorem 1.1 Let T' be a (not necessarily finite) bi-slim flag-transitive
point-line geometry of gonality 3 with a flag stabilizer H. Then one of
the following possibilities occurs.

(i) T is the unique infinite example related to the tiling of the Buclidean
plene in reguler hezagons, and |H| € {1.2};

(#) ¥ is isomorphic to the Miobius-Kantor geometry, and again |H| €

{1.2}:

(#4) T is isomorphic to the Desargues geometry, and H is elementary
abelian and of order 2 or 4;

(iv) T s finite and belongs to ¢ well defined infinite class depending on two
natural parameters v 2> s, with v s > 3. In this case |H| ¢ {1.2}
for s =0 and for v = s. except if (r.s) = (3.0). In the latter case T
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is the Pappus geometry and H is elementary abelion of order 1, 2 or
A If (r.s) = (2.1). then I is the Fano geometry and either |H| =1
or |H| = 8 and H is dihedral. In all the other cases |H| = 1.

For more details on the structure of the groups and a discussion of the
multiple possibilities for 7 in most cases. see helow in the construction
section.

If we call duality an incidence preserving pernmtation interchanging the
point set with the line set, then we remark that all the examples are self
dnal. They are even self polar. i.e.. there is a duality of order 2, This just
comes out of the classification.

We define an absolute point of a polarity as a point incident with its image
under the polarity.

We mention the following consequence of Theorem 1.1,

Corollary 1.2 Let G = (X. E) be o trivalent graph of givth > 4 contuining
a G-cycle. If G admits an autornorphism. group acting transitively on the
ordered edges (hence on ordered pairs (e, f) € X x X, with {c.f} € E).
then G is either the incidence graph of one of the geometvies mentioned in
Theoreir 1.1, or it is the Petersen graph. In all cases. the groups can be
explicitly described.

We will prove this in Section 5.

2 Construction of some specific examples

2.1 The Fano geometry

The Fano geometry is the projective plane of order (2,2). The point set
is the set of 7 nonzero vectors of a 3-dimensional vector space over the
field GF(2) of 2 elewents, the lines ave the 7 vector planes in this vector
space. with natural incidence relation. There is a Frobenius group of or-
der 21 acting sharply Hag-transitively, but every collineation group acting
Hag-transitively and having nontrivial flag stabilizer coincides with the fall
group of collineations. which is PGL3(2). Since its order is 168 = 8.21, the
stabilizer H of a flag hias order 8 in the full collineation group.

Another well known constrnetion of the Fano geometry is to take as point.
set the integers modulo 7. and the lines are the translates of the 3-set
{0.1.3}.
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2.2 The Mobius-Kantor geometry

The points of the Mobius-Kantor geometry are the 8 nonzero vectors of a
2-dimensional vector space over the field GF(3) of 3 elements: the lines are
the 8 proper translates of the vector lines. So the vector lines themselves
are no lines of the geometry. Clearly GL,(3) is a collineation group and
it turns out that it is the full collineation group. This is casy to sce. It
has order 48. which is exactly twice the number of flags. Since GLy(3)
clearly acts flag-transitively. we have that the size of the stabilizer of any
flag equals 2. The subgroup SLa(3) acts sharply transitively on the set of
fags.

Remark that the Fano geometry and the Mobius-Kantor geometry are the
nuique bi-slim geometries with 7 and 8 poiuts, respectively.

There is a cyclic collineation group of order 8 acting regularly on the point
set and on the line set. This can be seen with the following construction.
which is similar to the second construction of the Fano geometry above.
Take as point set the set of integers modulo 8, and the lines are the trans-
lates of the 3-set {0.1, 3},

The two constructions mentioned in this section can be found in [3].

2.3 The Pappus geometry

Here the points are the 9 vectors of a 2-dimensional vector space over the
field GF(3): the lines are the non-vertical vector lines and their translates.
where a vertical vector line is just an arbitrarily chosen vector line as the Y-
axis. There is a nnigque 3-group of order 27 acting sharply flag-trausitively.
The stabilizer in the full collineation group of the origin together with the
X-axis. viewed as a flag. is isomorphic to the group of diagoual matrices
in GLa(3) and hence is isomorphic to Klein's four group. Consequently
the full collineation group has size 108. has a normal Sylow 3-subgroup
andl admits 3 different. subgroups of index 2. So there are three different
collincation groups with |H| = 2 and one with |H| = 4.

Of course there is also the classical construction of the Pappus geometry
(better known as the Pappus configuration) in the real projective plane
as follows. Consider three collincar points @, as. ag, and three collinear
points by ba. by such that the intersection point of the corresponding lines
is not amongst «).....bs. Then the lines a;b; and a;b; meet in some point
er. with {i j &k} = {1.2.3}. and ¢, 0. ¢3 arc automatically collincar, The
points and lines just mentioned form the Pappus geometry. Remark that
the Fano and the Mobius-Kantor geometry do not admit realizations in the
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real projective plane with points and lines. and hence no snch construction
is available for these geometries.  Althongh the Mobius-Kantor geometry
adniits a realization in the complex planc,

In the next section we will see that the Pappus geometry belongs to an
infinite family of Hag-transitive bi-slim geometries and this will provide yet
another coustruction of it.

2.4 The Desargues geometry

Consider a non-degenerate conic in the projective plane PG(2.5). An in-
ternal point is a point not incident with any tangent line to the conic. An
external line is a line not meeting the conic. Then the points of the De-
sargues geownetry are the 10 internal points of the conic and the lines are
the 10 external lines. while incidence is natural. From this construction
it is clear that PGLy(5) is a collincation group, and that the Desargues
geometry admits a polarity without absolute points

A more combinatorial construction goes as follows. The points are the
pairs of the 5-set {1.2,3.4,5}: the lines are the triples of that 5-set and
incidence is natural. Iere clearly the symmetric group Sy is — once again
-— a collineation group (and isomorphic to PGL3(5)). In fact it is casy to
show that it is the full collineation grounp, acting transitively on the set. of
Hags of the Desargues geometry. So here |[H = 120/30 = 4 when choosing
the full collincation group. If restricting to the unigque subgroup of index
2 (being the alternating group Aj) then using the second coustruction, we
see that we still have a fag-transitive group, this time with |[H| = 2. Since
S; has no group of index 4. there is no sharply flag-transitive collineation
gronp.

