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Abstract

Using generating functions of the author ([1], [2]), we obtain three
infinite classes of combinatorial identities involving partitions with
"n +t copies of n" introduced by the author and G.E. Andrews (3],
and lattice paths studied by the author and D.M. Bressoud [4].
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1 Introduction, definitions and the main re-
sults

We shall prove three generalized theorems. Each of these theorems gives
us infinitely many combinatorial identities. First, we recall the following
definitions of partitions with "n + ¢t copies of n” and weighted differences
from [3]:

Definition 1.1. A partition with ”n + t copies of n”, ¢t > 0, is a partition
in which a part of size n, n > 0, can come in n + ¢ different colors denoted
by subscripts: 7,73, ..., nn+¢. Thus, for example, the partitions of 2 with
"n+ 1 copies of n” are

2y 21405, 1141, 1;4+1;,40,,
22, 29405, 12413, 1241, 40y,
23, 23+4+0;, 1241z, 1x+4+12+4+0;.
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Note that zeros are permitted if and only if ¢ is greater than or equal to
one. Also, in no partition are zeros permitted to repeat.

Definition 1.2. The weighted difference of two elements m;, nj, m > n is
defined by m —n — i — j and is denoted by ((m; —n;)).

Next, we recall the following description of lattice paths from [4] which
we shall be considering in this paper:

All paths will be of infinite length lying in the first quadrant. Only
three moves are allowed at each step:

northeast: from (7,5) to (i 41,5 +1)
southeast: from (%, 5) to (i + 1,5 — 1), only allowed if j > 0
horizontal: from (%,0) to (i + 1,0), only allowed along x-axis

The following terminology will be used in describing lattice paths.

Peak: Either a vertex on the y-axis which is followed by a southeast step
or a vertex preceded by a northeast step and followed by a southeast step.

Valley: A vertex preceded by a southeast step and followed by a northeast
step. Note that a southeast step followed by a horizontal step followed by
a northeast step does not constitute a valley.

Mountain: A section of the path which starts on either the x- or y-axis,
which ends on the x-axis and which does not touch the x-axis anywhere in
between the end points. Every mountain has at least one peak and may
have more than one.

Plain: A section of path consisting of only horizontal steps which starts
either on the y-axis or at a vertex preceded by a southeast step and ends
at a vertex followed by a northeast step.

The Height of a vertex is its y-coordinate. The Weight of a vertex is
its x-coordinate. The Weight of a Path is the sum of the weights of its
peaks.

‘We shall prove the following theorems:

Theorem 1. For k > —1, let A¥(v) denote the number of lattice paths of
weight v which start at a point on the z-axis have no valley above height 0 if
k = —1 and no valleys at all if k > 0, and there is a plain of minimal length
k+1 (k > 0) between any two mountains. Let Bf(v) denote the. number
of partitions of v with "n copies of n” such that the weighted difference of
each pair of parts is greater than k. Then A%¥(v) = B¥(v), for all v.

Example. Consider the case when v =7, k= 1.

B}(7) = 9, since the relevant partitions of 7 with "n copies of n” are
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71,72,73,74, 75,76, 77,61 + 11,62 + 1;. Also, A}(7) = 9, since the relevant
lattice paths of weight 7 are:

P v Y
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Theorem 2. For k > —1, let A§(v) denote the number of lattice paths of

weight v which start from (0,1) have no valley above height 0 if k = —1,

no valleys at all if k > —1 and there is a plain with minimum length k+ 1

(k > 0) between any two mountains. Let BS(v) denote the number of

partitions of v with "n + 1 copies of n" such that the weighted difference

of each pair of parts is greater than k, and for some i, i, is a part. Then
A5(v) = BE(v), for all v.

Theorem 3. For k > —1, let A%(v) denote the number of lattice paths
of v which start from (0,2), have no valley above height 0 if k = —1 and
no valleys at all if k > —1 and there is a plain with minimal length k + 1
between any two mountains. Let B5(v) denote the number of partitions of
v with ”n + 2 copies of n” such that the weighted difference of each pair of
paris is greater than k, and for some i, i;12 is a part. Then A%(v) = B5(v),
for all v.

