The Basis Number of the Direct Product of a Theta Graph and a Path

M.M.M. Jaradat
Department of Mathematics
Yarmouk University
Irbid-Jordan
mmjst4@yu.edu.jo

Abstract

The basis number b(G) of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. In this paper we investigate the basis number of the direct product of theta graphs and paths.

1 Introduction.

Unless otherwise specified, all graphs considered here are finite, undirected and simple. For a given graph G, we denote the vertex set of G by V(G) and the edge set by E(G). Given a graph G, let $e_1, e_2, \ldots, e_{|E(G)|}$ be an ordering of its edges. Then a subset S of E(G) corresponds to a (0,1)-vector $(b_1, b_2, \ldots, b_{|E(G)|})$ in the usual way with $b_i = 1$ if $e_i \in S$, and $b_i = 0$ if $e_i \notin S$. These vectors form an |E(G)|-dimensional vector space, denoted by $(Z_2)^{|E(G)|}$, over the field of integer numbers modulo 2. The vectors in $(Z_2)^{|E(G)|}$ which corresponds to the cycles in G generate a subspace called the cycle space of G and denoted by C(G). We shall say that the cycles themselves, rather than the vectors corresponding to them, generate C(G). It is well-known that

$$\dim \mathcal{C}(G) = \gamma(G) = |E(G)| - |V(G)| + r \tag{1}$$

where $\gamma(G)$ is the cyclomatic number and r is the number of connected components.

A basis \mathcal{B} for $\mathcal{C}(G)$ is called a d-fold if each edge of G occurs in at most d of the cycles in the basis \mathcal{B} . The basis number b(G) of G is the least non-negative integer d such that $\mathcal{C}(G)$ has a d-fold basis. The fold of an

edge e in a set $B \subset C(G)$, denoted by $f_B(e)$, is the number of cycles in B containing e.

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs. The direct product $G=G_1\wedge G_2$ is the graph with the vertex set $V(G)=V_1\times V_2$ and the edge set $E(G)=\{(u_1,u_2)(v_1,v_2)|u_1v_1\in E_1\text{ and }u_2v_2\in E_2\}$. From the definition above, it is clear that (i) $d_{G_1\wedge G_2}(x,y)=d_{G_1}(x)d_{G_2}(y)$ and (ii) $|E(G_1\wedge G_2)|=2|E_1||E_2|$ where $d_G(v)$ is the degree of the vertex v in the graph G.

The first result concerning the basis number of a graph was obtained in 1937 by MacLane who proved the following:

Theorem 1.1 (MacLane) A graph G is planar if and only if $b(G) \leq 2$.

The following theorem due to Schmeichel, which proves the existence of graphs that have arbitrary large basis number.

Theorem 1.2 (Schmeichel) For any positive integer r, there exists a graph G with $b(G) \geq r$.

In 1981, Schmeichel proved that for $n \ge 5$, we have $b(K_n) = 3$ where K_n is the complete graph of n vertices, and for $m, n \ge 5$, we have $b(K_{n,m}) = 4$ except possibly for $K_{6,10}, K_{5,n}$ and $K_{6,n}(n = 5, 6, 7, 8)$ where $K_{n,m}$ is the complete bipartite graph of n and m vertices. In 1982, Banks and Schmeichel proved that $b(Q_n) = 4$ where Q_n is the n-cube.

In 1989, Ali investigated the basis number of the direct product of some special graphs. In fact he proved that $b(C \land P) \le 2$, $b(P \land P^*) \le 2$, and for all |V(C)| and $|V(C^*)| \ge 3$, we have $b(C \land C^*) = 3$. In 1996, Al-Rhayyel and Jaradat proved the following results concerning the basis number of the direct product of some special graphs: (i) $b(P \land S) = 2$, if $|V(S)| \ge 4$ and $|V(P)| \ge 3$ (ii) $b(C \land S) = 2$, if $|V(C)| \ge 4$ and $|V(S)| \ge 3$ (iii) $b(\theta \land S) = 3$, if $|V(\theta)| \ge 4$ and $|V(S)| \ge 4$ where θ is the theta graph, (iv) $b(S \land S^*) \le 4$, and the equality holds for each $|V(S)| \ge 6$ and $|V(S^*)| \ge 6$ except possibly |V(S)| = 6 and $|V(S^*)| = 6$, 7, 8, 9, 11 where C and C^* stand to cycles, P and P^* stand to paths and S and S^* stand to stars.