Again there is the classical construction in the real projective plane with
two triangles in perspective from a point, implying that the corresponding
sides of the triangles meet on a common line. Hence the triangles are also
in dual perspeetive from that line.

Alteruatsively, one can take as point set the set of points of the affine plane
AG(2.4) not lying on a fixed affine hyperoval. The lines are the 10 secant
lines to the hypoeroval,

2.5 The Coxeter gcometry

This geometry is discovered by Coxeter [3]. We give two independent and
new constructions.  First, consider the 2-dimensional vector space over
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GF(4) and choose a vertical Y-axis. The points of the Coxeter geome-
try are the 12 vectors not on the Y-axis: the lines are the proper translates
of the vector lines distinet from the Y-axis: incidence is natural. Clearly.
a collineation group is the semilinear group of pernmtations of the vector
space with a lower triangnlar matrix. This group acts flag-transitively and
contains 72 clements. So | = 2. It will follow from our classification that
the full collineation group is not bigger. Restriction to the linear transfor-
mations shows that we also have a sharply transitive group of collineations
of the flag space. But another rather exceptional phenomenon oceurs here.
The restriction of the full collineation group to the linear transformations
of the vector space fixing the vectors of the Y-axis pointwise (a group ab-
stractly isomorphic to A4) acts sharply transitively on the point set of
the Coxeter geometry.  Also, the restriction to SLa(4) of the full collin-
cation group is isomorphic to Ay, it is not coujugate to the subgroup in
the previous sentence, and it acts sharply transitively on the point set.
On top of that. the direct product of the subgroup consisting of the (lin-
ear) collineations corresponding to scalar matrices. with the subgroup of
transvections leaving all points of the Y-axis invariant. also acts sharply
transitively on the point set. This time, the subgroup is isomorphic to the
abelian group 2 x 2 x 3 (“atlas™ notation [2]. Hence there are 3 pairwise
non-conjugate normal regular subgroups (viewed as permutation represen-
tation on the point set of the Coxeter geometry) of the full collineation
gronp. There is also an additional normal regular subgroup on the set of
flags.

The second construction is more combinatorial in nature, and does not in-
duce the full collineation group of the geometry. Both the point and line set
are copies of the vertex set of a truncated tetrahedron. A point is incident
with a line if the corresponding vertices are adjacent. This gives ns a self
polar geometry with 12 points and 12 lines. and one can check by exhibit-
ing an explicit isomorphism by hand that it is isomorphic to the Coxeter
geometry introduced in the previous paragraph. The antomorphism group
inherited from the tetrahedron is S and its unique subgronp of index 2
is one of the three normal subgroups of the full collineation group of the

soxeter geometry acting regularly on the point set of the Coxeter geome-
try. The map sending a vertex viewed as point (line) onto the same vertex
viewed as line (point) is a polarity without absolute points.

The self polarity can also be seen in the first construction by phirasing it in
terms of the projective plane PG(2.4). where we choose two lines Ly, Lo
(meeting in ;) and a point 23 on one of these lines, say L, distinet from .
The points of the Coxeter geometry are then the points of PG(2,4) not on
L,. Ly. and the lines are the lines of PG(2, 4) not through . g, incidence
being natwral, If we call a polarity Lnear when it has trivial adjoining ficld
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antoworphisn. then there are precisely three linear polarities of PG(2.4)
taking a3 to Ly andd .y to L. These polarities preserve antomatically the
Coxeter geometry. and have all their absolute points on L,. Consequently
these polarities have no absolute poiuts in the Coxeter geometry, just as
the polarity in the truncated tetrahedron model. In fact for each polarity
without absolute points. there is a tetrabedron model where this polarity
is the natural one described above.

Following Coxeter [3]. the incidence graphs of the Mébins-Kantor geometry,
the Desargues geometry and the Coxeter geometry can be written as {8} +
{8/3}. {10} + {10/3} and {12} + {12/5}. respectively. where the notation
{n} v {n/m} refers to the graph with vertex set {1,2,....n.1.2"..... n'}
and adjacency relation ~ defined by @ ~ j (respectively ¢ ~ j§' and i ~ j)
if and only if £ — j = £1 mod » (respectively ¢ — j = £ mod n and @ = j).
For instance, the Petersen graph is {5} + {5/2} in this notation. Remark
that the Desargues geometry can be constructed from the Petersen graph
in exactly the same way as the Coxeter geometry is constructed from the
truncated tetrahedron. A geometric description of the unique polarity of
the Desargues geowetry now follows: it maps any point to the nnique line
at maximal distance in the incidence graph.

2.6 A geometry in PG(2,5)

In PG(2.5) we consider a proper triaugle with vertices xy,x9.3. The
points of I are the points of PG(2.5) not on one of the lines . 1 <i<
J < 3. and the lines are the lines of PG(2, 5) not through any of x;. 9, x3.
Incidence is natural. Alternatively. one can take the same point set, but
now take as lines the non-degenerate couics through ;. x, x3. To see that
these two definitions are equivalent, coordinatize such that Iy. 9. T3 have
coordinates (1,0.0). (0. 1.0). (0.0. 1). respectively. and just map the line
with equation aX + DY + ¢Z = () birationally to the irreducible conic with
cquation aY Z + bXZ + ¢XY = 0. Since line pencils are clearly mapped
onto conic pencils, this induces a (birational) pernmtation of the points and
hence an isomorphisin of geometrics.