In the proofs of Theorems 1-3, we shall make use of the following gen-
erating functions from [1,2]:

asd %) m[]+$k13!%’""12]
ZB{C(V)QU = 2____2_, (1)
0 = (69)m(g ¢%)m

m!m+l!$k+3)

Bk = 2)
Z 20} ,,,z,:o (:9)m (g 9¥)m+1’ (
ol 00 m(l+(m+1)(k+3)/2|
Y Bk =) 2 3)

v=0 V=0 (0 Q)m (4¢P m+1

where |g| < 1 and for any complex constant a,

(a;9)n = H aq'H‘ 1 )

r-O
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We shall provide two different proofs of Theorem 1-3. In the first proof
we shall show that for 1 < ¢ < 3 the right-hand side of Equation (1) also
generates A%(v), while the second proof is bijective.

In Section 2 we illustrate the method of proof by proving Theorem 1
completely. In Section 3 we sketch the proofs of the other two theorems.
We remark that Equations (1)-(3) are also valid for k = —2 and —3. But
A7%(v) and A73(v) (1 < i < 3) are not defined.

2 Proof of Theorem 1

m(t (k+32;m—!!’
In b the factor q"'“"“' == generates a lattice path from

(0,0) to (2m+(m 1)(k+1),0) having m peaks each of height 1 and a plain
of length k4 1 between any two successive peaks. Thus the path begins as

(k+0 ke (k+1)
Graph A

In the above graph we consider two successive peaks, say, ith and (i+1)st
and denote them by p; and p,, respectively.

! 3 &
Lo NN

Graph B

Clearly in Graph B

n
P2

((2¢ =1)+ (i = 1)(k+1),1), and
(2t +1) +i(k+1),1).
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The factor '('9—97_ generates m non-negative integers, say a; > az > ... 2>
am > 0, which are encoded by inserting a,, horizontal steps in front of the

first mountain and a; — a;+; horizontal steps in front of the (m — i+ 1)st
mountain, 1 <i<m-—1.

Thus, the x-coordinate of the ith peak is increased by apm+(am—1—am)+
(am-2 — @m-1)+ ...+ (@m-it+1 — @m—i+2) = @Gm—i+1, and the x-coordinate
of the (i + 1)st peak is increased by a,,—;. Graph B now becomes Graph
C.

4
i .
Graph C
In Graph C,
n = (@2-1)+@E-1)k+1)+am_i1,1), and
P2 = ((2+1)+i(k+1)+am—,1).

The factor r—,r generates non-negative multiples of (2 —1),1 < <
m, say by X 1,b2 X 3,...,bm X (2m — 1). This is encoded by having the ith
peak grow to height bm—i+1 + 1. Each increase by one in the height of a
given peak increases its weight by one and the weight of each subsequent
peak by two. Graph C now changes to Graph D or to Graph E depending
on whether by—; > bp—i+1 OF byp—; < bp—i+1. Note that if byy—i = bp—it1
then the new graph will look like Graph C.
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Graph E
In Graph D (or Graph E),
o= ((2-1)+(GE-1)(k+1)+am-it1 +2(bm +... + bm-it2)
+bm—s’+1, bm—i+1 + 1))
2 = ((2i+1)+i(k+1)+am-i+20m+... +bn-it1) +bmoiybm—s +1).

We see that every lattice path enumerated by A¥(v) is uniquely gener-

ated in this manner. This proves that the right-hand side of Equation (1)
also generates A¥(v).