We remark that knowing the number of components in a graph is very important to find the dimension of the cycle space as in (1), so we need the following result.

Theorem 1.3 ([7]) Let G and H be two connected graphs. Then $G \land H$ is connected if and only if at least one of them contains an odd cycle. Moreover, If both of them are bipartite graphs then $G \land H$ consists of two components.

In this paper we investigate the basis number of the direct product of a theta graph with a path. In the rest of this work, let n and m stand to the number of vertices of $|V(\theta)|$ and |V(P)|, respectively.

2 Main Results.

Throughout this section we label the vertices of θ and P by $\{1,2,\ldots,n\}$ and $\{1,2,\ldots,m\}$, respectively. A theta graph θ is defined to be a cycle C with n vertices to which we add a new edge that joins two non-adjacent vertices of C. We may assume 1 and δ are the two vertices of θ of degree 3. A tree T consisting of k equal order paths $\{P^{(1)}, P^{(2)}, \ldots, P^{(k)}\}$ is called a k-special star if there is a vertex, say v_1 , such that v_1 is an end vertex for each path in $\{P^{(1)}, P^{(2)}, \ldots, P^{(k)}\}$ and $V(P^{(i)}) \cap V(P^{(j)}) = \{v_1\}$ for each $i \neq j$. In this section we determine the basis number of the direct product of theta graphs and paths.

Lemma 2.1 ([7]) Let P be a path of order greater than or equal to 5 and T be a tree contains a subgraph isomorphic to a 3-special star of order 7. Then $T \wedge P$ is a non-planar graph.

Let B be a 2-fold basis of $\theta \wedge P$. Then, the girth of $\theta \wedge P \geq 4$, so

$$\frac{2(|E(\theta \wedge P)|)}{4} \geq \dim \mathcal{C}(\theta \wedge P)$$

$$nm - n + m - 1 \geq nm + 2m - 2n - s.$$

Thus

$$n \ge m + (1-s)$$
 where $s = \left\{ egin{array}{ll} 0, & \mbox{if } \theta \wedge P \mbox{ is disconnected} \\ 1, & \mbox{if } \theta \wedge P \mbox{ is connected}. \end{array}
ight.$

Proposition 2.1 Let θ be a theta graph and P be a path of order greater than or equal to 5. Then $b(\theta \wedge P) \geq 3$.

Proof. We prove the theorem according to the girth of θ . From the last inequality and Lemma 2.1, we can rule out the cases where (i) the girth of $\theta = 3$ and n = 4 and (ii) the girth of $\theta \ge 4$ and $n \ge 7$. To this end, we need to consider the following two cases:

Case 1. Girth of $\theta = 3$. Then we may assume $\delta = 3$. Consider the following two sets of vertices: $A = \{(1,2), (1,3), (1,4)\}$ and $B = \{(2,3), (3,3), (n,3)\}$. we shall split this case into two subcases:

Case 1a. n is an odd greater than or equal to 5. Consider the subgraph H_1 of $\theta \wedge P$ whose vertex set $V(H_1) = A \cup B \cup \{(2,4)(3,4),(2,2),(3,1),(4,2),$

 $(5,1),\ldots,(n-3,2),(n-2,1),(n-1,2)$ and edge set consists of the following nine paths: $P_1 = (1,2)(2,3), P_2 = (1,2)(3,3), P_3 = (1,2)(n,3), P_4$ $= (1,4)(2,3), P_5 = (1,4)(3,3), P_6 = (1,4)(n,3), P_7 = (1,3)(3,4)(2,3), P_8 =$ $(1,3)(2,4)(3,3), P_9 = (1,3)(2,2)(3,1)(4,2)(5,1)\dots(n-3,2)(n-2,1)(n-2,1)$ (1,2)(n,3). Then H_1 is homeomorphic to $K_{3,3}$. Therefore $b(\theta \wedge P) \geq 3$.