In the previons description, the diagonal matrices of GL3(5) act regularly
on the point set. We can extend this group with the symmnetric action of Sy
acting on the vertices of the triangle. Hence this gives us a group of order
96 for which |H| = 2. Tt will follow from onr classification that the full
collineation group is not larger. There is a subgroup of index 2 obtained
from the miique subgrowp of order 3 of 8y acting sharply flag-transitively.

For further reference. we will call this geometry the birational geometry.
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2.7 The infinite cxample

A good geometric description of the infinite example satisfying the assuunp-
tions of Theorem 1.1 is by its incidence graph. which is the (bipartite) graph
obtained from the tiling of the real Enclidean plane into regular hexagous.

A more explicit description runs as follows. The points are the ordered pairs
(4.j) of integers 4, . The lines are the triples {(i,4). (4.4 + 1), (i + L. j)}.
with 7. j any integers. The free abelian group of rank 2 acts as an obvious
collineation gronp regularly on the set of points and on the set of lines.
The perimtations my @ (i.§) — (§.4) and =2 1 (i.j) = (i. —i — j) generate
a gronp isomorphic to Sy in the stabilizer of (0.0) in the full collineation
group and hence we obtain a flag-transitive group with flag stabilizer of
size 2. Our proof of 'Fheorem 1.1 will imply that this actually describes the
full collineation group. Extending the regular group of the point set with
the subgroup of order 3 of Sy. we obtain a sharply flag-transitive group
of collineations. This subgroup of the full collineation group can also be
described as the set of collincations belonging to SLa(R).

For further reference we will call this infinite example the honeycomd ge-
ometry.

3 A construction of an infinite class

All members of the infinite class we will describe are gquotients of the hon-
eveomb geometry. We give an explicit construction based on the incidence
graph. Note that these geometries are described in [3], and our description
is just a bit more detailed, because we want to recognize each of them in
onr proof later on.

3.1 The geometry G,

Let G be the incidence graph of the infinite example, which is the (bipartite)
graph obtained from the tiling of the real Euclidean plane into regular
hexagons. The (incidence graph of the) members of the infinite class will
be described as quotients of this graph.

The parameters + and s in G(,..) are nonnegative integers with » 2 s and
r+ s> 3

We define a coordinate system for the real Euclidean plane as follows. We
choose an arbitrary vertex of G as the origiu (0,0). The unit vectors ¢f and
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3 are chosen in such a way that they form an angle of sixty degrees and
the end points are vertices of G at graph-theoretical distance 2 from (0.0)
contained in a common hexagon through the origin.

The points of G, ,y are the ordered pairs (7. 7). with i. j integers and with
identification of all pairs (i.7) + k(r.s) +{(-s.r+s) = (i + kr - 1s.j +
ks + Ir 4 1s) with k.l integers. The lines of the geometry arce the 3-sets
{(i. ). (i +1.j). (i+1. j— 1)} consisting of the three points incident with the
line. and where for each point the above identification rule holds. ‘Lhe above
line can be identificd with the vertex with coordinates (i +2/3, 5 — 1/3).

Let s be the Enclidean distance between the origin and the vertex with
coordinates (1. 5). By applying the cosine rule in the triangle (0. 0) (. 0)(r. ¢)
we find that me?2 — 12 + s+ 2. It is easy to sce that the quadrangle formed
by the vertices (0.0)(r. s)(—s.r + 8)(—r — 5.7) is a rhombus with length of
the sides cqual to m. Every point can be represented by a pair (4. j) with
coordinates i. j in the rhombus without the line segments [(r. $)(—s.7 + 9)]
and [(-s.r + $)(~r - s.7)]. We will note this domain as D. Now. if
there were two representatives for a point in D, then one would be on
a line throngh the other parallel to (0.0)(r.s). to (0.0)(=s.7 + s) or to
(0.0)(—=r — s.r) at distance m from each other. Since this is impossible,
every point of the geometry has a unique representation (7, §) in the domain
D which is therefore called a fundamental domain.

Iu order to connt the munber of points in the geometry, we have to count
the munber of vertices corresponding to poiuts in the fimdamental domain
D. The arca of D is equal to ngz. The area of one hexagon is equal to ig
The number of hexagons in D is m?. We can assume that every hexagon
contributes oue vertex representing a point of the geowetry ad one vertex
represeuting a line. Hence. the geometry Gr.s) contains m? =12 4 5 4 52
vertices and also 2 4+ rs + 52 lines.

Remark that rotations over +120 and —120 degrees with center a vertex
corresponding to a point of the geometry and translations from a vertex
corresponding to a point to another vertex corresponding fo a point are
autoworphisms of the graph G preserving the identification. Consequently
the geometry G, ) has a flag-transitive collineation group induced by these
rotations and translations.

3.2 A square gec;met.ry

This is a special case of the previous. setting the parameter s equal to zero.

An alternative description of this geometry is possible by taking a new
Y-axis: the line at ~120 degrees from the X-axis. Then we can define a
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point by a tuple (i.7) with .7 integers modulo r. The mmber of points
in G,y is therefore equal to 2. Every line can be represented by a 3-set
{G. ). (. j+1). (i + 1§ + 1)} with 4, j integers modulo . Hence there are
also 2 lines.

Remark that in this case also reflections through axes correspouding to
eddgess of the graph G are antomorphisms of the graph preserving the iden-
tification. hence inducing collineations of the geometry.

If r = 4. then we leave it to the reader to check that we obtain the birational
geometry.

3.3 A triple square geometry

This geometry is also a special case of Gir.,) with r equal to s.

