Trees with Equal Domination and Paired-domination Numbers

¹Teresa W. Haynes, ²Michael A. Henning, and ³Peter J. Slater

¹Department of Mathematics East Tennessee State University Johnson City, TN 37614-0002 USA

²School of Mathematics, Statistics, & Information Technology University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa

³Mathematical Sciences University of Alabama in Huntsville Huntsville, AL 35899 USA

Abstract

A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G is the minimum cardinality of a paired-dominating set of G, and is obviously bounded below by the domination number of G. We give a constructive characterization of the trees with equal domination and paired-domination numbers.

^{*}Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

1 Introduction

For a graph G = (V, E), a set S is a dominating set if every vertex in V - S has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. We call a dominating set of cardinality $\gamma(G)$ a $\gamma(G)$ -set and use similar notation for other parameters. Domination and its many variations have been surveyed in [7, 8].

We are interested in a variation of domination called paired-domination where the dominating set has the additional property that all the vertices in the set can be matched (paired). Paired-domination was introduced by Haynes and Slater in [9, 10] as a model for assigning backups to guards for security purposes. (See also [1, 3, 4, 6, 12]). Formally, a set S is a paired-dominating set if it dominates V and the induced subgraph $\langle S \rangle$ contains at least one perfect matching. A paired-dominating set S with matching M is a dominating set $S = \{v_1, v_2, \ldots, v_{2t-1}, v_{2t}\}$ with independent edge set $M = \{e_1, e_2, \ldots, e_t\}$, where each edge e_i joins two elements of S, that is, M is a perfect matching (not necessarily induced) in the induced subgraph $\langle S \rangle$. If $v_j v_k = e_i \in M$, we say that v_j and v_k are paired in S. The paired-domination number $\gamma_{\rm pr}(G)$ is the minimum cardinality of a paired-dominating set of G.

Since every paired-dominating set is a dominating set, $\gamma(G) \leq \gamma_{\rm pr}(G)$ for all graphs G without isolated vertices. We call the graphs obtaining the lower bound $(\gamma, \gamma_{\rm pr})$ -graphs. It is our goal in this paper to characterize $(\gamma, \gamma_{\rm pr})$ -trees. Recently, Qiao, Kang, Cardei and Ding-Zhu [13] gave a characterization of $(\gamma, \gamma_{\rm pr})$ -trees. The characterization we present is a constructive characterization using labelings that is simpler than that presented in [13].

In general we follow the notation and graph theory terminology in [2, 7]. Specifically, a vertex of degree one is called a *leaf* and its neighbor is called a *support* vertex. A subset $S \subseteq V$ is a *packing* in G if the vertices of S are pairwise at distance at least three apart in G. The *packing number* $\rho(G)$ is the maximum cardinality of a packing in G. We will need the following fact from [11].

Theorem 1 (Moon and Meir [11]) For a tree T, $\gamma(T) = \rho(T)$.

2 $(\gamma, \gamma_{\rm pr})$ -Trees

Our aim in this section is to give a constructive characterization of the trees T having $\gamma(T) = \gamma_{\rm pr}(T)$. The key to our constructive characterization is to find a labeling of the vertices that indicates the roles each vertex plays in the sets associated with both parameters. This idea of labeling the vertices is introduced in [5], where trees with equal domination and independent domination numbers as well as trees with equal domination and total domination numbers are characterized.

We define a ρ - γ_{pr} -labeling of a tree T=(V,E) as a weak partition $S=(S_A,S_B,S_C,S_D)$ of V such that (i) $S_A\cup S_D$ is a $\gamma_{pr}(T)$ -set, (ii) $S_C\cup S_D$ is a $\rho(T)$ -set, and (iii) $|S_A|=|S_C|$. (The order and labeling are for compatibility with previous work.) We will refer to the pair (T,S) as a ρ - γ_{pr} -tree. The label or status of a vertex v, denoted $\operatorname{sta}(v)$, is the letter $x\in\{A,B,C,D\}$ such that $v\in S_x$.

Lemma 2 A tree T is a (γ, γ_{pr}) -tree if and only if T has a ρ - γ_{pr} -labeling.

