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Abstract

The basis number b(G) of a graph G is defined to be the least
integer d such that G has a d-fold basis for its cycle space. In this
paper we investigate the basis number of the direct product of theta
graphs and paths.

1 Introduction.

Unless otherwise specified, all graphs considered here are finite, undirected
and simple. For a given graph G, we denote the vertex set of G by V(G)
and the edge set by E(G). Given a graph G, let e1,ez,...,€gc) be an
ordering of its edges. Then a subset § of E(G) corresponds to a (0,1)-
vector (b, bz, . .. ’bIE(G)I) in the usual way with b; = 1 ife; € S, and b; =0
if e; ¢ S. These vectors form an |E(G)|-dimensional vector space, denoted
by (22)!E@G), over the field of integer numbers modulo 2. The vectors in
(Z2)'E(G) which corresponds to the cycles in G generate a subspace called
the cycle space of G and denoted by C(G). We shall say that the cycles
themselves, rather than the vectors corresponding to them, generate C(G).
It is well-known that

dim C(G) = 7(G) = |B(G)| - [V(G)| + (1)

where (G) is the cyclomatic number and r is the number of connected
components.

A basis B for C(G) is called a d-fold if each edge of G occurs in at most
d of the cycles in the basis B. The basis number 5(G) of G is the least
non-negative integer d such that C(G) has a d-fold basis. The fold of an
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edge e in a set B C C(G), denoted by fg(e), is the number of cycles in B
containing e.

Let G, = (V4, E1) and G3 = (Va, E2) be two graphs. The direct product
G = G; A Gy is the graph with the vertex set V(G) = V; x V3 and the
edge set E(G) = {(uy,u2)(v1,ve)|u1vy € E; and ugvy € Ez}. From the
definition above, it is clear that (i) dg,ac,(%,¥) = dg, (x)de,(y) and (ii)
|E(G\ A G2)| = 2|E1 || E2| where dg(v) is the degree of the vertex v in the
graph G.

The first result concerning the basis number of a graph was obtained in
1937 by MacLane who proved the following:

Theorem 1.1 (MacLane) A graph G is planar if and only if b(G) < 2.

The following theorem due to Schmeichel, which proves the existence of
graphs that have arbitrary large basis number.

Theorem 1.2 (Schmeichel) For any positive integer r, there ezists a graph
G with b(G) > r.

In 1981, Schmeichel proved that for n > 5, we have b(K,) = 3 where K,
is the complete graph of n vertices, and for m,n > 5, we have b(Knm) =
4 except possibly for Kg 10, K5 and Kgn(n = 5,6,7,8) where Ky 1, is
the complete bipartite graph of = and m vertices. In 1982, Banks and
Schmeichel proved that b(Q,) = 4 where @, is the n-cube.

In 1989, Ali investigated the basis number of the direct product of some
special graphs. In fact he proved that 5(C A P) < 2, )(PAP*) < 2, and for
all |[V(C)| and |V(C*)| > 3, we have b(C AC*) = 3. In 1996, Al-Rhayyel
and Jaradat proved the following results concerning the basis number of
the direct product of some special graphs: (i) b(P A S) = 2, if [V(S)| > 4
and |V(P)] > 3 (ii) B(C A S) = 2, if |V(C)| > 4 and |V(S)| > 3 (iii)
b(@AS) =3,if [V(8)| > 4 and [V(S)] > 4 where 0 is the theta graph, (iv)
b(S A S*) <4, and the equality holds for each |V(S)| > 6 and |V(S*)| > 6
except possibly |V(S)| = 6 and |V(S*)| = 6,7,8,9 and |V(S)| = 7 and
[V(S*)| =6,7,8,9,11 where C and C* stand to cycles, P and P* stand to
paths and S and S* stand to stars. '

We remark that knowing the number of components in a graph is very
important to find the dimension of the cycle space as in (1), so we need the
following result.

Theorem 1.3 ([7]) Let G and H be two connected graphs. Then G A
H is connected if and only if at least one of them contains an odd cycle.
Moreover, If both of them are bipartite graphs then G A H consists of two
components.
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In this paper we investigate the basis number of the direct product of
a theta graph with a path. In the rest of this work, let n and m stand to
the number of vertices of |V (8)| and |V (P)|, respectively.