There exists an alternative description for this geometry. by taking another
coordinate system for the real Euclidean plane. As positive X-axis we
take the line from (0.0) to (=2r.7). The positive Y-axis forms an angle
of +150 degrees with the new X-axis. The wnit vector @7 is the vector
between (0.0) and a vertex on the positive X-axis at graph-theoretical
distance 4 from (0.0). The unit vector @ on the Y-axis is the vector
between (0.0) and a vertex at graph-theoretical distance 2 from the origin.
A point of the geometry is then represented by a tuple (i.j) with i an
integer modulo ¢ and j an integer modulo 3r. We can conclude that the
geometry G,y coutains 3r? points. Every line can be represented by a
3-set {(i.4). (i + 1.5+ 1).(5 + 1.5+ 2)} with i an integer modulo r and j
an integer modulo 3r. Hence there ave also 312 lines in the geometry.

Remark that. as for the square geometry. reflections through axes corre-
spouding to edges of the graph G are antomorphisis of the graph preserving
the identification. hence inducing collincations of the geometry.

4 The classification

We now prove onr main result, In order to do so, it is convenient to some-
times distingnish between the sharply transitive case and the case where
there is a nontrivial flag stabilizer. More precisely. we structure our proof
as follows.

Let T be a Bag-transitive bi-slim geometry of gouality 3. Let @ be any
point of T' aud L any line incident with 2. Let xj.22 be the two other
points incident with L. and let Ly. Ly be the two other lines incident with
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2. The first case we consider is the case where at least two points different.
from 2 on L} and Ls are collinear with 23, This can be obtained without,
loss of generality by renaming zo as 2. if necessary. We subdivide that
case into the sharply fag-transitive case and the case of a nontrivial flag
stabilizer. Here. the small examples arise. The second case, where exactly
one of the four points on Ly or Ly different from x is collinear with x), is
the generie case and gives rise to the infinite class and the infinite example.
There. we do not have to distingnish between trivial and nontrivial fag
stabilizer. Note that we always assume that the flag stabilizer is finite.
The case of an infinite flag stabilizer is treated separately.

So. throughout this section. I' = (P. £, I) is a hi-slim (connected) geometry
having n points and admitting a flag-transitive collineation group G of order
|G| = 3n. Let a2y, mo, L, Ly, La be as above. Suppose that ;. ¢ = 1,2, is
collinear with ¢; points on L; and L» different from 2. So 1 < ¢; < 4, as
the gonality of I' is 3 and there is a flag-transitive group. We may assume
without loss of generality that €, > €.

We introduce some more notation. The points on L;. i = 1,2, different
from @ will be denoted by y; and z;.

Case I: The flag stabilizer is infinite

It is easy to cheek that in this case, up to duality, there is a collineation
# € G fixing y1.2;.2. L. Ly and interchanging 2; with 2:3. By conjugation,
there is also a collincation 8 ¢ G fixing zy. 22, 2. Ly, Ly and interchanging
y1 with 2. Since the gonality of I' is equal to 3, there must be some triangle.
which can be chosen without loss of generality to contain the points x,, 3.
Note that this implies that @1y, is a line. Applying 6. we sce that z, is
collinear with all points of the line L. By flag transitivity, we may assume
that a is collinear with all points of 213;. and hence also with all points of
the line @ 2. Applying 6. we infer that xoy; and 29z arve lines of T all
poiuts of which are collinear with 2. Now every point collinear with :x is
incident with three lines all points of which are collinear with . and so T
ouly contaius seven points, a contradiction.

Hence from now on. we may assume that the flag stabilizer is finite. We
will not repeat this assumption over and over in our subdivisions.
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Case II: ¢, > 2

Casc IIa: Therc is a nontrivial flag stabilizer

Let 8 € G be a nontrivial element fixing the flag {a. L} of ['. Since we
assume that G, is finite, 8 has finite order ¢ and clearly # must be even.
For we can always find clements «. w € PUL with uIw fixed by 8 and such
that I'; () is not fixed poinewise by 6. If £ were odd. then gt would still act
nontrivially on I')y (w). fixing # and iuterchanging the two other elements.
a contradiction. Hence G,p is a 2-group. Put Ty(z) = {L.L;. L.} and
(L) = {wr.apae}. Using the flag-transitive action of G, we casily see
that there is an involution o in G, 7, interchanging either @y and @, or Ly
aud Ly, or both. We now tirst consider the latter case. Bo we subdivide
onr proof.

4.1 Case z{ =1y and L{ = L,

4.1.1 Case where there is a line through ) meeting all of L. Ly. L,
nontrivially

In this case. we may assume that 2y is a line. Applying ¢ and noting
that. if 47 = ga. then there are two lines containing the two points y1. y2.
we see that also w9229 is a line. By asswmption. there is a collineation
0 € G fixing L and mapping = to z2. Withont loss of generality. and
applying a? if necessary. we may assume that 8 maps Ly to re2122, and
29 to &, Hence x; is fixed. The line x2z122 is mapped onto one of the
lines Ly. Lo. and cousequently the image M of the line xy1y2 is incident
with 2;. meets Ly or Lo in either z; or zo. Remark that the line A is
not fixed since y) goes to either zp or zg. since L‘{ = agzy1z9. Also. M
meets the third line through 2o (different from L aud @9zy22). say in the
point a. So we may assume that 23210 is a line. Now we consider 8 ¢ G
wapping & to ;. The inverse image of Ly meets the three lines L, Ly, Lo,
and hence must be one of 21y y2 or a2 29, the other one having as image
a line incident with a.y..22. Conjugating o with a collineation fixing »
and mapping L onto Ly, we obtain an involusion ¢’ interchanging 2;. 2o
and yp with ¥, x; and . respectively. Hence aayqa is preserved and
a is fixed. Consequently the line 1210 goes to yrzoa. Now all poiuts
and lines thms far found are incident with exactly 3 elements. and so by
connectivity. 1" must consist of P = {x.21. T2.¥1. 2. Z1. 72. a} with line set
L = {wxpte. Ly 21 TY222. T1Y) Y. V22132, L1210, Loy Yy zea}. This is the
Mobins-Kantor geometry.
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A similar reasoning Lolds if there is a line through s meeting L. Ly and
Ly nontrivially.

