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Abstract

The non planar vertex deletion or vertex deletion vd(G) of a graph
G = (V,E) is the smallest non negative integer %, such that the
removal of k vertices from G produces a planar graph. Hence, the
maximum planar induced subgraph of G has precisely |V| — vd(G)
vertices. The problem of computing vertex deletion is in general very
hard, it is NP-complete. In this paper we compute the non planar
vertex deletion for the family of toroidal graphs Cp, x Cps.
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subgraph, non planar edge deletion, 4-regular graphs, planarity in-
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1 Introduction

Measures for non planarity have an important place in the study of pla-
nar graphs due to many industrial and combinatorial applications which
involve planarity concepts. There are several important measures for the
non planarity of a graph, for instance, the minimum number of crossings
in an embedding in the plane, the genus, the minimum number of edges
whose removal defines a planar graph, the minimum number of planar sub-
graphs disjoint in edges whose sets of edges partition the set of edges of the
graph. These measures have applications to VLSI circuits with respect to
minimum area, computation speed and number of layers (16, 19].
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The corresponding decision problems for most of these interesting in-
variants are known to be NP-complete [8,12,13,26,27). Approximation
methods like Polynomial Time Approximation Schemes in some cases are
not likely to exist [5,7,9,20].

Graphs C, x Cr, have been much studied. These graphs can be drawn
as regular latitude-longitude grids on the torus, and thus are also known as
“toroidal rectangular grids” or similar names. They occur often as intercon-
nection diagrams of multiprocessor computers and cellular automata [14,
16,19], and so results about the planarity properties of the Cy, x Cy, graphs
are relevant to the physical design of such machines.

This established difficult for computing planar invariants and this inter-
est in the study of C, x Cr, graphs have justified many publications where
a non planar invariant is computed for just one graph (1,2,6,10,23] or for
a subclass [3,17,21, 22,24, 25] of Cp, X Cn.

The non planar vertez deletion or vertez deletion vd(G) of a graph G
is the smallest non negative integer k such that the removal of k vertices
from G produces a planar graph.

With respect to special classes of graphs, vertex deletion is known for
complete graphs and complete bipartite graphs: vd(K,) =n—4ifn > 4
and 0 otherwise; and vd(Kp m) = min{n,m} — 2 if min{n,m} > 2 and 0
otherwise.

The VERTEX DELETION decision problem (vD) consists in given a graph
G and a positive integer k decide whether vd(G) < k. In 1978, Yan-
nakakis [27] proved that this problem is NP-complete. More recently, Lund
and Yannakakis [20] gave a proof that the optimization version of VERTEX
DELETION for graphs in general is a Max SNP-hard problem.

In this paper, we determine the exact values of the vertex deletion for
all C,, x Cp, graphs. We give a proof that vd(Cs x C3) = 1; vd(C3 X
C4) = vd(C3 x Cs) = vd(C3 x Cg) = 2; if n > 7, then vd(C3 x Cp) = 3;
vd(Cy x Cy) = 2; vd(Cy x Cs) = 3; if n > 6, then vd(Cy x Cpn) = 4;
vd(Cs x Cs) = 4; if n > 6, then vd(Cs x Cy) = 5; and if min{n,m} > 6,
then vd(Cp x Cm) = min{n,m}.

For the computation of vd(Cr, x Cr,) in Section 4, we start by evaluating
upper bounds for the vertex deletion of Cn X Cr,. We proceed by defining
for fixed n,m a subset & C V(Cr x Cp,) of vertices, whose removal from
Cpn % Cm produces a planar graph, which establishes the upper bound |Z|
for vd(G). We find next lower bounds with the same values of the upper
bounds exhibited. Qur main tool for establishing the lower bounds is that
if a graph G has a graph H as a minor, then vd(H) < vd(G).

This article is organized as follows. In Sections 2 and 3 we establish
notation, definition and main properties. In Section 4 we compute the
exact values of vd(C,, x Cp).



2 Notation and Definitions

For basic concepts—graph, path, cycle, complete graph, etc.—we borrow the
definitions and nomenclature from Bondy and Murty [4].

Let G = (V,E) be a graph, v € V and S C V. The subgraph of G
induced by S is the maximal subgraph of G with vertex set S. The graph
G ~ v is the subgraph of G induced by V \ {v}. The graph G — S is the
subgraph of G induced by V' \ S.

A subdivision of an edge e = uv replaces e by a path of length 2 con-
necting u and v, where the internal vertex of the path is a new vertex.
A graph H is a subdivision for a graph G, if H is obtained from G by a
sequence of edge subdivisions.

A contraction of an edge e = uv replaces its endvertices u,v by a new
vertex w whose neighborhood N(w) = N(u) U N(v) \ {u,v}, (ie., w is
adjacent to every other vertex that was adjacent to u or v, except to u
and v). We say that a graph G is contractible to a graph H if H is obtained
from G by a sequence of edge contractions. We say that a graph G has a
graph H as a minor if G has as a subgraph a graph contractible to H.

We define an open arc as a bounded subset of the plane JR? homeomor-
phic to the real line R in the standard topology. A drawing of a graph G is
a mapping 7)g of the vertices of G to points of the plane, and of the edges
of G to open arcs—the vertices and edges of the drawing, respectively—such
that (1) the vertices of the drawing are pairwise distinct, and disjoint from
all its edges; (2) any two edges of the drawing are either disjoint, or cross
at a single point; (3) for every edge e = uv of G, the external frontier of
nc(e) is {ng(u),nc(v)}; and (4) no three edges of the drawing go through
the same point.

We say that a graph is planar if it has a drawing D(G) without crossing
edges, and in this case we say that D(G) is a plane drawing.

We denote by K, the complete graph on n vertices, and by K, , the
complete bipartite graph with vertex parts of size m and n. In our proofs,
we rely heavily on Kuratowski’s theorem [18] which says that a graph is
planar if and only if it does not contain K or K. 3,3 s a minor. In particular,
every planar graph has only planar graphs as minors. Every time we argue
that a graph is not planar, we exhibit as certificate a K. 3,3-minor or a K-
minor (see Figure 1). In particular, we use the fact that the class of planar
graphs is closed under edge contraction.

