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Abstract

Larges sets of balanced incomplete block (BIB) designs and re-
solvable BIB designs are discussed. Some recursive constructions of
such large sets are given. Some existence results in particular for
practical k are reviewed.

1 Introduction

Let v, k and X be three positive integers such that v > & > 2. We denote
the set of all i-subsets of a set X by P;(X).

A balanced incomplete block (BIB) design, denoted by B(v, %, ), is a
pair (X, B) in which X is a finite set with cardinality v and B is a subset of
Pi(X) such that every element of Po(X) appears exactly A times in B. In
this case each P;(X) appears a constant, r (say), times in B. This is called
a replication number of the design. Further let b be the cardinality of B.

A large set of disjoint B(v, k, A), denoted by LB(v, &, A), is a partition of
Pr(X) for a v-set X into B(w, k, \) without repeated k-subsets. We denote
by s(v, k, A) the maximum number of mutually disjoint B(v, k, A) on the v-
set X. Obviously, it holds that s(v, k, A) < (::g) /A with equality occuring
if and only if there is an LB(v, k, A). Of course, any non-existence result
for B(v, k, A) provides a non-existence result for LB(w, k, )).

A B(v,k, )) is said to be a-resolvable of the b k-subsets are separated
into ¢ classes, called resolution classes, of 8 k-subsets each such that in
each class every point of X appears o times. Here b = St and r = at.
Furthermore, an a-resolvable B(v, k, \) is said to be affine a-resolvable if
any two distinct k-subsets from the same resolution class include ¢; points

ARS COMBINATORIA 75(2005), pp. 97-104



in common, while any two k-subsets from different resolution classes include
go points in common. Here it holds (see Raghavarao (16]) that g, = k(a —
1)/(B—1) = k+ A —r and g2 = k?/v. An (affine) 1-resolvable design is
simply called an (affine) resolvable design, and necessarily @ =1, t =,
B = v/k (= n, say, in Section 3), g1 = 0. These designs are denoted by
RB(v, k, A) (ARB(v, k, A)).

A large set of disjoint RB(v, k, A) is denoted by LRB(v, k, A), while a
large set of disjoint ARB(v, k, )) is denoted by LARB(v, k, A).

A necessary and sufficient condition for the existence of LB(v,3,1) is
that v = 1,3 (mod 6) and v # 7 (see Lu {13, 14], Sharry and Street [17]).
A necessary condition for the existence of LRB(v,3,1) is obvious to be
v = 3 (mod 6). A sufficient condition for the existence of LRB(v,3,1) is
that v = 3 (mod 6) and v = 3° for a positive integer s (see Denniston [7}).
Other sufficient conditions for the existence are known for LRB(v, 3,1) (see
Chang and Ge [4]). However, there are no rich results on the existence
of LB(v,k,)) with A = 1 and k& > 4. There are several observations in
literature. A good reference on this topic is Kang [10] for triple systems.

In this paper, some recursive constructions of such large sets, with the
existence of new LRB(v, k, \) for k > 4, will be discussed.

2 Recursive constructions

Some recursive constructions are provided for LB(v, k, A) and LRB(v, k, A).
Let s(v,k,\) = z:g) /X (= s, say) in the large set. First note that s =
Y /b= (123 /r = (323)/X in LB(v, k, )).

The following can be easily shown by the structure of large sets.
Lemma 2.1. The existence of an LB(v, k, A) with the stated s implies the
existence of an LB(v, k, pA) for s/p being an integer.

Example 2.1. An existing LB(13,6,55) with s = 6 (see Example 2.4
later) implies the existence of LB(13, 6,55 x 2), an LB(13, 6,55 x 3) and an
LB(13, 6,55 x 6).

Usually, we are interested in LB(v, k, min A) (similarly, LRB(v, k, min X)),
where min A denotes the minimum value of A among admissible parameters
v, k, A for given v and k.