Case 1b. n is an even greater than or equal to 6. Consider the subgraph H_2 of $\theta \wedge P$ whose vertex set $V(H_2) = A \cup B \cup \{(2,4), (3,4), (2,2), (1,1), (3,2), (2,2), (2,3), (2,2), (2,3$ $(4,1),\ldots,(n-3,2),(n-2,1),(n-1,2)$ and edge set consists of the following nine paths: $P_1, P_2, P_3, P_4, P_5, P_6, P_7$ and P_8 are as in Case 1a and $P_9 = (1,3)(2,2)(1,1)(3,2)(4,1)\dots(n-3,2)(n-2,1)(n-1,2)(n,3)$. Then H_2 is homeomorphic to $K_{3,3}$. Therefore $b(\theta \wedge P) \geq 3$.

Case 2. Girth of $\theta = 4$ and n = 6. Then $\delta = 4$. Consider the subgraph H_3 of $\theta \wedge P$ whose vertex set $V(H_3) = \{(1,2), (1,4), (5,2), (2,3), (4,3), (6,3), (3,2), (4,3), (6,3),$ (4,1) and edge set consists of the following nine paths: P_1 and P_4 are as in Case 1a and $P_2 = (1,2)(4,3)$, $P_3 = (1,2)(6,3)$, $P_5 = (1,4)(4,3)$, P_6 $= (1,4)(6,3), P_7 = (5,2)(4,3), P_8 = (5,2)(6,3), P_9 = (5,2)(4,1)(3,2)(2,3).$ Then H_3 is homeomorphic to $K_{3,3}$. Therefore $b(\theta \wedge P) \geq 3$.

Theorem 2.1 For any graph θ of order ≥ 4 and path P of order ≥ 2 , we have $b(\theta \land P) \leq 3$. Moreover, the equality holds if the order of P is greater than or equal to 5.

Proof. To prove the theorem, it is sufficient to exhibit a 3-fold basis B. We now consider the following two cases.

Case 1. $\theta \wedge P$ is connected. It follows that at least one of n and δ is odd. We now split this case into two subcases:

Case 1a. n is even and δ is odd. Then for each $j=1,2,\ldots,m-2$ consider the following sets of cycles:

$$A_1^{(j)} = \{(i,j)(i+1,j+1)(i,j+2)(i-1,j+1)(i,j)|i=2,3,\ldots,n-1\} \cup \{(1,j)(2,j+1)(1,j+2)(n,j+1)(1,j) \cup \{(n,j)(n-1,j+1)(n,j+2)(1,j+1)(n,j)\}, A_2^{(j)} = \{(1,j)(2,j+1)(1,j+2)(\delta,j+1)(1,j)\},$$

 $A_3^{(j)} = \{ (\delta, j)(\delta - 1, j + 1)(\delta, j + 2)(1, j + 1)(\delta, j) \}.$

In addition, the following cycles:

$$c_1 = (1,1)(2,2)(3,1)\dots(n,2)(1,1),$$

$$c_2 = (1,2)(2,1)(3,2)\dots(n,1)(1,2)$$

 $c_3 = (1,m)(2,m-1)(3,m)\dots(\delta,m)(1,m-1)(2,m)\dots(\delta,m-1)(1,m).$

Note that, the cycles of $A_1^{(j)}$ are edge pairwise disjoint for each $j=1,2,\ldots,2$ m-2. Thus, $A_1^{(j)}$ is linearly independent and of 1-fold. Let $A_1=\bigcup_{j=1}^{(m-2)}$ $A_1^{(j)}$. Note that, $A_1^{(i)} \cap A_1^{(j)} = \phi$ if $i \neq j$ and $E(A_1^{(i)}) \cap E(A_1^{(j)}) = \phi$ if |i - j| > 01. Also, each cycle of $A_1^{(j)}$ contains an edge of the form (i+1,j+1)(i,j+2)or (n-1,j+1)(n,j+2) which is not in $A_1^{(j-1)}$. In addition, each cycle of $A_1^{(j-1)}$ contains an edge of the form (i,j-1)(i+1,j) or (n,j)(n-1,j+1) which is not in $A_1^{(j)}$. Therefore, A_1 is linearly independent. Let $V_1' = \{(i,j)|i+j=\text{ even}\}$, and $V_2' = \{(i,j)|i+j=\text{ odd}\}$. Let H_i be the induced subgraph of V_i' where i=1,2. For each $j=1,2\cdots,m-2$, set.

