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Abstract

A recent series of papers by Anderson and Preece has looked
at half-and-half terraces for cyclic groups of odd order, particularly
focusing on those terraces which are narcissistic. We give a new
direct product construction for half-and-half terraces which allows
us to construct a narcissistic terrace for every abelian group of odd
order. We also show that infinitely many non-abelian groups have
narcissistic terraces.

1 Introduction

Let G be a multiplicatively written group of order n with identity element
e. Let a be the arrangement (a3,a2, ..., an) of the elements of G and let
b = (b1,b2,...,bn_1), where b; = a‘-'la.'.,.l for 1 €i<n-—1. If b contains
each involution of G exactly once, and for each g € G with g2 # e the
sequence b contains:

e two occurrences of g and no occurrences of g~,
e one occurrence of g and one occurrence of g~! or
e no occurrences of g and two occurrences of g2,

then a is a terrace for G and b is a 2-sequencing of G. A group that has a
terrace is called terraced.

Terraces were defined by Bailey [10] for use in the construction of quasi-
complete latin squares. Prior to this, Williams [17] had implicitly used them
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for cyclic groups for a similar purpose. Bailey [10] showed that elementary
abelian 2-groups of order greater than 2 are not terraced and conjectured
that these were the only groups that do not have terraces. In [10] it was
also shown that all abelian groups of odd order are terraced. We give an
alternative proof of this in Section 2.

Let a be the terrace (ai1,as2,...,a,) for a group G, with 2-sequencing
b = (b1,bs,...,bp—1). If a1 = e then the terrace is basic [10]. Multiplying
each element of a on the left by “1_1 gives a basic terrace.

Suppose that n is odd, say n = 2m + 1. If the sequences (by, b, . .., bs,)
and (bm+1,bm+2,-..,b2m) both contain exactly one occurrence from the
set {g,g7'} for each g € G then the terrace a is called half-and-half [6).
If b is the same as its reverse, in which case a is necessarily half-and-
half, then b is reflective [2] and a is narcissistic [7). Anderson and Preece
introduced half-and-half terraces for use in the construction of a particular
type of carry-over design (6]. In later papers (7, 8, 9] they construct elegant
half-and-half terraces for cyclic groups, many of these being narcissistic.

We give two examples of half-and-half terraces for cyclic groups from
the literature. We denote the cyclic group of order n by Z,, and write it
additively. The sequence

0,1,n-1,2,n-2,...)

is the Lucas- Walecki- Williams terrace, or LWW terrace, for Z,, so named
[11] as it was implicitly used for even n by Lucas, who gave credit to
Walecki, in {13] and for both even and odd n by Williams {17). For odd n, -
say n = 2m + 1, the LWW terrace is narcissistic, with 2-sequencing

(1,2m -1,3,2m - 3,...,2m - 1,1).

For our second example—the triangular numbers terrace—we require
that n is an odd prime. Define r; = -'1'—2"19, so 7; is the ith triangular
number. Take r to be a non-square element of Z,,. Set

rm(m + 1)

Ar(n) = (0,71,72y .« oy Tmy T —TM, T —rm—r(m—1),..., Tm— 5 ).
Then A,(n) is a terrace with 2-sequencing

1,2,3,...,m,—mr,—(m — )r,...,—7).
The terrace was first given in its full generality by B. A. Anderson {3,
4], though the special case of n = 3 (mod 4) and 7 = —1 was used

by Williams [17). The terrace is always half-and-half and when n = 3
(mod 4) the terrace A_,(n) is narcissistic.

In the next section we show that all abelian groups of odd order have
narcissistic terraces (and hence have half-and-half terraces). In Section 3
we show that infinitely many non-abelian groups have narcissistic terraces.
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2 The construction

The construction in Theorem 1 takes terraces for two groups of odd order
and gives a terrace for their direct product. It is this construction which
allows us to build the terraces we want.

Theorem 1 Let G and H be groups of odd order. Let G have terrace a
and H have half-and-half terrace c. Then G x H is terraced.