For n > 3, we denote by C, the chordless cycle with n vertices and n
edges. The nxm toroidal grid Cp, x Cp, is the graph-theoretic product of C,,
and Cr,; that is, the graph with nm vertices {v;; : 0<i<n, 0<j < m},
and 2nm edges {VijV(it1) mod n,j» VijVi(j+1) modm :0< i< m, 0< j < m}.

The vertex v;; € V(Cp, x Cy,) is represented by a point on the plane with
coordinates (¢, 7). Note that Cp, X Cpy, has a planar embedding on the torus.
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Figure 1: K3'3 and K5.
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Figure 2: Toroidal drawings for Cp X Cr.

Call toroidal drawing for Cp, x Cy the usual drawing for C, xCyp on the torus
as a latitude-longitude grid depicted in Figure 2. We represent Cn %X Cn
inside a rectangle with sides aligned with the Cartesian axis such that
non consecutive sides of the rectangle are identifyed by the orientations.
In this drawing, the edges viv(i+1)j; 0 £ 1 < n — 1, 0 €£j <mand
vijViG41), 0 £ 1 < 1, 0 < j < m — 1, are respectively, represented by
horizontal straight segment connecting the points (3,7) and (i + 1, j) and
by the vertical segment connecting the points (é,7) and (4,7 + 1); and
the edges v(n_l)jvo,-,O < j < m; and Vim-1)vi0,0 <2 < 7 respectively,
represented by the 2 horizontal segments connecting the points (—1, j) and
(0,5) and the points (n — 1,5) and (=, §); and by the 2 vertical segments
connecting the points (i, —1) and (,0) and the points (i,m—1) and (i,m).
Based on this convention, we call the two families of edges above horizontal
and vertical, respectively. In a toroidal drawing for C, x Cp we omit the
axis and the sides of the rectangle.



A cycle of C,, x Cy, is called a meridian if it uses only vertical edges,
and a parallel if it uses only horizontal edges. Thus the n x m toroidal grid
has n meridians isomorphic to Cy,, and m parallels isomorphic to C,,. The
meridian (vio, Vi1, Vie, - - - , Vi(m—1), Vio) containing all vertices with the first
coordinate ¢,0 < j < m is called meridian i; the parallel (voj,v1;,v25,- - .,
Y(n—1)j),Yoj) containing all vertices with the second coordinate j,0 <i < n
is called parallel j.

Two graphs G and H are said to be isomorphic if there is a pair
a = (av,ag) of bijections, where ay:V(G) - V(H) and ag: E(G) —
E(H), such that uv € E(G) if and only if ag(uv) = ay(u)ay (v) € E(H).
The pair a is called an isomorphism from G to H. An automorphism of a
graph is an isomorphism from the graph to itself.

- We say a graph H is a spanning subgraph of a graph G if H is a subgraph
of G and V(H) = V(G).

In this work we define several automorphisms o = (av, ag) of a graph G,
where G is a spanning subgraph of Cp, X Cp,. In our paper we define
these pairs of functions by defining, for each pair 4, with 0 < i < n and
0 < j < m, which vertex is the image ay (vi;) € V(Cy X Cpy) of v;; € V(G),
i.e., we define just the restriction ay : V(G) = V(Cy, x Cp) of a. The def-
inition of the restriction ag : E(G) = E(C, x Cy,) of « is indirectly done
by considering that if uv € E(G), then ag(uwv) = av (u)ay (v) € E(a(G)).

Let G be a spanning subgraph of C, x C,,,. Say that G has hori-
zontal symmetry if the function o : G — G is an automorphism, where
a(vij) = Un—1-;;. Analogously, we say that G has vertical symmetry if the
function o : G = G is an automorphism, where a(vij) = Vi;m—1—;. Denote
Gij = G -vij. If G has horizontal symmetry, then vd(G;) = vd(Gn-1-i;),
because by definition G; is isomorphic to Gn-1-4;j; if G has vertical sym-
metry, then vd(G;;) = vd(G;n—1-;); and if G has horizontal and vertical
symmetry, then vd(G;;) = vd(Gn-1-im—1-;).

We observe also that if G has horizontal symmetry, then the collec-
tion of graphs Ggo, Go1,Goz, - - -1 Go(m-1), G0, G11,G1s, .. ., Gi(m-1)s--
Grzi0: Gran Grgyes -+ G[21(m-1) contains all graphs obtained from G
with one vertex removed. Analogously, if G has vertical symmetry, then the
collection of graphs Gog, G10, G20, - - - , G(n~1)0, Go1,G11, G, .. yGn-1)1,
ey Go(m—l); Gl(m—l)s Gz(m—l), veey G(n—l)l’%] contains all graphs obtained
from G by removing a vertex. In addition, if G has horizontal and ver-
tical symmetry, then the collection of graphs Goo, G19,G2, ..., G r210,
Go,Gu1,Ga, ..., G[%]l, - GO[%],G”%], Ggl’%], cen Gf%”%] contains
all graphs obtained from G by removing a. vertex.

When considering the computation of vd(C, x Cp,), we shall use that
several subgraphs of C,, x C,, have horizontal and vertical symmetry, as
proved in Section 3. We observe that these symmetries allow us to reduce
the number of cases we have to consider.




3 Some properties of vertex deletion

In this section we state some general properties of the vertex deletion pa-
rameter used in our proofs.

Lemma 1 If H is a subgraph of G, then vd(H) < vd(G).

Lemma 2 If a vertez v of a graph G has at most one neighbor, then
vd(G) = vd(G —v).

Lemma 3 If G is contractible to H, then vd(H) < vd(G).

Proof: It is enough to prove that given a graph G, an edge e = wv of G,
and H the graph obtained from G by contracting e into a vertex w, we have
vd(H) < vd(G). Let S C V(G) be a set of vertices whose removal defines
a planar graph G' = G — S from G. If {y,v}NS = @, then we set S’ = S,
else we set ' = {SU {w}}\ {u,v}. Obviously, |S'| < |S|. We consider the
graph H' = H—-S'. If {, 0} NS =0, ie, S’ = S, then a plane drawing
D(H') for H' is obtained from a plane drawing D(G") for G' by contracting
e in D(G'), which by Kuratowski Theorem defines H ! as a planar graph; if
{u,0}NS #0, i.e., |S'| < |S], then we have that G’ has H' as a subgraph,
which also defines H' as a planar graph. m]

Corollary 1 If G has H as a minor, then vd(H) < vd(G).
Corollary 2 If G is a subdivision of H, then vd(H) = vd(G).