 $B_1^{(j)} = \{(i,j)(i+1,j+1)(i,j+2)(i-1,j+1)(i,j)|i=2,3,\ldots,n-1 \text{ and } i+j=\text{even}\} \bigcup \{(1,j)(2,j+1)(1,j+2)(n,j+1)(1,j)|1+j=\text{even}\} \bigcup \{(n,j)(n-1,j+1)(n,j+2)(1,j+1)(n,j)|n+j=\text{even}\},$

 $B_2^{(j)} = \{(i,j)(i+1,j+1)(i,j+2)(i-1,j+1)(i,j)|i=2,3,\ldots,n-1 \text{ and } i+j=\text{odd}\} \bigcup \{(1,j)(2,j+1)(1,j+2)(n,j+1)(1,j)|1+j=\text{odd}\} \bigcup \{(n,j)(n-1,j+1)(n,j+2)(1,j+1)(n,j)|n+j=\text{odd}\}.$ Let $F^{(i)} = \bigcup_{j=1}^{m-2} B_i^{(j)}$ where i=1,2. We now prove that c_i is independent.

dent from the cycles of $F^{(i)}$. Let $E_j^{(i)} = E(C \wedge j(j+1)) \cap E(H_i)$ where C is the cycle obtained by deleting the edge 1δ from θ . Then it is an easy matter to verify that $\left\{E_1^{(i)}, E_2^{(i)}, \dots, E_{m-1}^{(i)}\right\}$ is a partition of $E(C \wedge P) \cap E(H_i)$. Moreover, it is clear that $E_1^{(i)} = E(c_i)$ and $E_1^{(i)} \cup E_2^{(i)} = E(B_i^{(1)})$. Thus, if c_i is a sum modulo 2 of some cycles of $F^{(i)}$, say $\{k_1, k_2, \ldots, k_r\}$, then $B_i^{(1)} \subset \{k_1, k_2, \ldots, k_r\}$. Since no edge of $E_2^{(i)}$ belong to $E(c_i)$ and $E_2^{(i)} \cup E_3^{(i)} = E(B_i^{(2)})$, $B_i^{(2)} \subset \{k_1, k_2, \ldots, k_r\}$. By continuing in this way, it implies that $B_i^{(m-2)} \subset \{k_1, k_2, \ldots, k_r\}$. Note that $E_{m-2}^{(i)} \cup E_{m-1}^{(i)} = E(B_i^{(m-2)})$ and each edge of $E_{m-1}^{(i)}$ appears in one and only one cycle of $F^{(i)}$. It follows that $E_{m-1}^{(i)} \subset E(c_i)$. This is a contradiction. Therefore, $F^{(i)} \cup \{c_i\}$ is linearly independent for i=1,2. And since $E(F^{(1)} \cup \{c_1\}) \cap E(F^{(2)} \cup \{c_2\}) = \phi$, $F^{(1)} \cup F^{(2)} \cup \{c_1, c_2\} = A_1 \cup \{c_1c_2\}$ is linearly independent. Let $A_2 =$ $\bigcup_{j=1}^{m-2} A_2^{(j)}$ and $A_3 = \bigcup_{j=1}^{m-2} A_3^{(j)}$. It is easy to see that the cycles of A_i are edge pairwise disjoint for i=2,3 and each cycle of A_3 contains at least one edge of the form $(\delta, j)(\delta - 1, j + 1)$ and $(\delta, j)(\delta - 1, j - 1)$ which is not in A_2 . And so $A_2 \cup A_3$ is linearly independent. Clearly, c_3 can not be written as a linear combination of cycles of $A_2 \cup A_3$. Therefore, $A_2 \cup A_3 \cup \{c_3\}$ is linearly independent. Let $\mathcal{B} = A_1 \cup A_2 \cup A_3 \cup \{c_1, c_2, c_3\}$. We now prove that \mathcal{B} is a linearly independent set. Assume not i.e. there are two sets of cycles say $\{d_1, d_2, \ldots, d_{\gamma_1}\} \subset A_1 \cup \{c_1, c_2\}$ and $\{f_1, f_2, \ldots, f_{\gamma_2}\} \in A_2 \cup A_3 \cup \{c_3\}$ such that $\sum_{i=1}^{\gamma_1} d_i = \sum_{i=1}^{\gamma_2} f_i \pmod{2}$. Consequently, $E(d_1 \oplus d_2 \oplus \ldots \oplus d_{\gamma_1}) =$ $E(f_1 \oplus f_2 \oplus \ldots \oplus f_{\gamma_2})$ where \oplus is a ring sum and so $d_1 \oplus d_2 \oplus \ldots \oplus d_{\gamma_1}$ contains at least one edge of the form $(1,j)(\delta,j+1)$ and $(1,j+1)(\delta,j)$ for some $j \leq m-1$. Which contradicts the fact that no cycle of $A_1 \cup \{c_1, c_2\}$ contains such edges. Now,