Theorem 2.1. The existence of an LB(v, k, A), with a replication number
r, and an LB(v, k + 1,7 — A) implies the existence of an LB(v +1,k+1,7).
Proof. 1t is obvious that s = (',;_‘_g) /A= s(v,k,\) = s(v,k+1,7—]). Thena
juxtaposition of a B(v, k, A) in the LB(v, k, A) and a B(v, k41,7 —}) in the
LB(v, k+1,7—X) can yield a B(v+1, k+1, r), after an addition of a new point
to all the k-subsets in the B(v, k, A). Hence there are such s B(v+1, k+1,7)
which constitute the required LB(v + 1,k + 1,7), because all the k-subsets
are disjoint and s(v, k,\) = s(v,k+1,7 = A) =s(v + L,k +1,7). o
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Example 2.2. An LB(13,4,1) with s = 55 (see Chouinard [6]) by Lemma
2.1 yields an LB(13,4,5) with s = 11, which, together with an LB(13,3,1)
with s = 11 and r = 6 (see Denniston [8]) and Theorem 2.1, produces an
LB(14,4,6) with s = 11, which is new with min ) for given v = 14 and
k=4.

Example 2.3. By Lemma 2.1, an LB(12,4,3) with s = 15 and r = 11
(see Kramer, Magliveras and Stinson [12]) yields an LB(12,4,15) with s = 3
and r = 55, while an LB(12,5,20) with s = 6 (see Kramer, Magliveras and
Stinson [12]) yields an LB(12,4,40) with s = 3. Hence by Theorem 2.1 the
last two large sets together produce an LB(13,5,55) with s = 3. However,
for min A = 5 the existence of an LB(13,5,5) with s = 33 is unknown.
Example 2.4. An LB(12,6,5) with s = 42 (see Kramer, Magliveras and
Stinson (12]) by Lemma 2.1 yields an LB(12,6,35) with s = 6, which, to-
gether with an LB(12,5,20) with s = 6 (see Kramer, Magliveras and Stinson
[12]) and Theorem 2.1, produces an LB(13,6,55) with s = 6. However, for
min A = 5 the existence of an LB(13,6,5) with s = 66 is unknown.
Corollary 2.1 The existence of an LB(v, k, A) with b k-subsets and a repli-
cation number r, an LB(v,k + 1,7 — A) and an LB(v,k + 2,b — 2r + A)
implies the existence of an LB(v + 2, k + 2,b).

Proof. The same procedure as the proof of Theorem 2.1 can be taken. At
first a combination of a B(v, k, A) and a B(v, k+1, - )) yields a B(v+1,k+
1,7}, while a combination of a B(v, k+1,7— ) and a B(v,k+2,b—2r+ 1)
yields a B(v+1,k+2,b —r). Hence the resulting two designs can produce
a B(v + 2,k + 2,b) by Theorem 2.1. This procedure should be repeated s
(= (::’;’))/A) times. Then the required LB(v+2, k42, b) can be obtained. O
Example 2.5. An LB(12,4,15) (see Example 2.3), an LB(12,5,40) (see
Example 2.3) and an LB(12,6,35) (see Example 2.4), by Corollary 2.1, yields
an LB(14,6,165). However, for min A = 15 the existence of an LB(14,6,15)
with ¢ = 33 is unknown.

Lemma 2.2. The existence of a B(2k+1,k, ), with a replication number
7, is equivalent to the existence of an RB(2k + 2,k + 1,7).

Proof. The necessity is obvious by taking a juxtaposition of a B(2k+1,k,)),
with a new point added to all k-subsets, and its complement B(2k+1,k+
1,7/k + X). The sufficiency is shown as follows. Since v = 2(k + 1) in the
RB(2k+2, k+1, ), each resolution class consists of two (k+1)-subsets that
must be self-complementary to each other. Hence it can be shown that all
(k + 1)-subsets containing a particular point yield a B(2k + 1,k, ) with a
replication number r, after deletion of the particular point. (]
Theorem 2.2. The existence of an LB(2k + 1, k, A), with a replication
number r, is equivalent to the existence of an LRB(2k + 2,k + 1, r).
Proof. First note that s(2k+1,k,A) = (%) /), and s(2k+2, k-+1, 2k)/ (k—

1) = (2,)/[2k)/(k = 9)] = (%7})/\. Hence s(2k+1,k,\) = s(2k+2, k +
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1,7). Therefore, by Lemma 2.2 the equivalence on the existence of two
large sets can be shown, because all the subsets are disjoint. 0

Theorem 2.2 can present the following.

Corollary 2.2. The existence of an LRB(2k, k, ) is equivalent to the
existence of an LB(2k — 1,k — 1, A(k — 2)/[2(k — 1)}).

Corollary 2.3. A necessary condition for the existence of an LRB(2k, k, )
is that A(k — 2)/[2(k — 1)] is a positive integer.