2 Main Results.

Throughout this section we label the vertices of 6 and P by {1,2,...,n}
and {1,2,...,m}, respectively. A theta graph § is defined to be a cycle C
with n vertices to which we add a new edge that joins two non-adjacent
vertices of C. We may assume 1 and § are the two vertices of 6 of degree 3.
A tree T consisting of k equal order paths { PO, PA) . P(k)} is called a
k-special star if there is a vertex, say v;, such that v, is an end vertex for
each path in {P1), P P®)} and V(PD)NV(PY) = {v,} for each
i # 7. In this section we determine the basis number of the direct product
of theta graphs and paths.

Lemma 2.1 ([7]) Let P be a path of order greater than or equal to 5 and
T be a tree contains a subgraph isomorphic to a 3-special star of order 7.
Then T A P is a non-planar graph.

Let B be a 2-fold basis of § A P. Then, the girth of § A P > 4, so
M‘Iﬁ\fi)ﬂ dim C(8 A P)

nm—-—n+m—-1 2 nm+2m-—-2n-s.

v

Thus

0, if @A P is disconnected ,

> — —
n 2 m+ (1 s) where s { 1, if @A P is connected.

Proposition 2.1 Let 8 be a theta graph and P be a path of order greater
than or equal to 5. Then b(0 A P) > 3.

Proof. We prove the theorem according to the girth of §. From the last
inequality and Lemma 2.1, we can rule out the cases where (i) the girth of
§ = 3 and n = 4 and (ii) the girth of § > 4 and n > 7. To this end, we
need to consider the following two cases:
Case 1. Girth of # = 3. Then we may assume § = 3. Consider the follow-
ing two sets of vertices: A = {(1,2),(1,3),(1,4)} and B = {(2,3),(3,3),
(m,3)}. we shall split this case into two subcases:

Case la. n is an odd greater than or equal to 5. Consider the subgraph
H, of AP whose vertex set V(H;) = AUBU{(2,4)(3,4),(2,2), (3,1), (4, 2),
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(5,1),...,(n—3,2),(n—2,1),(n—1,2)} and edge set consists of the fol-
lowmg nine paths: P, = (1, 2)(2 3), P =(1,2) (8,3), A3 =(1,2)(n,3), Py
= (1,4)(2,3), Bs = (1,4)(3,3), Ps = (1,4)(n,3), P = (1,3)(3,4)(2,3), Ps =
(1,3)(2,4)(3,3), P = (1,3)(2,2)(3,1)(4,2)(5,1)... (n — 3,2)(n — 2,1)(n ~
1,2)(n,3). Then H, is homeomorphic to K3 3. Therefore b(d A P) > 3.
Case 1b. n is an even greater than or equal to 6. Consider the subgraph
H; of GAP whose vertex set V(Hz) = AUBU{(2,4), (3,4),(2,2),(1,1),(3,2),
(4,1),...,(n=3,2),(n—2,1),(n — 1,2)} and edge set consists of the fol-
lowing nine paths: Py, P, P3, Py, Ps, Ps, Py and Ps are as in Case la and
Po=(1,3)(2,2)(1,1)(3,2)(4,1)... (n—3,2)(n— 2,1) (n— 1,2)(n,3). Then
Hy is homeomorphic to K3 3. Therefme bO@AP)>3.
Case 2. Girthof § = 4and n = 6. Then § = 4. Consider the subgraph H3 of
6AP whose vertex set V(Hz) = {(1,2),(1,4),(5,2),(2,3),(4,3),(6,3),(3,2),
(4,1)} and edge set consists of the following nine paths:P; and Py are as
in Case la and P2 = (1)2)(413)7 P3 = (172)(6’3)’135 = (1:4)(4’3))P6
= (1,4)(6,3), Pr = (5,2)(4, 3), Ps = (5,2)(6,3), Py = (5,2)(4,1)(3,2)(2,3).
Then Hj is homeomorphic to K3 3. Therefore b(6 A P) > 3.

Theorem 2.1 For any graph 6 of order > 4 and path P of order > 2, we
have b(0 A P) < 3. Moreover, the equality holds if the order of P is greater
than or equal to 5.