$$|\mathcal{B}| = \sum_{i=1}^{3} |A_i| + 3$$

$$= n(m-2) + (m-2) + (m-2) + 3$$

= $nm - 2n + 2m - 1$
= $\dim C(\theta \land P)$.

Hence, \mathcal{B} is a basis of $\theta \wedge P$. To complete the proof of the theorem, we should show that \mathcal{B} is of 3-fold. Let $e \in E(\theta \wedge P)$. Then (1) if e = (i, j)(i+1, j+1), or e = (n,j)(1,j+1) where $1 \le i \le n-1$ and $2 \le j \le m-2$, then $f_{A_1}(e) = 2, f_{A_2 \cup A_3}(e) \le 1$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) = 0$, and so $f_{\mathcal{B}}(e) \le 3$. (2) If e = (i,j)(i+1,j-1), or e = (n,j)(1,j-1) where $1 \le i \le n-1$ and $3 \le j \le m-1$, then $f_{A_1}(e) = 2$, $f_{A_2 \cup A_3}(e) \le 1$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) = 0$, and so $f_{\mathcal{B}}(e) \leq 3$. (3) If e = (i, 1)(i + 1, 2), or e = (1, 1)(n, 2) where $1 \leq i \leq n - 1$, then $f_{A_1}(e) = 1$, $f_{A_2 \cup A_3}(e) \le 1$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) = 1$, and so $f_{\mathcal{B}}(e) \le 3$. (4) If e = (i,2)(i+1,1), or e = (1,2)(n,1) where $1 \le i \le n-1$, then $f_{A_1}(e) = 1, f_{A_2 \cup A_3}(e) \le 1$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) = 1$, and so $f_{\mathcal{B}}(e) \le 3$. (5) If $e = (1,j)(\delta,j+1)$, where $1 \le j \le m-2$, then $f_{A_1}(e) = 0, f_{A_2 \cup A_3}(e) \le 2$ and $f_{\bigcup_{i=1}^3,\{c_i\}}(e) = 0$, and so $f_{\mathcal{B}}(e) \leq 2$. (6) If $e = (1,j)(\delta,j-1)$, where $2 \le j \le m-1$, then $f_{A_1}(e) = 0$, $f_{A_2 \cup A_3}(e) \le 2$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) = 0$, and so $f_{\mathcal{B}}(e) \leq 2$. (7) If e = (i, m-1)(i+1, m), or e = (i, m)(i+1, m-1), or e=(1,m)(n,m-1) where $1\leq i\leq n-1,$ then $f_{A_1}(e)=1,f_{A_2\cup A_3}(e)\leq 1$ and $f_{\bigcup_{i=1}^{3} \{c_i\}}(e) \leq 1$, and so $f_{\mathcal{B}}(e) \leq 3$. (8) If $e = (1, m)(\delta, m - 1)$, or $e = (1, m-1)(\delta, m)$, then $f_{A_1}(e) = 0, f_{A_1 \cup A_2}(e) \le 1$ and $f_{\bigcup_{i=1}^3 \{c_i\}}(e) \le 1$, and so $f_{\mathcal{B}}(e) \leq 2$. Therefore \mathcal{B} is a 3-fold basis.