Fact 1 Let G be a graph. A set T = {v1,v2,v3,...,9x} C V(G) satisfies
that G — T is a planar graph and |X| = vd(G) if and only if the sequence
(Gi)rew Of graphs satisfies vd(G) = |Z| — k, where Go = G and Gy =
G- {01,02,03,...,vk}, ke {1,2,3,...,]2‘}.

Proof: Suppose ¥ = {'ul,vg,v3,...,v|z|} C V(G) satisfies that G — £
is a planar graph and that |Z| = vd(G). We argue by induction on the
number of vertices removed. Let Gy = G and G = G — {v1,v2,3,...,V},
k€ {1,2,3,...,|%|}. It remains to prove that vd(Gx) = |Z| — k for each
k€ {0,1,2,3,...,|Z|}. The result is true if k = 0, i.e,, vd(Go) = vd(G) =
|Z| — 0. Suppose vd(Gx) = |Z| — k with 0 < k < |Z[. It follows from the
definition of T that Gry1 — {Uk+2,Vk+3, Vk+4,-..,Vjx|} is a planar graph,
hence vd(Gi+1) < |Z|—(k+1). On the other hand, since Gx+1 = Gk —Vi41,
we have that vd(Gi) < vd(Gi41) + 1, hence vd(Gr41) > vd(Gr) — 1 =
|| — (k + 1). The converse of the Fact 1 follows from the definition of the
planar graph G|z O

Let F be a family of isomorphic subgraphs of a graph G. We say
that G is F-transitive if for any two elements F' and H of F there is an
automorphism of G that takes F' to H.



Fact 2 If G is a non planar verter transitive graph, then vd(G) =
vd(G —v) + 1.

Facts 3 to 7 together with Corollaries 3 and 4 below relate the values
for vertex deletion in the family Cp X Cy, as follows.

Fact 3 C, x C,, is vertezx transitive.

Fact 4 C,, x Cp, is parallel transitive.

Fact 5 C, x C,, is meridian transitive.

Fact 6 Ifp < n and ¢ < m, then Cn X Cry has Cp x C, as a minor.
Corollary 3 Ifn,m > 4, then Cp, x Cpy — v has Cp—1 X Cpr—1 as @ minor.
Corollary 4 Ifp <n and g < m, then vd(Cp x C,) < vd(Cy, X Cp).

Fact 7 If n,m > 4 and v is a vertez of Cp, x Cp,, then vd(Cp X Cp) =
vd(Cp X Cry —v) +1 > vd(Cp—1 X Cp—1) + 1.

4 The vertex deletion of C, x C,,

In this section we establish the vertex deletion for all graphs in the family
Cp X Cpp,. In order to establish the values presented in Table 1, we first
establish each claimed value as an upper bound by exhibiting in each case
a plane drawing of the graph obtained after removing vd(C;, x Cy,) vertices
from C, x Cp,.

Second we establish each claimed value as a lower bound by using Corol-
lary 1, by proving that removing any set with fewer than vd(C, x C,)
vertices leaves a graph with either K33 or K5 as a minor, and by using
auxiliary graphs with vertex deletion 2, 3 and 4.

4.1 Upper bounds for vd(C, x Cy,)

Lemma 4 vd(C3 x C3) < 1; vd(Cs x C4), vd(C3 x Cs), vd(C3 x Cg),
vd(Cs x C4) < 2; vd(Cy x Cs) < 3; vd(Cs x Cs) < 4; and if n,m > 3, then
vd(Cr x Cr,) < min{n,m}.

Proof: Figure 3 is used in order to prove Lemma 4. In Figure 3, we show
6 pictures. Each picture contains a toroidal drawing for a graph C, x Cp,
on the left, and a plane drawing of an induced subgraph of C,, x C;, on the
right. Figures 3(a), 3(b), 3(c), 3(d), 3(e) and 3(f) correspond, respectively,
to C3 x C3, C3 x Cg, Cq4 x Cy, C4 X Cs, C5 x C5 and C,, X Cpp, with



m|3|4|5(6|7]|8 i
n

3 1|2[2]2]3}3 3
4 21213[4(4)4 4
5 2|13(4(5]|5]|5 5
6 2(4]5]6[6}6 6
7 3145677 7
8 314|5(6(7]8 8
1 3]4|5|6[7]8 1

Table 1: vd(C, X Cp).

Mlygssaiss) (==

(b) tc) (d)

(a)

(e) CxG, (£)

Figure 3: Upper bounds for vd(C, x Cp,).

n,m > 3. Each picture is used to exhibit an upper bound for the vertex
deletion of the corresponding graph C,, xCp,. This upper bound is obtained,
in each picture, by counting the number of vertices of the subset of vertices
of V(Cp x Cp), whose removal from C, x Cp, defines the corresponding
induced planar subgraph. Each removed vertex is indicated at the drawing
for Cp, x Cp, by symbol x. The corresponding plane drawing consists in
a drawing for the subgraph induced by vertices of C;, x Cp, without the
removed subset of vertices. The upper bound for vd(Cn X Cyr) is then
defined by the size of the removed subset of vertices. For the convenience
of the reader, in each picture we have the coordinates of the vertices of the
induced subgraph on the right side agreeing with their original coordinates
in the drawing for C, x Cy, on the left side.
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Consider first Figure 3(a). The toroidal drawing for C3 x C3 on the left
side contains one vertex indicated by x. On the right side we depict a plane
drawing for the subgraph induced by the vertices of C3 x C3 without the
vertex indicated by w. This means that vd(C3 x C3) < 1.

On the left side of Figures 3(b) and 3(c) are displayed, respectively, the
toroidal drawings for graphs Cs x Cg and Cy x Cy4 each with two vertices
indicated by . The corresponding plane drawings on the right prove that,
vd(C3 X Cg) < 2 and vd(Cy x C4) < 2. As by Fact 6, the graph Cs x Cg
has C3 x C4 and C3 x Cs as a minor, it follows from Corollary 4 that
vd(C3 x C4) < 2 and that vd(C3 x C5) < 2.