Proof: Let G have order 2l + 1 and let a have 2-sequencing b, given
by a = (ai,az,...,a241) and b = (b1,bg,...,by). Let H have order
2m +1 and let ¢ have 2-sequencing d, given by ¢ = (c1, ¢z, .. .,C2m41) and
d = (dy,dy,...,dom).

We represent the elements of G x H by a (20 + 1) x (2m + 1) array
of points, where the point in the ith row and jth column represents the
element (a;,c;). We then consider a particular directed Hamiltonian path
through these points and show that the sequence of vertices (in order,
starting at (a;,c;)) of this path is a terrace for G x H.

Figure 1 gives the directed Hamiltonian path for | = 2 and m = 3; it
generalises in the natural way for other values of ! and m.

CL C2 C3 C4 C Cg C7
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Figure 1: The Hamiltonian path through G x H

We need to check that the “2-sequencing” associated with this path is
indeed a 2-sequencing.

Let e and f be the identity elements of G and H respectively. Elements
of the “2-sequencing” that are of the form (e, k) are given by the horizontal
edges. In fact, the 2m horizontal edges yield the elements (e,d;) for 1 <
Jj < 2m; these elements have the correct properties as ¢ is a terrace.

Similarly, elements of the form (g, f) are given by the vertical edges. In
fact, the 2! vertical edges give the elements (biil, f) for 1 < i < 21; these
elements have the correct properties as a is a terrace.

163



Now, fix g € G\ {e} and h € H \ {f} and consider elements of the
form (g*!, h*1). There are exactly two pairs (i, j) such that there is a edge
between (a;,c;) and (@it1,¢j41), where b; = g*! and d; = h*!. The pair
of edges from (a;,c;) to (@i+1,¢i+1) and from (ait1,c;) to (ai,cjir) are
traversed in one of the following ways:

e south-east and south-west,

» north-east and north-west.

So in both cases we pick up exactly one from each pair {(g, k), (g7*,h~1)}
and {(g™}, h),(g,h~1)}. Thus the diagonal edges give us exactly the ele-
ments we need. So our Hamiltonian path gives a terrace for G x H. O

B. A. Anderson [5] proved a similar theorem, but required that one of
the terraces was “starter-translate” rather than half-and-half.

We now consider what happens when the terraces for G and H in The-
orem 1 are half-and-half or indeed narcissistic.

Theorem 2 Let G and H be groups which have half-and-half terraces.
Then G x H has a half-and-half terrace.

Proof: Let G have order 2l + 1 and half-and-half terrace a. Let H have
order 2m + 1 and half-and-half terrace c¢. Let (21 +1)(2m +1) = 2n + 1.
Apply Theorem 1 to give a terrace e for G x H whose 2-sequencing f is
(fl,f27° .. »f2n)'

Take k, with 1 < k < n, and let fi = (g,h). Then fir = (g,h)*! for
some k' with n+1 < k/ < 2n. This is true when g = e as ¢ is half-and-half.
It is true for other values of g as a is half-and-half. O

Corollary 3 Every abelian group of odd order has a half-and-half terrace.

Proof: It is well-known that any abelian group may be written as a direct
product of cyclic groups [16, chapter 4]. Cyclic groups of every odd order
have at least one half-and-half terrace—for example, the LWW terrace—
and so the result follows from repeated applications of Theorem 1. O

Theorem 4 Let G and H be groups which have narcissistic terraces. Then
G x H has a narcissistic terrace.

Proof: Let G have order 2! + 1 and narcissistic terrace a. Let H have
order 2m + 1 and narcissistic terrace c¢. Let (20 +1)(2m +1) = 2n + 1.
Apply Theorem 1 to give a terrace e for G x H whose 2-sequencing f is
(.flvf2:"')f2n)°

Take k, with 1 < k < n and let fi = (g,h). Then fons1-£ = (9, h).
This follows from the narcissism of a and ¢ and the rotational symmetry
of the Hamiltonian path. O
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Corollary 5 All abelian groups of odd order have narcissistic terraces.