We now establish a 1 — 1 correspondence between the lattice path enu-
merated by A%(v) and the partitions with "n copies of n” enumerated by
B%(v). We do this by encoding each path as the sequence of the weights
of the peaks with each weight subscripted by the height of the respected
peak. Thus, if we denote the two peaks in Graph D (or Graph E) by Az
and By, respectively, then

A = (21: - 1) + ('5 - 1)(k + 1) + @m—it1 + 2(bm +...+ bm—i+2) + bm-i+1
T brmn—i+1+1

B 2i+i(k 4+ 1)+ am—i + 2(bm + .. . + br—i1) + bm—i

y = bp_i+1

The weighted difference of these two parts is
((By—Ax)) =B—A—z—y=k+1+(am_.~ —am_,-.H) > k.
To see the reverse implication we consider two parts of a partition enumer-

ated by B¥(v), say Cy and D,. Let i = (C,u) and g2 = (D,v) be the
corresponding peaks in the associated lattice path.
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Graph F

The length of the plain between the two peaks is D — C' —u — v which
is the weighted difference between the two parts C, and D, and is hence
greater than k. This shows that if k = —1 then there are no valleys above
height 0 and if k > 0 then there is a plain of minimal length k + 1 between
any two mountains.

3 Sketch of the proofs of Theorems 2-3

Proof of Theorem 2. The extra factor of (k+ 2)m puts a southeast step
from (0, 1) to (1, 0) followed by a plain of length k+1 at the front of lattice
path. So in this case the path begins with (m+ 1) peaks starting from (0, 1)
and ending at (1 + (k + 3)m,0) and with a plain of length k + 1 between
two successive peaks.

@ e @ 2 et

ERNGD NN ANEDSN L
(1,9)

Graph G

The m non-negative integers a; > a2 > ... > @, > 0 generated by the
factor zﬁr are encoded by inserting a,, horizontal steps in front of the

second mountain and a; — ai4+1 horizontal steps in front of the (m —i+2)nd
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mountain 1 < ¢ < m — 1. The m non-negative multiples of (2¢ — 1),
1<i<m,sayby x1,byx3,...,by x (2m — 1) generated by @-;-(;‘!3-; are
encoded by having the ith peak grow to height b,,_i420+1,2 <2< m+ 1.
Also, the extra factor of (1 — ¢?™+!) introduces a non-negative multiple of
(2m+1), say byt1*(2m+1). This is encoded by having the first peak grow
to height b,,41 + 1 in the northeast direction. Considering these changes
in the Graph D (or Graph E) we see that the ith and (i + 1)st peaks now

become (i+-1)st and (i + 2)nd peaks, respectively, and the first peak looks
like

(l’mﬂ 4 Lmﬂ-‘_‘)

e

Graph H

So if we denote the (i + 1)st and (i + 2)nd peaks by (A,z) and (B, y),
respectively, then

A = 2bp1+2(6-1)+(-1)k+1)+amis1 +2(bm +bm-1+...
+bm—i+2) + bm—i+l

br—i+1 +1

2mi1+2i+i(k+ 1)+ am—i+2(bm + ...+ bp—it1) + bm—i

Yy = bnoitl

oo
I

The weighted difference of the corresponding colored parts is ((By —
Az)) = (k+1) + (@m-i — @m-i+1) > k. The first part is (bmnt1)bmys +1
which is of the form 4;,; and shows that we are using n + 1 copies of n.

Proof of Theorem 3. In this case we have an extra factor of g™ than in
the previous case. This is encoded by putting two southeast steps (0,2) to
(1,1) and (1,1) to (2,0). So in this case the path begins with (m+ 1) peaks
starting from (0, 2) and ending at (2+(k+3)m,0) and with a plain of length
(k + 1) between every two successive peaks. In this case the non-negative
multiple of (2m + 1), say, bm+1 is encoded by having the first peak grow
to height b41 + 2 in the northeast direction. So if we denote the (i + 1)st
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and (i + 2)nd peaks by (4,z) and (B,y) respectively, then

A = 2bmi1+2(i 1)+ 14 (G —1)(k+ 1)+ am-it+1 + 2(bm + bm—1
+ ...+ bm—it2) + bm—i+1

T = bpi1+1

21 +2i4+ 144k + 1)+ am—i+2(bm + ...+ bpn_it2) + bm—i

Yy = bm-i+1

s+
I

The weighted difference of the colored parts A, and B, is ((By—Az)) =
B-—A-z-y=k+1+am—i—am—it1 > k. The first part is (brmt1)bm 1 +2
which is of the form i;;5 and shows that we are using n + 2 copies of n.
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