In a similar way Figures 3(d) and 3(e) allow us to define the upper
bounds: vd(Cy x Cs) < 3 and vd(Cs x Cs) < 4. Finally, Figure 3(f)
displays a toroidal drawing for the graph Cp, x Cy, and a plane drawing
for the planar subgraph induced by V(C, x Cp,) without a subset with

min{n,m} vertices. Thus, vd(Cp X Cr) < min{n,m}. 0O

4.2 Lower bounds for vertex deletion of C, x C,,
Lemma 5 vd(C3 x C3) > 1.

Proof: It is enough to prove that C3 x Cj3 is non planar. We remark that
although Harary et al. [15] proved that C3 x C3 is a non planar graph, we
give here another proof in order to define the strategy of proof used for
higher values of n and m.

In Figure 4 we show that C3 x Cs is non planar by defining a subdivision
for K3 3 as a subgraph of C3 x C3, and hence proving that 1 < vd(C3 x Cs).

] 1
H 1 Vertex of the subdivision at
- . m- . the end of a path to be
contracted to define K33 / K5 .
‘= @ Irx_te_rr{al vertex of the
subdivision of a path to be
-1 [} contracted to define K1.3/ Ks .
- .H—-, O Vertex outside
the subdivision.
- 1
Bt :

(a) (b)

Figure 4: Lower bound vd(C3 x C3) > 1.

The definition of the subdivision for K3 3 is done by a vertex colouring,
where the vertices are depicted by white, black and stripped colours. Black
and stripped vertices belong to the subdivision for K3 3. White vertices do
not belong to the subdivision. We depict in dashed edges the set of edges of
the subdivision for K3 3 that is a subgraph of C3 x C3. This convention is
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adopted from now on for the remaining results of the paper. Based on this
convention, in Figure 4 we exhibit two subdivisions: one for K33 (4(a)) and
one for K5 (4(b)). In these drawings we have no vertex in white color, we
observe that this will not be the case in general, white vertcies will appear
in Figure 6.

For the convenience of the reader the paths of the subdivision to be
contracted in order to define the graph K33 are defined by the paths in
dashed edges containing only stripped vertices. We also label the two colour
classes of the subdivision for K3 3, respectively with 1 and 2, and we use a
different pattern of dashed in the paths going from a different vertex labeled
with 1.

Therefore, the graph C3 x C3 is not planar, which implies
1 < vd(Cs x Cs). O

Lemma 6 vd(C; x Cy) > 2.

Proof: Let v € V(C3 x Cy4) and G = C3 x C4 —v. By Fact 3 we can assume
that v is the vertex wgo. Graph G contains the subdivision of K3 3 shown in
Figure 5. Hence, vd(C3 x C4 —v) > 1. By Fact 7 we have vd(C3 x Cy) > 2.
a

Figure 5: Lower bound vd(C3 x Cy4) > 2.

Corollary 5 The vertex deletion of each of the graphs: C3 x Cs, C3 x Cg
and Cy x Cy is at least 2.

Proof: It follows from Corollary 4 and Lemma 6. ]

Lemma 7 vd(C3 x C7) > 3.
Proof: Figure 6 is used in order to prove Lemma 7. Figure 6 shows three

copies of the toroidal drawing for C3 x C7. Each drawing defines one sub-
division for K5 as a subgraph of C3 x C7.
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Figure 6: Lower bound vd(C3 x C7) > 3.

Suppose, by contradiction, that vd(Cs x C7) < 2. Let ¥ be a subset
¥ C V(C; x Cr), with |Z| = 2, whose removal from C3 x C; defines the
planar graph G = C3 x C7 — . As |X| = 2, there is a parallel and a
meridian with no vertex in ¥. By Facts 4 and 5, we may assume that
meridian 1 and parallel 3 have no vertex in ¥. Note that at least one of
the vertices: voz, Vo4, V22, V24 must belong to ¥, otherwise we have that the
graph induced by the set of vertices in meridian 1 and in parallel 3 plus
vertices vo2, Vo4, V22, V24 contains a subdivision for K5 shown in Figure 6(a)
as a subgraph of G. We consider a suitable automorphism and assume vg;
in ¥ as depicted in Figure 6(b). Again by the same argument, one of the
vertices: woq4, Vos, V24, V25 must belong to X, otherwise, we have that the
graph induced by the set of vertices in meridian 1, plus vertices in paral-
lel 3, plus vertices vo4, vos5, V24, V25 contain the subdivision for K5 shown in
Figure 6(b) as a subgraph of the graph G. Because |T| = 2, this means
that parallels 6, 0 and 1 have no vertex in ¥. Now, the graph induced by
the set of vertices in meridian 1, plus vertices in parallel 6, 0 and 1 contain
the subdivision for K5 shown in Figure 6(c) as a subgraph of the graph G,
a contradiction. O

Corollary 6 Ifm > 7, then vd(C3 x Cp) > 3.

Proof: It follows from Corollary 4 and Lemma. 7. ]

Lemma 8 vd(Cy x Cs) > 3.

Proof: It follows from Fact 7 and Lemma 6. 0

Now, we discuss a lower bound for vd(Cy x Cs). From Lemma 8, Corol-
lary 4 and Fact 6 we have that vd(Cy x Cs) > 3. We prove in Lemma 11 that
vd(Cy x Cg) > 4 by proving that the removal of 3 vertices from C, x Cg does
not produce a planar graph. For, we use two auxiliary lemmas: Lemma 9
and Lemma 10. In these lemmas we prove that if a set T of vertices of

13



C4 x Cg, with |Z| = 3 is such that C4 x C¢ — X is planar, then no meridian
(Lemma 9) nor parallel (Lemma 10) has 2 vertices in Z. In Lemma 11 we
prove that: if £ is a set with |S| = 3, £ C V(Cy x Cs), such that ¥ has no
pair of vertices in a same meridian or parallel of Cy x Cg, then the graph
C4 x Cg — T is non planar, which implies vd(Cq x Cs) > 4.

Lemma 9 If there is a subset T of vertices of Cq x Cg with |Z| = 3, whose
removal from C4 x Cs defines a planar graph G, then ¥ has no pair of
vertices in a same meridian of Cy x Cs.