So from now on (by flag trausitivity), we may asswme that no point y of I
is collincar with all points of any line A of I'. with y YA[.

4.1.2 Case where every line through :; meets L, or L,

Without loss of generality we may assume that 2 y,ay and 2900 are lines,
with a).aa € P distinct and not incident with L. Ly, La. Note first that g,
cannot be collinear with a0, for otherwise g is collinear with all points of L.
Applying . we obtain lines 292,b; and 223200, with by. by € P distinet and
not incident with L. L;. L, but not necessarily distinct from a,, as. In fact
we will show that {a;.a2} = {b;.h2}. We conclude that, by Hag transitivity.
whenever there is a triangle {u. v.w}, then there is also a triangle {u. v/ w'}.
where wov’ and www' are lines, with v # o' and w # w’. So. since we
have the triangle {1,291}, we also have the triangle {2).29.0;}. So
ay € Tap(az) and consequently ¢y € {b1.by}. Similarly. az € {b).b;} and so
{ar.az} = {by. b2} as promised. Obviously. two possibilitics oceur.

ay; = by and ay = by, With the above notation. we then have that ow and
e'w’ interseet. We claim that gy is collinear with yo. Indeed. if not. then
i is collinear with z,, and we have the hexagon (T1.y1. 22 0. 21 0. 11),
centered at . By transitivity. there is also a hexagon centered at ;. and
since yy and yo are not collinear. g, must be collinear with ay. This implies
that y) 200, is a line. clearly a contradiction. The claim follows. So Y1203
is a line and also 212204 is a line, with a3 a new point. Hence we have
now two triangles centered at o point (with self explaining terminology).
Applying this to @;. we see that @ is collinear with aqg; similarly with ay
and it is now trivial to see that ayequs is a line. Since all points and lines
introdnced so far are incident with three clements. there are no further
points and liues. We now recognize the Desargues’ geometry.

ay = by and a3 = by, Supposc that y; and y, are collincar. Then o (sce
above) maps 2 onto yox; and henee ag onto as. On the other hand.
2122 is mapped onto yy2 and so az is mapped onto the “third” point of
Yay2. Since a’ is involutive, yyyen; is a line and so 2, = o, a contradiction.
Hence yy is collinear with 25, and g is collinear with z,. The argument with
a’ now shows that both e; and ao are fixed. but belong to respectively yp2;
and 120, We now obtained the nine points and nine lines of the Pappus
geometry.
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4.2 Casezr{=asand LY =L;,i=1.2

We consider similar subcases as before.

4.2.1 Case where there is a line through 1) meeting all of L. L;. L,
nontrivially

Without loss of generality, we may assmne that 219192 is a line. There
are two possibilities for . If ¢ fixes. again without loss of gencerality. 1
and 2. then @ does not fix yo otherwise xay y2 is a line, a contradiction.
IIence o interchanges yp with 21 and g with z2. Then xaz12e is also a
line. and the same argunent as in 4.1.1 shows that there is a point @ with
xr1za and zayea lines (without loss of generality). Applying o now proves
that @, is collinear with zp (since w2 € La(y2)). But we already have six
distinet points in Ia(ry) = {g1.y2. 2. 22, 21.a}. Since clearly 22 # a. this
is a contradiction. In the former case we remark that some conjugate of o
fixes yz. 2o and interchanges @y with 22 and g with 2. Applying o and
this conjngate a munber of times. it is easy to see that one obtains the Fano
geometry.

Froi Low oll. wWe way agaii assime that no point y of T' is collinear with
all points of any line A of I'. with » YAl

4.2.2 Case where every line through x:; meets L, or L,

We may assume that x, is collinear with both y, and y,, but x5 and
ryye are different lines. Because of onr assumption stemming from the
previous case. we necessarily have that o does not fix any of x1.y1.¥2. So
also a2 and rgzp are (distinet) lines of T. As above. one shows that. if
arLayy. aplayys, biLleez; and byIzezy, with ap.ag. by by ¢ Ta(x). then
{a1.a2} = {b.b2}. The case ay = by leads, as above. to the Desargues
geometry. And one can check that, similarly, the case ap = by leads again
to the Pappus geometry.

So we have come to the Case IIb.
Casc IIb: The flag stabilizer is trivial
Here. G is a sharply flag-transitive group. So there is a unique collineation

¢ € G wapping the Hag {x. L} onto the flag {#.L;}. Consequently. the
image of Ly is equal to Ly, otherwise g fixes the Hag {2 L2}. Similarly, the
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collineation mapping {a. L} onto {x1. L} maps x; onto a2 and xo onto .
We will use this in onr proof below without further notice.

We again make some distinctions.

4.3.1 Case where there is a line through x; meeting all of L, L,,
L, nontrivially

In this case. we may asswne that @y1ys is a line. By sharp Hag transitivity,
there is a collineation § in G wmapping the flag {2 L} onto the fag {z;. L}.
and 6 maps ) onto 9. Hence, the iinage nnder 8 of 213713, is a line through
@2 meeting all of the three lines through 21, Without loss of generality, we
may asswune that rqy 0 is a line, with o the intersection point of ay; and
the third line through a,. different from L and a1y, Remark that ¢ may
be equal to z2. but not to one of the points of the set {x.z.2z9.y1. 2. y2}.
We can distinguish four possibilities for the images of the points 1, xa. 1,
z1- Y2 and 20 under the above mentioned collineation g.