Corollary 2.3 shows that in an LRB(2k, k, ), ) is divisible by k — 1.
Hence the parameters of an RB(2k, k, A) in the LRB(2k, k, A) are expressed
by v = 2k, b = 2¢(2k — 1), r = £(2k — 1), k, A = {(k — 1) for a positive
integer £.

Example 2.6. An LB(9,4,3) with » = 8 (see Kramer, Magliveras and
Stinson [12]) with Theorem 2.2 yields an LRB(10,5,8). Now Corollary 2.3
shows the non-existence of an LRB(10,5,4) with s = 14. Hence the new
LRB(10,5,8) also has min X for given v = 10 and k = 5.

Theorem 2.8. The existence of an LB(2k + 2, k, A), with b k-subsets and
a replication number r, and an LB(2k+2, k+1,r — A) implies the existence
of an LRB(2k + 4,k + 2,b).

Proof. By Theorem 2.1 we have an LB(2k + 3,k + 1, 7). Furthermore, by
Theorem 2.2 an LRB(2k + 4,k + 2,2r(k + 1)/ k) can be obtained. Here it
holds that 2r(k +1)/k = b. O
Example 2.7. An LB(12,5,20) with r = 55, and b = 132 (see Kramer,
Magliveras and Stinson [12]) and an LB(12,6,35) (see Example 2.4), by
Theorem 2.3, yield an LRB(14,7,132). On the other hand, Corollary 2.3
shows the non-existence of an LRB(14,7,6) with s = 132. However, for
min ) = 12 the existence of an LRB(14,7,12) with s = 66 is unknown.
Incidently, the existence of an LB(14,7,6) with s = 132 is also unknown.
Example 2.8. An LB(12,4,15) with r = 55 and b = 165 (see Example 2.3),
an LB(12,5,40) with 7 = 110 and b = 264 (see Example 2.3), an LB(12,6,70)
(see Kramer, Magliveras and Stinson [12]) and an LB(12,7,84) (being the
complement of the LB(12,5,40)), by Corollary 2.1, yield an LB(14,6,165)
with 7 = 429 and b = 1001 (using the first three LB) and an LB(14,7,264)
(using the three LB from the second). The last two designs can produce an
LRB(16,8,1001) with s = 3, by Theorem 2.3. Incidentally, for minA = 7
the existence of an LB(16,8,7) with s = 429 is unknown.

3 LRB(v,k,)\) or LARB(v,k, \)

It is known (see Raghavarao [16]) that a necessary and sufficient condition
for an RB(v = nk, k, \) with b k-subsets and a replication number r to be
affine resolvable is b = v+7—1. In this case it holds that A = (k—1)/(n—1)
and g2 = k/n. Hence the parameters of an ARB(v, k, A) can be expressed
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as
v=nk=n%[n-1)t+1,k=n[n—-1)t+1,A=nt+1 (3.1)

for a non-negative integer ¢.

The following two lemmas can be derived also from the integrality of A
and ¢z in ARB(v = nk, k, ) with n > 2.

Lemma 3.1. When k& is a prime, a necessary condition for the existence
of an LARB(v =nk, k, \) is that n = k.

Lemma 3.2, When k—1 is a prime, a necessary condition for the existence
of an LARB(v = nk, k, A) is that n =2 or k.

Now LARB(nk, k, A\) with parameters (3.1) may be classified into four
classes: (1) ¢t = O (iff n = k), in this case it is an LARB(k?,k,1); (2) t =1
(iff n= \/)IE), in this case it is an LARB(n%,n2,n+1); (3) t > 2 and n = 2,
in this case it is an LARB(2k, k,k — 1); (4) t > 2 and n(> 3) (# k, Vk).
Kimura [11] gives a list on the existence status of LARB(v, k, A) for k& < 20
and min A according to the above classification.

We can find many large sets belonging to cases (1) and (3) in literature.
Hence LARB(k?, k, 1) and LARB(2k, k, k — 1) are further considered in this
section.

By Lemma 3.1, when k is a prime, a possible LARB(v,k, )\) is an
LARB(k?,k,1). By Lemma 3.2, when k—1 is a prime, a possible LARB(uv, k,
A) is an LARB(2k, k, k — 1) or LARB(k2, k, 1).