Proof: Let & be a subset of vertices of V(Cy x Cs), with |Z| = 3, whose
removal from C; x Cg defines a planar graph G = Cy x Cg — L. We argue
by contradiction. Suppose there is a meridian of C4 x Ce with two vertices
u and v in E. Since the graph Cy x Cs — {u,v} defined from Cy x Cs by
removing u and v has a subdivision of C3 x Cy as a subgraph, by Lemmas 1
and 6 there are 2 additional vertices in X, contradicting the size |Z| = 3.
Thus, there is at most one vertex of T for each meridian of Cy x Cs. ]

Lemma 10 If there is a subset £ of vertices of Cy4 x C¢ with |Z| = 3,
whose removal from Cy x Cy defines a planar graph G, then X has no pair
of vertices in a same parallel of Cy x Cj.

Proof: Let £ be a subset of vertices of V(Cy x Cg), with |X| = 3, whose
removal from Cy x Cg defines a planar graph G = C4 x Cg — X. We
argue by contradiction. Suppose there is a parallel of C4 x Cg with two
vertices in ¥. We prove that G is non planar contradicting the hypothesis.
As |Z] = 3, there is one meridian with no vertices in ¥. We consider a
suitable automorphism and assume that meridian 2 has no vertex in £ and
that parallel 0 has 2 vertices in X. Let v and v be the two vertices of ¥ in
parallel 0. There are 2 possibilities for u and v according to uv ¢ E(C4 x Cs)
or uv € E(Cy x Cg). Figure 7 is used in order to prove that if there are 2
vertices of ¥ at the same parallel, then G is non planar. Figure 7 shows four

Figure 7: Two vertices of Cy x Cs at the same parallel.
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copies of the toroidal drawing for C4 x Cg. Figures 7(a) and 7(b) are used
to prove that if uv ¢ E(Cy x Cs), then G is non planar. In this case, G has
as a subgraph at least one of the subdivisions for K defined in Figures 7(a)
or 7(b) . Figures 7(c) and 7(d) are used to prove that if uv € E(Cy x Cg),
then G is non planar. In this case, G has as a subgraph at least one of the
subdivisions for K33 defined in Figures 7(c) or 7(d).

We analize first the case when uv ¢ E(C; x Cg). In this case, u = vy
and v = v3p. As |X| = 3, by Lemma 9 the vertex of X in meridian 1 is
v1g and the vertex of ¥ in meridian 3 is v3o. Hence, as by supposition,
meridian 2 has no vertex in X, the third vertex of ¥ is one of the vertices in
meridian 0, i.e., vertices: vgg, Vo1, Vo2, Vo3, Vo4 and vps. The two subdivisions
for K5 in Figures 7(a) and 7(b) show that for each choice in meridian 0 for
the third vertex of ¥ there is a suitable subdivision for K3 as a subgraph
of the graph G.

The second case to analize is when uv € E(Cy x Cg). In this case,
we consider a suitable automorphism and assume that uv = wvgovi1g. As
|Z| = 3, by Lemma 9 the vertex of ¥ in meridian 0 is vgp and the vertex of
3 in meridian 1 is vy9. Hence, the third vertex of ¥ is one of the vertices
V30, 31,32, V33,¥34,V3s5. Lhe two subdivisions for K33 in Figures 7(c)
and 7(d) show that for each choice of the vertex of ¥ in meridian 3 there
is a subdivision for K3 3 as a subgraph of the graph G. m]

Lemma 11 vd(Cy x Cg) > 4.

Proof: We argue by contradiction. Let X be a subset of vertices of V (Cy x
Cs), with |X| = 3 vertices, whose removal from Cy x Cs defines a planar
subgraph G = Cy x Cg — X.

As ¥ has size 3, by Lemmas 9 and 10 there is at most one vertex of
in each one of the meridians and at most one vertex of T in each one of the
parallels. As there are four meridians and six parallels in Cy x Cj, there
is exactly one meridian with no vertex in £ and there are exactly three
parallels with no vertex in X. By Facts 4 and 5 we assume that meridian 2
and parallel 5 have no vertex in .

We show in Figure 8(a) a drawing of a subdivision for K5. Note that, at
least one of the vertices: vyq, V14,30, 34 must be in I, otherwise, vertices
V10, V14, V30, V34 Plus vertices in meridian 2 and parallel 5 define the subdi-
vision in Figure 8(a) as a subgraph of the planar graph G. We consider a
suitable automorphism and assume that vz, is in .

Now, we analize the vertex of ¥ at meridian 1. As vz4 € X, by Lemmas 9
and 10 it follows that vs4 is the vertex of meridian 3 in ¥ and it is the vertex
of parallel 4 in X. We consider in Figures 8(b) and (c) two subdivisions
of K33 as subgraphs of C4y x Cs. As, by supposition, parallel 5 has no
vertex in ¥ and w34 € X, the vertex of meridian 1 in £ must be one of the
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Figure 8: Lower bound vd(Cs x Cg) > 4.

vertices v1g, V11, V12 OF ¥13. If one of the vertices: v11,v12,13 is in X, then
there is the subdivision of K3 3 in Figure 8(b) as a subgraph of the planar
graph G, a contradiction. If vjo € X, then there is the subdivision of K33
in Figure 8(c) as a subgraph of the planar graph G, a contradiction. a

Corollary 7 If m > 6, then vd(Cy x Cp) 2 4.

Proof: It follows from Lemma 11 and Corollary 4. ]

We remark that, from Fact 1, in order to prove that a graph G has
vertex deletion at least 2, it is enough to prove that for each vertex v of G
the graph H = G — v is non planar. Analogously, to prove that a graph G
has vertex deletion at least 3, it is enough to prove that for each vertex v
of G the graph H = G — v has vertex deletion at least 2. Lemmas 12 and 13
prove that two auxiliary graphs C and D have vertex deletion at least 2.
We use these two graphs and an argument by graph minors to prove in
Lemmas 14 and 15 that other two graphs: A and B have vertex deletion
at least 3. '

Graphs C and D are subgraphs of C4 x Cy. Hence their vertex deletions
have value at most vd(Cy x C4) = 2. Hence, when we prove that C and D
have vertex deletion at least 2, we in fact prove that vd(C) = vd(D) = 2.

Lemma 12 If C is the graph obtained from C4 x Cy by removing the edges
Vo1V31, Vo2V32, Vo1V02 and V31V32, i.e., C = (V(C4 X C4),E(C4 X C4) \
{v01v31, Vo232, Vo1vo2, V3132 }), then vd(C) = 2.