In the first case. the collineation ¢ maps the point z; outo the point z,
and y; onto yo. Hence. y; is mapped outo xy. If a is equal to zp it is
easy to see that we find the Fano geometry. Now. let’s look what happens
when @ is not equal to 29. Applying g to the line woy a gives the line 21y,
which in turn is mapped onto the line zox;. Since there are only three lines
throngh ;. we see that » 2 = x;a. The iimage of zp2:1¢ under ¢ is equal
to wayia, which implies that the point a is fixed wnder g and 2900 is a
line. There are now two distinct non-intersecting lines each intersecting all
the lines through the point ;. Looking at the inverse of the collineation 6
there also have to be two lines — one throngh a; and one through 2y —
intersecting all of the lines through x. This easily implies that the points
az. zp and zy are collinear. Since all points and lines introduced so far are
incident with three elements. there are no further points and lines. We now
obtained the cight points and lines of the Mébius-Kantor geometry.

Next. we consider the second possibility where g maps ) onto 3, and N
onto z3. Then. the line ayy g2 is mapped onto gy 29 which in turn has
image 21227y (hence @ = 23). The collineation § maps the three lines
through :r; onto three lines through e and permutes the points ¥y, 21, ¥2
and 2z amongst themselves. Indeed. these are the points collinear to z and
to a; not on L. and @ maps @ to ;1. It is now easy to see that Loz Ys is a
line and we recognize the Fano geometry.

The third possibility assmmes that g maps @ onto 2y and 2; onto yp. We
have that 732522 and xayoz; are lines. Hence, the point ¢ is here equal to
2. Hence, we have that also 293122 is a line. We obtained the seven points
and seven lines of the Fano geometry.
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In the last case. g maps the point 2y onto 2y and z; onto 2. This is similar
to the previous two cases and we again obtain the Fano geometry.

4.3.2 Case where every line through x, meets L; or L,

Recall that the Desargues geometry does not have a sharply Hag-transitive
collineation gronp. Nevertheless, since the collineation group As actually
contains collineations g and # with the properties we use (both see above).
we will see that in the following proof the Desargues geometry arises several
times. This just means that the sitnation under cousideration does not
oceur.

Without. loss of generality we may assmme that xygay and zypa ave lines.
with . s € P distinet and not incident with L. Ly. Ly. The line a130,.
respectively @y yoas meets the line Ly . respectively La. Hence, 6 (see above)
maps those two lines onto two lines through ;. one meeting the line 20,4,
the other meeting the line xyyaaz. The only possible images arve a line
through g and a; and a line throngh a2 and az. Indeed. otherwise we are in
Case 4.3.1. with g or g in the role of w. Remark that {21.20} C waa Uaaay,
but we will not use this observation, because it leads to a superfluous case
distinction. We can distingnish again the same four possibilities for the
action of the collineation g on the points @y, 222, 91, 21. Y2 and 22 as in the
previons case.

In the frst case. where g maps @2y onto yy and y) onto yo, the line xyyous
is mapped onto yyxa;. Hence. the image of ao under g is equal to the
point ¢q. Also, the line zyy1a; is mapped onto a line through y; and yo.
The third point on that line. say a;. must be different from the nine points
we already have. The image under # of 3, is one of ay. @z, otherwise ) is
collinear with » and we are in Case 4.3.1 again. Similarly y8 € {a;.a»}.
This implics that a; and ag are collinear, and, applying g, also ayaz and
ttoas are lines. Applying 7! and then g and ¢%. we see that z) 72, w973 and
29z, are lines. Hence. if aja3 # ay0g. then ag € {zy. 22}, as ¢y is on one
of wozq. a2, a contradiction. We conclude thiat ayegag is a line. One now
soes that a4 Treze leads to a contradiction considering the action of g. So
@ Ianz) and aplzazg. and azlz)2g. We obtain the Desargues geometry. a
contradiction as mentioned before.

The second possibility for ¢ cousists of mapping the point @; onto y; and
g1 onto 2. Then y129 and woy; ave lines. Hence L meets the three lines
through y; nontrivially and we are in Case 4.3.1.

Thirdly. we consider g mapping ) outo z and z; onto yz. Here, @y and 2,
are collinear which reduces to Case 4.3.1 once again.
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The last case is the case where the image of @) under ¢ is equal to 2; and
the image of 25 is equal to za. The line ajy1a; is mapped onto the line 259
and this line is mapped onto 2929, The line xpy9a0 has image z;a9, which
in tnrn has image z2y;. We now have two possibilities: Firstly, 200129 and
oz g are lines, and secondly, xo20a9 and xga,2; are lines. In the first case.
the line ap2pa) is mapped onto 2y yyap, henee the point ay is fixed under the
collineation g. The image of the line a1y is then 2y ypay. Similarly 3 2000
is a line. Now all points and lines thus far found are incident with exactly
three clements. and so by comnectivity. P = {&. 2122, 1. 21. y2. 22, a1 ag ).
We have the Pappus geometry.

Now. let’s consider the secowd possibility. The collincation g maps the line
razauz outo the line yyxe), and this line onto ypz1af. The image of the line
wezyay is equal to ¥y 2. which in turn has image yoaay. Hence. the lines
#2z1 and ) 29 have a point ¢ = as in common. It is clear that this point is
differenc. from the points we already have. Since the line y) zgas meets the
lines Ly and Ly, its image under the collineation 8 meets the lines 2:1ysa9
aud ayypay in two different points. Hence. there must be a line joining the
points ¢; and ao. It is then easy to see that this line also contains the
point a3. But now the geomerry induced on the points collinear with x is
an ordinary hexagon, while the one induieed on the points collinear with
ay contains the ordinary triangle {#;.a;.a2}. This contradicts the point
transitivity of G.

CaseIII: ¢, =0, =1

Without loss of generality. we here have that g, oo and 2129 are lines
containing no further points of {2y, 22, y1.y9. 21. 22}, and no other line
than the six we already have joins two points of the aforementioned set of
seven points.