Proof. To prove the theorem, it is sufficient to exhibit a 3-fold basis B.
We now consider the following two cases.
Case 1. @ A P is connected. It follows that at least one of n and § is odd.
We now split this case into two subcases:

Case la. 7 is even and § is odd. Then for each j = 1,2,...,m — 2
consider the following sets of cycles:
A‘”—{(ij(z’+1j+1)(z'j+2)(i—1j+1)(ia)h—23 n—1}u

{1 ,(J) (§}3+1)(1 3 +2)(n, G+ 1)L, 0{(n, ) m~1, 5+ 1)(m, 5 +2)(1,5+1)
n,j
AP ={(1,9)2,5 + 1)(1,5 +2)(6,5 + 1)(1L, 5)},

AD = (636~ 1,3+ (6.4 + D)L + D(E1).
In addition, the following cycles:

a1 = (1,1)(2,2)(3,1)...(n,2)(1,1),

e = (1,2)(2,1)(3,2)... (m, 1)(1,2)

c3 = (1,m)(2,m— 1)(3 m) (6,m)(1,m-1)(2,m)...(8,m—1)(1,m).
Note that, the cycles of A} ) are edge pairwise disjoint for each j =1,2,.
m — 2. Thus, A(J ) is linearly independent and of 1-fold. Let A; = U(m 2)
AY) Note that, A(')ﬂA(’) = ¢ifi # j and E(AP)NEUAY) = ¢if|i — j| >
1. Also, each cycle of A(J ) contains an edge of the form (¢ +1,7+1)(¢,5+2)
or (n— 1,5+ 1)(n,j +2) which is not in AY™"). In addition, each cycle of
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A(lj_l) contains an edge of the form (3,7 — 1)( +1,j) or (n,j)(n—1,7+1)
which is not in AY ). Therefore, A, is linearly independent. Let V| =
{(G,3)li+3j = even},and V; = {(4,§)li+j = odd}. Let H; be the induced
subgraph of V; wherei = 1,2, For each j =1,2---,m — 2, set.

BY = {(6,5) i+ 1,i + (5 + 2@ — 1,5 + 1), j)li = 2,3,...,n = 1
and 7 +j = even} U{(1,5)(2,5 + 1)(1,5 + 2)(n,7 + 1)(1,5)|1 + j = even}
U{(n, 5)(n = 1, 5 + 1)(n,5 + 2)(1,5 + 1)(n,5)|n + j = even},

BY = {6,/ + 1,5+ 1)(i,j +2)( — 1,5 + (G, 5)li = 2,3,...,n — 1
and i + j = odd} U{(1,i}(2,5 + 1)(1,5 + 2)(n,5 + 1)(1,5)|1 + j = odd}
U{(n, ) (n = 1,5+ 1)(n, 5 +2)(1,5 + 1)(n,j)In + j = odd}.

Let F() = Uj='12 B,(’ ) where i = 1,2. We now prove that ¢; is indepen-
dent from the cycles of F(). Let EJ(') = E(CAj(j+1))NE(H;) where C is
the cycle obtained by deleting the edge 16 from 6. Then it is an easy matter
to verify that {E{Y, B, .. JES),} is a partition of E(C A P) N E(H,).

Moreover, it is clear that E§i) = E(c;) and Ef')UEg) = E(Bgl)). Thus, if ¢;
is a sum modulo 2 of some cycles of F{¥), say {ki, kg,...,k.}, then Bf?) C
{k1,k2,...,kr}. Since no edge of Eé') belong to E(c;) and E;') U E:(,') =
E(B®), B® c {k;,ks,...,k.}. By continuing in this way, it implies that
B™ 3 ¢ {ky, k2, ...,k }. Note that E&) ,u E) | = B(B{™ %) and each
edge of E,(,?_l appears in one and only one cycle of F(!). It follows that
E®) | C E(c;). This is a contradiction. Therefore, F) U {¢;} is linearly
independent for i = 1,2. And since E(F(V U {¢;}) N E(FP U {c;}) = ¢,
FO U F® y{c,, e} = Ay U{cice} is linearly independent. Let Ay =
Uj=_12 AS) and A3 = U?-_~_12 A, 1t is easy to see that the cycles of A; are
edge pairwise disjoint for 7 = 2,3 and each cycle of A3 contains at least one
edge of the form (6,5)(6—1,7+1) and (6,5)(6 — 1, §— 1) which is not in As.
And so Ay U Aj is linearly independent. Clearly, ¢3 can not be written as a
linear combination of cycles of A;UAj3. Therefore, AU A3zU{cs} is linearly
independent. Let B = A; U AU A3 U {c1,cq, c3} . We now prove that B is
a linearly independent set. Assume not i.e. there are two sets of cycles say
{di,da,...,dy,} C AyU{c1,c2} and {f1, fo,..., fy,} € A2UA3U{c3} such
that 371, d; = 372, fi (mod 2) . Consequently, E(d, ®ds ®...®dy,) =
Efiof:®...0f,) where ®isaringsumandsod, ®dp & ... ® d,,
contains at least one edge of the form (1,5)(6,5 + 1) and (1,7 + 1)(6, ) for
some j < m — 1. Which contradicts the fact that no cycle of A; U {c1,c2}
contains such edges. Now,

3
1B = ) |Ai+3

i=1
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= n(m-2)+(m-2)+(m-2)+3
= nm-2n+2m-1
= dimC(§ A P).