Proof: In Figure 9(a) we show a toroidal drawing for C. We note that the
graph C' = (V(Cs x C4), E(Cs4 x Ca) \ {voo¥30,V03v33, Voovo3, V3oU33}) in
Figure 9(b) is isomorphic to C with the isomorphism a(vi;) = Vi (j+2) mod 4-
We make this observation because we do not distinguish C' from C' when
a graph has C as a minor.
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(a) {b) (c)

Figure 9: Lower bound vd(C) > 2.

Figures 9(c) and 9(d) show two copies of a toroidal drawing for C.
Let C;; = C — 05,0 < i < 4and 0 € j < 4. We note that C has
vertical and horizontal symmetry. Hence, graphs Cp o, Co,1, C1,0 and C1,1
represent, up to some isomorphism, the class of subgraphs of C with one
vertex removed. Then, in order to prove that vd(C) > 1 it is enough to
prove that Co,0, Co,1, C1,0 and Cy ) are all non planar graphs. In Figure 9(c)
we exhibit a subdivision for K5 as a subgraph of Cy9,Co,; and C,; and in
Figure 9(d) is exhibited a subdivision for K33 as a subgraph of Cy,1,C1 0
and Cl,l- ]

Lemma 13 If D is the graph obtained from Cy4 x Cy by removing the edges
YooU30, Vo2V32, YooUos and UU2s, i.e., D = (V(Cy x C4), E(Cy x Cy) \
{v00v30, Vo2 v32, Voovosvaovas }), then vd(D) = 2.

-9 @\g

(a) (b

Figure 10: vd(D) = 2.

Proof: In Figure 10(a) we show a toroidal drawing for D. In order to prove
Lemma 13 it is enough to prove that vd(D) > 1.

Let D;j = D —v;;,0 <i <4 and 0 < j < 4. Consider the automor-
phism of Cy x Cy given by a(vi;) = vji. Since, D = (V(Cy x C4), E(Cy x
04) \ {'Uoo'Uao, ’0021)32,1}001)03’0201)23}) and a('u,-j) = vji, we have that the non
existence of the edges: (voov30), (vo2v32), (voovos) and (v20v23) in D implies,
respectively, the non existence for the edges (voovo3), (v20v23), (voovso) and
(vo2v32) in a(D). Hence, the image a(D) is a subgraph of Cy x C4 without
the edges voov30, Vo2v32, Voovo3, U20v23, i.€., @ is an automorphism of D.
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Hence, graphs Do,o, D10, D11, D20, D21, D22, D30, D315 D32 and
D3 3 represent, up to some isomorphism, all subgraphs that can be obtained
from D by removing a vertex because D; ; is isomorphic to Dj ;. Then, in or-
der to prove that vd(D) > 1 it is enough to prove each Do, D10, D1,1, D20,
D2,1, D2,2, D3,0, D3’1, D3'2 and D3,3 is a non plana.r graph. In Figure 10(b)
we exhibit a subdivision for K33 as a subgraph of Do,0,D2,0,D2,1, D30
and D3 3; in Figure 10(c) we exhibit a subdivision for K33 as a subgraph
of Do, D30, D3, and Ds; in Figure 10(d) we exhibit a subdivision for
K33 as a subgraph of D39, D22 and D3; and in Figure 9(e) we exhibit a
subdivision for K3 3 as a subgraph of Dg,0,D1,0,D1,1 and D1 2. ]

Lemma 14 If A is the subgraph of Cy4 x Cs defined by removing the edges
V01V31 and Vo3V33 f'rom C4 XC5, 'i.e., A= (V(C4 XC5), E(C4 XCs)\{'vo]_'Usl,
vosva3}), then vd(A) = 3.

l
¢
A Ao,u Ao.x Ao.z i‘HH) Ax,o
) RERAS
(a) b) . (c.2) d) (e
d &
Contractible
Al.l Al.l%
(f.1) (f.2) [:2)) (8.2 (g3)

Figure 11: vd(A) = 3.

Proof: First of all, we observe that graph A has horizontal and vertical
symmetry. Hence, in order to prove that vd(A) > 3 it is enough to prove
that for each pair 1, j, with < € {0,1},7 € {0,1,2}, vd(4;;) > 2. For, we
show that the removal of an arbitrary vertex of A; ; yields a graph contain-
ing a minor for the graph C or for the graph D. For the convenience of the
reader in the process of identifying these minors, we use some isomorphisms
on A; ; which produce other graphs where it is easier to identify the minors
of C or of D as a subgraph of A; ;.

Figure 11(a) shows a toroidal drawing for A.

Figure 11(b) shows a toroidal drawing for Ag, where it is depicted a
subdivision for D as a subgraph of Ao .

Figure 11(c.1) shows a toroidal drawing for Ag,;. For the convenience
of the reader we show in Figure 11(c.2) a toroidal drawing for the graph
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Figure 12: Lower bound vd(B) > 3.

obtained from Ao by the isomorphism @ (v;;) = v; (j_1) mod 4 and a subdi-
vision for D as a subgraph.

Figure 11(d) shows a toroidal drawing for Ag 2, where it is depicted a
subdivision for C' as a subgraph of Ag 2.

Figure 11(e) shows a toroidal drawing for A, g, where it is depicted a
subdivision for D as a subgraph of 4, o.

Figure 11(f.1) shows a toroidal drawing for 4, ;. For the convenience
of the reader we show in Figure 11(f.2) a toroidal drawing for the graph
obtained from A;,; by the isomorphism a(v;;) = Vj,(j~2) mod 4 and a subdi-
vision for D as a subgraph.

Figure 11(g.1) shows a toroidal drawing for A4; 5. For the convenience
of the reader we show in Figure 11(g.2) a toroidal drawing for the graph
obtained from A; 2 by the isomorphism a(vi;) = ; (j—2) mod 4 and indicate
the contraction of the edges vooups, v22v23 and vayvss, whose define D as a
minor of A; . ]

Lemma 15 If B is the subgraph of Cs x Cs defined by removing the edges
UgoV04, V00V40, Vo444 and VsoV44, then vd(B) > 3.