We want to shiow that in this case we have a geometry G, , with » > s and
r+s 2> 1. Hence we have to reconstruct the honeycomb geometry out of
I as a kind of universal cover. This will be done with standard homotopy
arguents using the idea of defining a rank 3 geometry.

Let &' be the set of paths 4 starting at the vertex 2 in the incidence graph
Z(T') of the geometry. In the sequel, we will use obvious notation for the
juxtaposition of paths, or of paths and vertices. E.g.. if v is a path and Y
is a vertex adjacent to the end vertex of 4. then 4y is the path obtained
from + by adding y at the end.

For 4y. 92 C X, we say that 4y and v are elementary homotopic. in symbols

~C A

ya. if 31 = 72 or if one of the two following cases oceur:

~

1
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(EHL) 71 = (& = 10,0000 oo livwn o ty) aUd 72 = (8= 09 Ppeee e Ol

Wiy g wy. tioo. .. ) or vice versa, with 0 <i < .
(EH2) 1 = (x =rp..... ;=AY i) = W2, Vg = W3 Vigy = W Viggee .-
vp) and o2 = (¢ = v..... U= W W, Whe Vigs = W Cipdens oo m,)

with w) w2wswawswewy a hexagon in Z(I) and 0 <i<n—3.

Remark that the hexagon wywaumegurg gy in the incidence graph cor-
responds to a triangle in the geometry. Also. 41 = 72 is a special case of
(EH1) for (wn..... w;) the empty patl

As usnal. we now define 5 and 47 in X to be homotopic. in symbols y > .
if there exist y1.72... .. e € X such that y =y =% 52 =" 13 =" .

-~

vw ='. The homotopy class of a path 7 € & will be denoted by [4].

-

We now define a new graph G with vertex set the set of homotopy classes of
paths in X. The set of edges is defined in the following obvious way. Two
distinct vertices [11] and [y} of G are adjacent if there exists a vertex y in
Z(I') such that 414 ~ 7.

Remark that shis definition émplics that the end vertices of 7 and y2 are
incident in the geometry T

Standard arguments nsing the cases (EH1) and (EH2) of elementary ho-
wotopy show that. if 3,4 >~ 42. then there exists a vertex 2 such that
~25 ~ 71. Note that 2 is the end vertex of 7. So the concept of adjacency
is svinmetric and the graph G is well-defined.

We now arrive at a technical point of the proof, and we will not define all
notions that we use. We refer to the literature. e.g. [1]. [6]. [4] and [5].

Note that G is bipartite and hence it is the incidence graph of a geometry
I'(G). We show that I'(G) is the honeycomb geometry. Remarking that
the hexagonal tiling of the Euclidean plane is in fact the chamber graph
of the nnique thin simply connected rank three geometry of type Ay, we
conld try to define a rank 3 geometry where the vertices of G turn ont
to be the chambers. This is a rather complicated job, and we will go
around this by exhibiting another rank 3 geometry and then delete one type
of elements. Indeed, consider the following geometry Q = (S1.Sa2. Sa. *).
where 8 (respectively Sz) is the set of points (respectively lines) of I'(G).
Sy is the set of ordinary triangles in I'(G). and * is the natural aud obvious
incidence relation. We clain that Q is the flag complex of a building of
type Az. It is easy to check that Q is a thin geometry of type A, By
Theorem 3(7) of [6]. the claim follows if we show simply connectivity. and
by Corollary 2.3 of [5). this is cquivalent to showing that every closed path in
the incidence graph is contractible. It is easily seen that. with the definition
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of homotopic paths in [5]. each path in the incidence graph of Q is homotopic
to a path only using vertices of §§ USs. Such a path can be identified with
a path in G. Rurthermore. it is straightforward to check that the notions
of homotopy as defined here and defined in [5] coincide over the set of such
paths. Also. a standard homotopy argument shows that each closed path
in G is howmotopic equivalent to a trivial path. The claim follows. Ilence
the incidence graph of € can be represented as the tiling of the Euclidean
plane in regular triangles. Deleting the vertices of S;. we obtain at one
hand G andd at the other hand the vegular hexagonal tiling. Hence T(G) is
(isomorpliic to) the honeycomb geometry.

We define the funetion 7 which projects every vertex [5] in the graph G on
the end vertex of 4. A standard argument shows that this is an epimorphic
local isomorphism. i.e., the restriction to the neighbors of any vertex is a
bijection onto the image.

Also. every collineation a € G Lifts to an antomorphisin @ of the graph G,
and hencee to a collineation of the honeycomb geometry T(G). This follows
from standard homotopy theory: in fact for every element « of 1, for every
clement & of the fiber of «. and for every clement a® of the fiber of a®. & can
be chosen such that it maps @ to ¢, Now note that the stabilizer of a flag
in I'(G) has order 2 in the full collineation group. This can easily be seen
wsing the fact that a thin building of type As is a Coxeter complex with full
automorphism gronp the associated Coxeter group. Together with the deck
transformations, G lifts to a fag-transitive group G of T'(G). The laster
contains the sharply Hag-transitive group Gy induced by all collincations
which represent isometries with determinant 1 in the Euclidean plane.

Now let V, be the set of all vertices in the graph G correspouding to the
point x of the geometry 1. So V,. is the fiber determined by 2. We consider
two possibilities.

V. is a singleton It is clear (hy flag transitivity) that every fiber is trivial
and that I' is isomorphic to T(G). Henee T itself is the honeyeomb geometry.