Proof: As in the proof of Corollary 3, we may write an abelian group of
odd order as a direct product of cyclic groups. Each cyclic group of odd
order has at least one narcissistic terrace; for example the LWW terrace.
Repeated applications of Theorem 4 give the result. O

Example 6 The (narcissistic) LWW terrace for Zs is (0,1,4,2,3). Ap-
plying Theorem 1 gives the following narcissistic terrace for Zg x Zs (where
we have omitted brackets and commas from the direct product notation):

(00,01,04,12,03,13,02, 14,41, 10, 40, 11, 44,
22,43, 23,42, 24,31, 20, 30, 21, 34, 32, 33)
which has reflective 2-sequencing
(01,03,13,41, 10, 44, 12, 32, 24, 30, 21, 33,
33,21, 30,24, 32,12, 44, 10, 41, 13,03, 01).

If p and g are coprime then Z, x Z, = Z,,. So Theorem 1 allows us to
construct many half-and-half (and narcissistic) terraces for cyclic groups of
non-prime-power order.

Example 7 Consider Zy x Z3. Taking r = 5 we get the triangular num-
bers terrace (0,1,3,6,5,2,4) for Z;. The LWW terrace for Zs is (0,1,2).
Applying Theorem 1 to these terraces with G = Zy and H = Z3 gives the
following half-and-half terrace for Zy x Z3 (again omitting brackets and
commas):

(00,01, 12,02,11, 30, 10, 31, 62, 32, 61, 50, 60, 51, 22, 52, 21, 40, 20, 41, 42).
The associated 2-sequencing is

(01,11, 60,12, 22, 50, 21, 31, 40, 32, 62, 10, 61, 41, 30, 42, 22, 50, 21, 01).

3 Non-abelian groups
Let G2; be the non-abelian group of order 21:

3

Goy := (u,v:u’ = e =13 vu = ulv).

The following terrace is a half-and-half terrace for Ga;:
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(e,u, ut, v?, ub, wv, udv?, ud, wv?, utv?, udv,

6,y 2,902 2 2,2

ulv, u’ve, U, uv 62,4

4 2 6
, iy, v, uc, utve, ulv, ).
The associated 2-sequencing is

(u, u, udv?, ubv, udv, utv, v, udv?, ub, uie?,

u?, ubv, ulv, v?, uv?, ub, ud, uv, u?v?, ubv?).

Note that every non-identity element of Gs; occurs exactly once in the
2-sequencing. A terrace whose 2-sequencing has this property is called
directed, see {14] for a survey of results concerning directed terraces.

The following terrace is a narcissistic terrace for Goy:

(e, v, ubv, u, u?, utv, u?v?, ubv, udv?, v?2, 8,

uv, vy, ubv?, udv, uv?, v, w8, uSv?, ute?, ut).

The associated 2-sequencing is

(v, u®, ubv?, u, u?v, udv, u?v?, uv, u?, uSv,

5 2 2,,2 ,,3 2 6,,2

v, u?, uv, uv?, wdv, v?v, u, ub0?, U3, v).

These terraces were found using a heuristic algorithm implemented in
GAP (12]. The algorithm was closely based on the ideas of [1] and [15,
chapter 8].

Proposition 8 Infinitely many non-abelian groups have half-and-half ter-
races. Moreover, infinitely many non-abelian groups have narcissistic ter-
races. :

Proof: We can find a half-and-half terrace for G%,, for any positive integer
k, by applying Theorem 2 (k — 1) times, using one of the above half-and-
half terraces for Ga;. If we use the second of the two terraces then our
half-and-half terrace for Go; is narcissistic (by Theorem 4). O

We conclude with three questions:

Question 1 Does every non-abelian group of odd order have a half-and-
half terrace?

Question 2 Does every non-abelian group of odd order have a directed
half-and-half terrace?

Question 3 Does every non-abelian group of odd order have a narcissistic
terrace?

With regard to Question 2 we observe that it is not even known whether
every non-abelian group of odd order has a directed terrace.
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