Hence, B is a basis of 9AP. To complete the proof of the theorem, we should
show that B is of 3-fold. Let e € E(@AP). Then (1) ife = (3,5)(i+1,5+1),
ore= (n,j)(1,j+ 1) where 1 < i <n-1and 2 < j < m-—2, then
fai(€) =2, fa,ua,(e) < 1 and fus (,3(€) =0, and so fg(e) < 3. (2) If
e=(4,7)G+1,j—1),or e = (n,3)(1, — 1) where 1 < i < n—1 and
3<j<m—1,then fa,(€) =2, fa,u4,(€) < 1and fiz_(c}(€) =0, and so
fe(e) <3. 3) Ife=(,1)(t+1,2),ore=(1,1)(n,2) where 1 <i<n-—1,
then fa,(€) = 1,fauas(e) < 1 and f3_ (}(€) = 1, and so fp(e) < 3.
(4)e=(42)(t+1,1), or e = (1,2)(n,1) where 1 < ¢ < n— 1, then
fa,(e) =1, fa,uas(e) £ 1 and fui?=1{c,-}(€) =1, and so fg(e) < 3. (5) If
e=(1,7)(8,7 + 1), where 1 < j < m —2, then f4,(e) =0, fa,ua,(e) <2
and fU?,__,{c;}(e) =0, and so fp(e) < 2. (6) If e = (1,5)(6,5 — 1), where
2<j<m-—1,then fa,(€) =0, faua5(e) < 2and fus_(c}(e) =0, and
so fe(e) < 2. () Mfe=(G,m—-1)(i+1,m),ore=(im)(i+1,m—1),or
e=(1,m)(n,m — 1) where 1 <i <n—1, then fa,(e) =1, fa,ua,(e) <1
and f3 (c}(e) < 1, and so fg(e) < 3. (8) If e = (1,m)(§, m — 1), or
e = (1,m - 1)(6,m), then f4,(e) =0, fa,04,(€) < Land fus_(q}(e) < 1,
and so fg(e) < 2. Therefore B is a 3-fold basis.

Case 1b. 7 is odd. Then we may assume § is even. Now, consider the
following sets of cycles: A, A, and Ag are as in Case 1a and

a = (1,m)2,m-1)@3,m)...(5,m—1)(1,m),
g = (1,m-1)2,m)3,m-1)...(6,m)(l,m—1),
(1,1)(2,2)(3,1)...(n,1)(1,2)(2,1) ... (n,2)(1,1).

Let B = (U, A:) U, {&})- Since E(c1)NE(cz) = ¢, {c1,c2} is linearly
independent. Since § > 4 and so c¢; contains the edge of the form (2,m —
1)(3,m) and c contains (2,m)(3,m — 1) and each of these two edges is not
in any cycle of A2UA3. Thus AgUA3U{c1, c2} is linearly independent. Next,
we show that A; U {c3} is linearly independent. Let R; = E(C Ai(i + 1))
where C is as in Cas la. Note that {R;, Rg,...,Rn-1} is a partition of
E(C A P). Also, E(c3) = Ry and Ry U Ry = E(A{). Thus, if {cs} can be
written as a linear combination of some cycles of A;, say {ki1,%2,...,k},
then Agl) C {k1,k2,...,kr}. Since Ro U R3 = E(Agz)) and no edge of Ry
belong to E(cs), A®) c {k,ks,...,k.}, and so on. This implies that
A™ € {ky,ka,... k). Note that Rm_y C E(A™®) and each edge
of R~ appears only in one cycle of A;. Thus R,,~, C E(c3), which is a

C3

I
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contradiction. Hence A; U {c3} is linearly independent. Now, by the same
argument as in Case la we can prove that B is linearly independent.
Case 2. 9 A P is disconnected. Then by Theorem 1.3 8§ A P consists of
two components and both of n and § are even. Consider the following sets
of cycles: A, Ay, Az, ¢y, and ¢p as in Case 1b, and D, = ¢; and Dy = ¢,
where ¢, ¢z are as in Case la. In a way similar to the ways in Case 1a and
Case 1b we can prove that B = (>, A:) U{c1,c2} U{D1, D2} is a linearly
independent set of 3-fold. Since

3
1Bl = Y lAd+2+2

=1
= nm-—2n-+2m
= dim C(§ A P),

B is a 3-fold basis.
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