In particular, when A = k—1, it is obvious that an RB(2k, k, A) is affine
resolvable. Hence by Corollary 2.2, the following can be obtained.
Lemma 8.3. The existence of an LARB(2k, k, k — 1) is equivalent to the
existence of an LB(2k — 1,k ~ 1,k/2 - 1).

Lemma 3.3 implies that in LARB(2k, k, k — 1) k must be even, and then
shows the non-existence of an LARB(10,5,4), while note that there exists
an LB(10,5,4) (see Kramer, Magliveras and Stinson [12]).

Theorem 3.1. The existence of an LARB(k?, k, 1) implies the existence of
an LRB(k® ~1,k~1, (5.-2)) and a k-LRB(k2 - 1,k, ('-3)), where k-LRB
denotes a large set of k-resolvable BIB designs.
Proof. Note that s(k?, k,1) = (';:__22) (= s, say), s(k®—1,k-1, ('f__g)) =1,
and s(k? — 1,k, (’f_“;)) = 1. Also the ARB(k?,k, 1) has the parameters
b= k(k+1) and r = k+1. In s ARB(k?, k, 1), (X, B), in the LARB(¥?, k, 1),
let = be any point in X, and B; be a collection of k-subsets in B including z,
and Bj be a collection of k-subsets in B not including z, for i = 1,2,...,s.
Further let X’ = X —{z} and B] be a collection of (k—1)-subsets in B; with
deletion of z. Then take B’ = UL ;B; and B* = Uj_,B;. Hence it can be
shown that the pair (X’,B’) and (X', B*) are an LRB(k2 -1,k —1, ("2"3))
o

k~3
and a k-LRB(k? — 1, k, (‘;:_‘2)), respectively.
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Now we review a case k = 4. In this case, it is known (see Anderson [1])
that (i) a necessary and sufficient condition for the existence of a B(v,4,1)
is v = 1, 4 (mod 12), and (ii) a necessary and sufficient condition for the
existence of an RB(v,4,1) is v = 4, (mod 12). Hence for their large sets it
is obvious that a necessary condition for the existence of an LB(v, 4, 1) {(or
LRB(v,4,1)) is given by v =1, 4 (mod 12) (or v =4 (mod 12)).

As far as the authors are aware of (see Beth, Jungnickel and Lenz [2]),
for k > 4, the existence of LB(v, k, 1) is known only for an LB(13,4,1) (see
Chouinard [6]) and an LRB(16,4,1) (see Mathon [15]). Furthermore, within
the range of v < 13, an LRB(12,4,3) (with s = 15) is the only unknown case
on the exstence for min A (though A = 9 and 15 are still unknown) among
LRB(v,k, A) with & > 4. Note (see Kageyama [9]) that there exists an
RB(12,4,3), i.e., [(0,1,3,7), (2,4,9,10), (5,6,8,00)] mod 11. Recently, Kimura
[11] constructed an LRB(12,4,45) (with s = 1 and r = 165) by giving 165
resolutions classes. The reader can get a solution of an LRB(12,4,45), on
request to the second author.

LARB(v, 4, A\) are further considered. Since k — 1 = 3 being a prime,
by Lemma 3.2 and b = v+ r — 1, it is an LARB(8,4,3) or LARB(16,4,1).
The existence of an LARB(16,4,1) is known (see Mathon [15]), while the
existence of an LARB(8,4,3) can be disproved by the non-existence of an
LB(7,3,1) (see Cayley [3]) and Theorem 2.2 (see also Sharry and Street [18]).
Note that Kimura [11] has shown the non-existence of an LARB(8,4,3)
directly. Thus, LARB(v,4, }) is the only LARB(16,4,1). As far as the
authors are aware of, for k > 4, the existence of LARB(v, &, A) are known
only for an LARB(12,6,5) and LARB(16,4,1).

Example 3.1. An LARB(16,4,1), by Theorem 3.1, yield an LRB(15,3,13)
and a 4LRB(15,4,()).

Kimura [11] also presented 6 disjoint RB(12,4,3), but not for an LRB(12,
4,3). A big list on the existence status of LB(v, k,\) or LRB(v, k, \) for
1105 parameters’ sets with the scope of 8 < v < 28,4 < k < 10 and
A < (22 has been provided. In fact, among LB(v, k, A), 315 designs exist,
while among LRB(v, k, A), 21 designs including 2 LARB(v, k, A) exist. A
similar list has been provided by Chee, Colbourn and Kreher [5].
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