V. is not a singleton Let I be a reference vertex in V,.

We choose a coordinate system for the real Euclidean plane. The vertex
a is chosen as the origin. The nunit vector on the X-axis is chosen to be
the vector 27 with I} a vertex corresponding to the point x) at graph-
theoretical distance 2 from &, We may assume that 2, and y; are collinear
iu I'. Then the wnit vector on the Y-axis is chosen to be the vector ._Z—lﬂ
with 7} a vertex in V,, at graph-theoretical distance 2 from both # and 77.
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Let 3 be a vertex in V, at minimal Euclidean distance m from the reference
VOrtex I

Rotations over +120 degrees and —120 degrees with center & belong to Go
and hence are lifts of collineations in G fixing the point . Applying these
rotations to # we get two new vertices #7200 and r"w- in YV, at the same
distance m from & The translation with vector 2 is also the lifting of
an antoworphism in G fixing the point . Applying this to the vertices
e and FMen gives us two new vertices & and £ in V,. Because
of the metric properties of a rhombus. the angle between @3 and 22" and
between 37 and #3200 is equal to sixty degrees. The same holds for
the angle between #8 and #F” and between &7 and #i20 . The two
rotations rpag. and rppyy map the vertices 27 and £ onto cach other and
onto one other vertex in V,.. We conclude that we get six vertices of V, on
a regular hexagon around & at distance m from the r(‘fvr(‘n('v vertex and
from each other. From now on. we will suppose that &' is lym ¢ hetween
the positive X- and the positive Y-axis. The coordinates of &’ are given
Ly the tuple (rs) with 7.5 > 0. Withont loss of generality we may assume
that r > s (interchanging X- and Y-axis if necessary).

Applying successively rotations of 60 degrees, a tedions calenlation shows
that the coordinates of the six vertices in V,. on the regular hexagon around
T are (r.8). (=s.r+s). =(r.8)+(=s.r+s) = (-r—s.1). ~(r.8) = (=1.—5).

(-s.7 +s)y=(s.—r—s)and —~( s.r+ )+ (r.8) = (r +s. -r). Remark
that the first two veetors generate the others by taking sums. In fact.
by the minimality of m. all clements of V, are generated by (r.s) and
(—s.7 4 $) by taking sums. Hence a generic element of Y, has coordinates
k(r.s) + l{(=s.r+ s) = (kr = Is. ks + lr + Is) with k and 7 integers.

Consider an arbitrary vertex 2 in V{Z(1")) corresponding to a point z of the
geometry I The translation with vector ¥7 is the lifting of an antomor-
phism in the collincation group G wmapping the point @ onto the point 2.
Hence we see that the vertices of V, are parameterized by (i, j) + k(r. s) +
H=s.r+8) =0+ hkr—1s.j+ ks +lr+1s) with & and [ integers. and with
(7. 7) the coordinates of 2

A line of the geometry can be deseribed by a 3-set of coordinates of the
three points incident with that line: a possible representation is given by
{0 )G+ 1 ). G + 1. - 1)),

We thus recognize the geowmetry G, .

If the flag stabilizer of ', and hence also of I'(G). is not trivial. then V,, is
invariant under the symetry about the bisector of the X-axis and the Y-
axis. and it is casy to see that in this case there ave exactly two possibilities.
Firstlv, this bisector contains an clemeut of Y, and we obtain a triple square
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geometry, Secondly. the X-axis contains an clement. of V,.. and we obtain
a€sguare ].’,'(‘()lll(‘tl"\'.

This completes the proof of Theorem 1.1,

Remark. Roughly speaking, our main result says that a flag-transicive

bi-slim geowetry of gonality 3 is (1) cither a standard ¢uotient of the hon-

eycomb geometry. (2) or the unigque proper quotiont of a “dodecahedron

geometry” (see below). (3) or a nonstandard quotient of the honeycomb

geomerry the Mobins-Kantor geometry. Tn ease (1) relatively larger

groups appear in the siall examples beeanse of the richer “local structure”
by which we mean the geometry of points collinear to a given point.

Indeed. one can check thae the Mobins-Kantor geometry can be obtained
from the honeveomb geometry by considering a fundamental domain con-
sisting of 8 hexagons as follows. Let H) and H, be two hexagons of the
hexagonal tiling of the Euclidean plane sharing an edge e. Then consider
all hexagons of the tiling sharing an edge f with one of Hy or Hy, where f is
not opposite the edge e in 2, or H,. This construction can be generalized
by taking more hexagons, but only in this small case the collineation group
of the resulting geometry is fag-transitive.

With regard to the Desargues geometry, it can also be constructed as fol-
lows. Cousider the geometry I arvising from the dodecabiedron by taking
as point set the vertices of the dodecahedron and as lines a second copy
of the vertices. Incidence is adjaceney. Then we obtain a geowetry of go-
uality 4. Now identify elements which come from opposite vertices of the
dodecaliedron. This produces the Desargnes geometry.

In conclusion. all geometries appearing in our main result are quotients of
geowetries related to regular tilings of cither the Euclidean plane. or the
2-sphere.

5 Proof of Corollary 1.2

Under the given assimptions. there are two possibilities. The first one is
that the graph is the incidence graph of a Hag-transitive Di-slin geometry
with gonality 6. But then the result follows casily. The second possibility
is that the geomerry obtained from the graph by taking as point and line
sct two copies of X, and declaring a point incident with a line if the cor-
respouding vertices in G are adjacent. is a flag-transitive bi-slim geometry
with gonality 6. It is easy to check (see for instance [7]) that such graphs
arise only from polarities without absolute points. Now it is an exercise
to check that only the Desargues geometry has a polarity without absolute
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points which gives rise to an edge-transitive graph. namely. the Petersen
graph. In the geometries Gr. s. one checks that polarities withont absolute
points arce indnced by poiut symmetrics of the hexagonal tiling of the Eu-
clidian plane. But the resulting graph has edges which lic on triangles. and
edges which are not. contained in any triangle. Hence these graphs do not
satisfy our assmuptions and the corollary is proved.
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