Proof. Suppose (T,S) is a ρ - γ_{pr} -tree. Then Theorem 1 implies that $\rho(T) = \gamma(T) \leq \gamma_{pr}(T) = |S_A \cup S_D| = |S_C \cup S_D| = \rho(T)$, and so $\gamma(T) = \gamma_{pr}(T)$, i.e., T is (γ, γ_{pr}) -tree. Suppose that T is a (γ, γ_{pr}) -tree. Let P be a $\gamma_{pr}(T)$ -set and L be a $\rho(T)$ -set. Then a ρ - γ_{pr} -labeling is given by $S_A = P \setminus L$, $S_B = V \setminus (P \cup L)$, $S_C = L \setminus P$, and $S_D = L \cap P$. Since $\rho(T) = \gamma(T) = \gamma_{pr}(T)$, it follows that $|S_A| = |S_C|$. \square

We will need the following lemma:

Lemma 3 Consider a ρ - γ_{pr} -labeling of a tree T. If $v \in S_A$ (resp. S_C), then v is adjacent to exactly one vertex of S_C (resp. S_A). Moreover, S_D is empty.

Proof. Since $S_C \cup S_D$ is a packing, a vertex in S_A is adjacent to at most one vertex in $S_C \cup S_D$. Every vertex in S_C is adjacent to at least one vertex in S_A , since it is dominated by $S_A \cup S_D$ and has no neighbor in S_D . Since a vertex in S_A is adjacent to at most one vertex in $S_C \cup S_D$ and $|S_A| = |S_C|$, a vertex in S_C cannot have two neighbors in S_A (otherwise some other vertex in S_C has no neighbor in S_A), and every vertex in S_A is adjacent to a vertex in S_C . In particular, every vertex of S_D has neighbors only in S_B . Thus, $S_D = \emptyset$. \square

We now describe a procedure to build ρ - γ_{pr} -trees. By a labeled P_4 , we shall mean a P_4 with leaves of status C and support vertices of status A.

Let \mathcal{F} be the minimum family of labeled trees that:

- (i) contains a labeled P_4 ; and
- (ii) is closed under the four operations \mathcal{F}_j $(j=1,\ldots,4)$ listed below, which extend the tree T by attaching a tree to the vertex $v \in V(T)$.
- Operation \mathcal{F}_1 . Attach to a vertex v of status A a vertex of status B.
- Operation \mathcal{F}_2 . Add a labeled P_4 and join a vertex v of status A or B to a support vertex of the P_4 .
- Operation \mathcal{F}_3 . Add a labeled P_4 and join a vertex v of status B that has no neighbor of status C to a leaf of the P_4 .
- Operation \mathcal{F}_4 . Attach to a vertex v of status B or C a vertex of status B and join that vertex to a support vertex of a labeled P_4 .

These operations are illustrated in Figure 1 where by status B^* we mean a status B vertex that has no neighbor of status C.

We are now is a position to characterize ρ - γ_{pr} -trees. The proof of the following result is similar to that presented in [5] to characterize trees with equal domination and total domination numbers.

Theorem 4 A labeled tree is a ρ - γ_{pr} -tree if and only if it is in \mathcal{F} .

Proof. It is clear that the four operations \mathcal{F}_i , $1 \leq i \leq 4$, preserve a ρ - γ_{pr} -labeling, whence every element of \mathcal{F} is a ρ - γ_{pr} -tree.

The proof that every ρ - γ_{pr} -tree (T,S) is in \mathcal{F} is by induction on the order of T. The smallest ρ - γ_{pr} -tree is a labeled P_4 which is indeed in \mathcal{F} . So fix a ρ - γ_{pr} -tree (T,S) of order at least 5, and assume that any smaller ρ - γ_{pr} -tree is in \mathcal{F} . By Lemma 3, there is no vertex in the set S_D , and so the set S_A is a $\gamma_{pr}(T)$ -set while the set S_C is a $\rho(T)$ -set. In particular, each vertex of S_B is adjacent to at least one vertex of S_A and at most one vertex of S_C , and each vertex of S_A has degree at least 2 in T. Further, by Lemma 3, the set of edges between the vertices in S_A and S_C induce a perfect matching in $\langle S_A \cup S_C \rangle$.