Proof: We prove that vd(B) > 3 by an argument similar to that of
Lemma 14. In Figure 12(a) we show a toroidal drawing for B. First of all,
we note that B has horizontal and vertical symmetry and that the func-
tion a(v;;) = vj; is an automorphism on B. Hence, in order to show that
vd(B) > 3 it is enough to prove that for each pair 4,3, with 0 < j <i < 2
we have that vd(B;;) > 2. For, in Figures 12(b), 12(c),12(d), 12(e), 12(f)
and 12(g), we show, respectively, toroidal drawings for By, By, Bi,1,
Bs,0, Ba,1, B and, in each case a subdivision for graph C. a

Lemmas 16 and 17 use Lemmas 14 and 15 in order to prove that two
auxiliary graphs have vertex deletion at least 4.
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Figure 13: Lower bound vd(X) > 4.

Lemma 16 If X is the graph obtained from Cs x Cg by removing the edges
Vo2V42, Vo4U44, i.e., X = (V(C5 X Cs),E(C5 X Cs) \ {'002’042, ’4)04’044}), then
vd(X) > 4.

Proof: In Figure 13(a) we exhibit a toroidal drawing for X. Let X; ; be
the graph obtained from X by removing vertex v;j, with 7 € {0,1,2,3,4}
and j € {0,1,2,3,4,5}. We note that graph X has horizontal symmetry.
Hence, to prove that vd(X) > 4 it is enough to prove that the removal of
each vertex in meridian 0, 1 and 2 from X produces a graph with vertex
deletion at least 3.

Note that, graphs X1, Xo,2, X1,1, X1,2, X2,1, X2,2, are respectively iso-
morphic to Xo5, Xo,4, X1,5, X1,4, X2,5, X2,4 by the isomorphism a(v;;) =
Vi,(6—35) mod 6-

Hence, to prove that vd(X) > 4, it is enough to prove that if i € {0,1,2}
and j € {0,1,2,3}, then X;; has a graph with vertex deletion at least 3
as a minor, which implies that vd(X; ;) > 3. In Figures 13(b), 13(c),
13(d), 13(e), 13(f), 13(g), 13(h), 13(i), 13(j), 13(k), 13(1) and 13(m) we
have, respectively, a toroidal drawing of graphs Xo o, Xo,1, Xo0,2, Xo0,3, X1,0,
X1,1,X1,2, X1,3,X2,0, Xa2,1, Xo2 and X233. We note that graphs Xo,
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Xo,l,Xo’g, leo, X1|1,X1,2, Xz’g, X2,1 and Xz,z have a subdivision of A
as a subgraph; and note that Xo 3 has a subdivision of B as a subgraph.
We observe that graphs X, 3 and X, 3 have a graph contractible to A4 as
a subgraph, where we contract in X3 edges vp3vos4, Ua3v24, v33v34, and
v43v44 and we contract in X2,3 edges vop3vpg, U13V14, U33V34, and U43v44.
Hence, by Lemmas 1, 1, 3, 14 and 15, we have that vd(X) > 4. o

Lemma 17 If Y is the graph obtained from Cs x Cj, by removing edges
Vo1 Y41 and Vg4V44 z'.e., Y = (V(Cs X Ca),E(C5 X Cs) \ {’001’041,’004'044}),
then vd(Y) > 4.

Proof: In Figure 14(a) we exhibit a toroidal drawing for Y. Let Yi; =
Y — v;; be the graph obtained by removing vertex vij from Y. We note
that ¥ has horizontal and vertical symmetry. We also note that the graphs
Yo,0, Y1,0, Y2,0 are, respectively, isomorphic to graphs Yp 2, Y7 2, Y2 2, by the
function o(vi;) = v; (j—_3) moa 6. Hence, to prove that vd(Y) > 4it is enough
to prove that each one of the graphs Y0,0,Y0,1, Y1,0, Y11 Yo and Y2, has
as a subgraph a graph with vertex deletion at least 3. In Figures 14(b),
14(c), 14(d), 14(e), 14(f), 14(g), we exhibit, respectively, graphs: Y0, Y5 1,
Y1,0,Y1,1 Y20 and Y2;. We depict in each one of these graphs a subdivision

of graph A as a subgraph. m]
Y. .é 4 B3 (
0.0 1.0 P Y.
Y =2 > - 4
5944 b 3
! SRS RS

4 S

y Y [ Y -4 -9

Figure 14: Lower bound vd(Y) > 4.
Lemma 18 vd(C; x Cs) > 4.

Proof: It follows from Fact 7, Lemma, 14 and that if v € C; x Cs, then the
graph Cs x Cs — v has A as a subgraph. u]
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Figure 15: An obstruction for Lemma 19.

Lemma 19 If there is a subset T of vertices of Cs x Cg with |Z| < 5, whose
removal from Cs x Cs define a planar graph, then

1. ¥ has no pair of vertices in a same meridian of Cs X Cs;
2. S has no pair of vertices in a same parallel of Cs x Cs.

Proof: Note that, if & has two vertices 4 and v in a same meridian of
Cs x Cg, then the distance from u to v can be 1, 2 or 3. Hence, Fig-
ures 15(a), 15(b) and 15(c) show all the cases, up to isomorphism, of the
graph obtained from Cs x Cs by removing two vertices in a same meridian.
Analogously, Figures 15(d) and 15(e) show all the cases, up to isomor-
phism, of the graph obtained from Cs x Cg by removing two vertices u
and v in a same parallel, according to the distance from u to v is 1 or 2.
The proof of the lemma 19 follows from the fact that each graph in Fig-
ures 15(a), 15(b), 15(c) and 15(e), has as subgraph a subdivision of the
graph A; and that the graph in Figure 15(d) has as subgraph a subdivision
of the graph B depicted in bold edges. By Lemmas 14 and 15, at least 3

additional vertices are required in £, which implies |X| > 5, a contradiction.
a

Lemma 20 vd(C5 x Cg) 2 5.

Proof: Suppose, by contradiction, that vd(Cs x Cs) < 5. Let X be a
subset of V(Cs x Cs) with size |Z| = 4 whose removal from Cs x Cg defines
a planar graph G = Cs x Cs — £. By Lemma 19, ¥ has no pair of vertices
in a same meridian or parallel. As Cs x Cg has five meridians, there are
four meridians each one of them with just one vertex in ¥ and just one
meridian with no vertex in X.

Assume, meridian 2 and parallel 0 to be, respectively, one parallel and
one meridian with no vertices in & as shown in Figure 16(a).