Case 1b. n is odd. Then we may assume δ is even. Now, consider the following sets of cycles: A_1, A_2 , and A_3 are as in Case 1a and

$$c_1 = (1,m)(2,m-1)(3,m)\dots(\delta,m-1)(1,m),$$

$$c_2 = (1,m-1)(2,m)(3,m-1)\dots(\delta,m)(1,m-1),$$

$$c_3 = (1,1)(2,2)(3,1)\dots(n,1)(1,2)(2,1)\dots(n,2)(1,1).$$

Let $\mathcal{B}=(\bigcup_{i=1}^3 A_i) \bigcup (\bigcup_{i=1}^3 \{c_i\})$. Since $E(c_1) \cap E(c_2) = \phi$, $\{c_1,c_2\}$ is linearly independent. Since $\delta \geq 4$ and so c_1 contains the edge of the form (2,m-1)(3,m) and c_2 contains (2,m)(3,m-1) and each of these two edges is not in any cycle of $A_2 \cup A_3$. Thus $A_2 \cup A_3 \cup \{c_1,c_2\}$ is linearly independent. Next, we show that $A_1 \cup \{c_3\}$ is linearly independent. Let $R_i = E(C \wedge i(i+1))$ where C is as in Cas 1a. Note that $\{R_1,R_2,\ldots,R_{m-1}\}$ is a partition of $E(C \wedge P)$. Also, $E(c_3) = R_1$ and $R_1 \cup R_2 = E(A_1^{(1)})$. Thus, if $\{c_3\}$ can be written as a linear combination of some cycles of A_1 , say $\{k_1,k_2,\ldots,k_r\}$, then $A_1^{(1)} \subset \{k_1,k_2,\ldots,k_r\}$. Since $R_2 \cup R_3 = E(A_1^{(2)})$ and no edge of R_2 belong to $E(c_3)$, $A_1^{(2)} \subset \{k_1,k_2,\ldots,k_r\}$, and so on. This implies that $A_1^{(m-2)} \subset \{k_1,k_2,\ldots,k_r\}$. Note that $R_{m-1} \subset E(A_1^{(m-2)})$ and each edge of R_{m-1} appears only in one cycle of A_1 . Thus $R_{m-1} \subset E(c_3)$, which is a

contradiction. Hence $A_1 \cup \{c_3\}$ is linearly independent. Now, by the same argument as in Case 1a we can prove that \mathcal{B} is linearly independent.

Case 2. $\theta \wedge P$ is disconnected. Then by Theorem 1.3 $\theta \wedge P$ consists of two components and both of n and δ are even. Consider the following sets of cycles: A_1, A_2, A_3, c_1 , and c_2 as in Case 1b, and $D_1 = c_1$ and $D_2 = c_2$ where c_1 , c_2 are as in Case 1a. In a way similar to the ways in Case 1a and Case 1b we can prove that $\mathcal{B} = (\bigcup_{i=1}^3 A_i) \bigcup \{c_1, c_2\} \bigcup \{D_1, D_2\}$ is a linearly independent set of 3-fold. Since

$$|\mathcal{B}| = \sum_{i=1}^{3} |A_i| + 2 + 2$$
$$= nm - 2n + 2m$$
$$= \dim \mathcal{C}(\theta \wedge P),$$

 \mathcal{B} is a 3-fold basis.

ACKNOWLEDGMENT. The publication of this paper was supported by Yarmouk University Research Council.

References

- [1] A.A. Ali, The basis number of the direct products of paths and cycles, Ars Combin. 27 (1989), 155-163.
- [3] A.A. Al-Rhayyel and M.M.M. Jaradat, On the basis number of the direct product of some graphs, Bull. Cal. Math. Soc. 88 (1996), no. 6, 509-516.
- [4] J.A. Banks and E.F. Schmeichel, *The basis number of n-cube*, J. Combin. Theory Ser. B 33 (1982), no. 2, 95-100.
- [5] J.A. Bondy and U.S. Murty, "Graph theory with applications", American Elsevier Publishing Co. Inc., New York, 1976.
- [6] F. Harary, "Graph theory", Addison-Wesley Publishing Co., Reading, Mass.- Menlo Park, Calif.-London 1969.
- [7] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27, 293-306 (2003)...
- [8] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937), 22-32.
- [9] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B 30 (1981), no. 2, 123-129.