We claim that at least one of the vertices: v;1,v31,v1s,v35 iS & vertex
of £. Otherwise, these four vertices, plus vertices in meridian 2 and par-
allel 0 induce a subdivision for Ks as a subgraph of the planar graph G.
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Figure 16: An obstruction for Lemma 20.

We consider a suitable automorphism and assume v;;, in ¥ as shown in
Figure 16(a).

As vy is in ¥ and as vd(Cs x Cg) = 4 < 5, by Lemma 19 the vertex of £
in meridian 1 is v;; and the vertex of ¥ in parallel 1 is v11. The remaining
vertices in meridian 1 and in parallel 1, plus the vertices in meridian 2 and
parallel 0 induce, so far, the graph in Figure 16(b) as a subgraph of the
planar graph G = Cs x Cs — &.

Now we analize the vertex of ¥ in meridian 3. In Figures 16(c), 16(d),
16(e) and 16(f) we show the 4 possibilities for the vertex v3i,1 € {2,3,4,5}
of ¥ in meridian 3. We observe that for each case, where v3; is in X,
i € {2,3,4,5}, Lemma 19 and the hypothesis of |X| < 5 force the remaining
vertices in meridian 3 and in parallel ¢ to be not in X.

As for each case, there is a subdivision for K33 as a subgraph of the
planar graph G = Cs x Cg ~ £, we have the contradiction. Thus vd(Cs x
Cs) > 5. o

Corollary 8 If m > 6, then vd(Cs x Cm) > 5.

Proof: It follows from Corollary 4 and Lemma, 20. ]

Lemma 21 If there is a subset & of vertices of Cs x Cs with |Z| < 6, whose
removal from Cs x Cy defines a planar graph G = Cg x Cs — X, then

1. ¥ has no pair of vertices in a same meridian of Ce x Cs.

2. X has no pair of vertices in a same parallel of Cg x Cj.

Proof: Suppose, by contradiction, that & has two vertices in a same parallel
or in a same meridian.

Note that, if ¥ has two vertices » and v in a same meridian or parallel
of Cs x Cg, then the distance from w to v must be 1, 2 or 3. Hence,
Figures 17(a), 17(b) and 17(c) show all the cases, up to isomorphism, of the
graph obtained from Cs x Cs by removing two vertices in a same meridian
or parallel.
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Figure 17: Non isomorphic graphs with 2 vertices removed in a same merid-
ian or parallel of Cg x Cg for Lemma 21.

As the graph in Figure 17(a) has a subdivision of Cs x Cg — v, the graph
in Figure 17(b) has a subdivision for graph X, and the graph in Figure 17(c)
has a subdivision for graph Y'; and by Lemmas 16, 17 and 20, each one of
these graphs: Cs x Cs —v, X and Y has vertex deletion at least 4, then
by Corollary 1 and Fact 7 there are at least four additional vertices in X,
contradicting the fact that |Z| < 6. O

Lemma 22 vd(Cs x Cs) > 6.

Proof: Suppose, by contradiction, that vd(Cs x Cg) < 6. Let X be a set
of vertices with size |Z| = 5 defining a planar graph G = Cg x Cs — Z. By
Lemma 21, & has no pair of vertices in a same meridian or parallel. Then,
as Cs x Cs has six parallels and six meridians, we assume parallel 4 and
meridian 4 to be, respectively, the parallel and the meridian of Cg x Cg
with no vertex in ¥ as depicted in bold edges in Figure 18(a).

]

(a) (c)

Figure 18: An obstruction for Lemma 22.

We claim that at least one of the vertices: v33, v3s, vs3, Uss is @ vertex
of £. Otherwise, these four vertices plus vertices in meridian 4 and parallel 4
induce a subdivision for Ks in the planar graph G = Cg x Cs — L. We
consider a suitable automorphism and assume that v3s is in ¥ as shown in
Figure 18(a).

As vss is in T and as vd(Cs x Cs) = 5 < 6, by Lemma 21 the vertex of
in meridian 3 is v3s and the vertex of X in parallel 5 is vss. The remain-
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ing vertices of meridian 3 and parallel 5, plus vertices in meridian 4 and
parallel 4 induce in the planar graph G, the subgraph of the Figure 18(a).

Now we consider the vertex of T in parallel 3. In Figures 18(b), 18(c),
18(d) and 18(e) we examine each possibility for vertex v;3,% € {0,1,2,5} of
the parallel 3 in ¥. Note that, for each case there is a subdivision for K33
as subgraph of the planar graph G = Cs x Cs — X, a contradiction. Thus,
’Ud(Cs X Cs) > 6. a

Lemma 23 If k > 6, then vd(Ci x Cx) > k.

Proof: We prove this assertion by induction in k. The induction basis is
the graph Cs x Cs. The induction hypothesis is vd(Cr—1 x Ck—1) > k—1,
where 6 < k—1. Since k > 4, it follows from Fact 7 that vd(Cr. xC) > k. O

Corollary 9 If n,m > 6, then vd(Cpn X Cp,) > min{n,m}.

Proof: It follows from Corollary 4 and Lemma 23. a

Theorem 1 The vertex deletion of Cp, x Cy, is given by vd(C3 x C3) = 1;
’Ud(C3 XC4) = ‘Ud(Cs XCs) = ’Ud(C3XCs) = 2,‘ ifm > 7, then ’Ud(C3XCm) =
3; vd(Cy x C4) = 2; vd(Cy4 x C5) = 3; if m > 6, then vd(Cy x Cpy) = 4;
vd(Cs x Cs) = 4; if m > 6, then vd(Cs X Cp,) = 5; and if n,m > 6, then ;
vd(Cp x Cr,) = min{n,m}.

Proof: The assertion follows from Lemmas 4, 5, 6, Corollary 5, Corollary 6,
Lemma 8, Corollary 7, Lemma 18, Corollary 8 and Corollary 9. ]

5 Conclusion

In this work, we have determined the exact values of the vertex deletion
for all C,, x Cyn graphs. We observe that the results of Yannakakis [27]
and Lund and Yannakakis [20] which proved, respectively, that VERTEX
DELETION decision and optimization versions for graphs in general are NP-
complete and Max SNP-hard problems, left open the smallest maximum
allowed degree for an instance which insures NP-completeness and Max
SNP-hardness. In {11] we consider the complexity of computing this pa-
rameter and we answer these questions by proving that VERTEX DELETION
is NP-complete and Max SNP-hard even for cubic graphs.
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