Figure 1: The four \mathcal{F}_i operations.

To complete the proof, we need to identify a set P of vertices that can be pruned to leave a ρ - $\gamma_{\rm pr}$ -tree, and an operation $\mathcal R$ that restores the pruned vertices.

Since S_A is a paired-dominating set, each vertex is adjacent to a vertex of S_A . In particular, every leaf has status B or C. If there is a leaf u in S_B , then we can take $P = \{u\}$ and $\mathcal{R} = \mathcal{F}_1$. So we may assume that all leaves have status C. Hence all support vertices have status A and only one leaf as a neighbor.

Consider a diametrical path $v_0, v_1, v_2, \ldots, v_{\operatorname{diam}(T)}$. It follows from the above discussion that $\operatorname{diam}(T) \geq 4$ and that $v_0 \in S_C$, $v_1, v_2 \in S_A$ and v_1 has degree 2. We consider three possibilities.

Suppose $v_3 \in S_A$. Then, v_2 has a neighbor v_2' in S_C that is a leaf and v_2 has degree 3. Since S_A is a paired-dominating set, the vertices v_1 and v_2 are paired in $\langle S_A \rangle$, and so the vertex v_3 must have a neighbor, different from v_2 , of status A. Thus we can take $P = \{v_0, v_1, v_2, v_2'\}$ and $\mathcal{R} = \mathcal{F}_2$.

Suppose $v_3 \in S_B$. Then, v_2 has a neighbor v_2' in S_C that is a leaf and v_2 has degree 3. If v_3 has a neighbor in S_A different from v_2 , then take $P = \{v_0, v_1, v_2, v_2'\}$ and $\mathcal{R} = \mathcal{F}_2$. On the other hand, suppose that v_2 is the only neighbor of v_3 in S_A . Then, v_4 has status B or C. By the diameter constraint, v_3 cannot have another neighbor in S_B , and so v_3 has degree 2. Thus we can take $P = \{v_0, v_1, v_2, v_2', v_3\}$ and $\mathcal{R} = \mathcal{F}_4$.

Suppose $v_3 \in S_C$. Then, $v_4 \in S_B$ and v_2 has degree 2. By the diameter constraint, v_3 cannot have another neighbor in S_B , and so v_3 has degree 2. Since each vertex of S_B is adjacent to at most one vertex of S_C , all neighbors of v_4 other than v_3 have status A or B. Thus we can take $P = \{v_0, v_1, v_2, v_3\}$ and $\mathcal{R} = \mathcal{F}_3$. \square

By Theorem 1 and Lemma 2, it follows that:

Corollary 5 The (γ, γ_{pr}) -trees are precisely those trees T such that $(T, S) \in \mathcal{F}$ for some labeling S.

References

- [1] M. Blidia, M. Chellali, and T. W. Haynes, Characterizations of trees with equal paired and double domination numbers, manuscript.
- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition, Chapman & Hall, London, 1996.
- [3] M. Chellali and T. W. Haynes, On paired and double domination in graphs. *Utilitas Math.* 67 (2005) 161-171.
- [4] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets. Ars Combin. 73 (2004) 3-12.
- [5] M. Dorfling, W. Goddard, M. A. Henning, and C. M. Mynhardt, Construction of trees and graphs with equal domination parameters, manuscript.
- [6] S. Fitzpatrick and B. Hartnell, Paired-domination. Discuss. Math.-Graph Theory 18 (1998), 63-72.
- [7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

- [8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [9] T. W. Haynes and P. J. Slater, Paired-domination in graphs. Networks 32 (1998), 199-206.
- [10] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number. Congr. Numer. 109 (1995), 65-72.
- [11] A. Meir and J. W. Moon, Relations between packing and covering numbers of a tree. *Pacific J. Math.* 61 (1975), 225-233.
- [12] K. E. Proffitt, T. W. Haynes, and P. J. Slater, Paired-domination in grid graphs. Congr. Numer. 150 (2001), 161-172.
- [13] H. Qiao, L. Kang, M. Cardei and Ding-Zhu, Paired-domination of trees. J. Global Optimization 25 (2003), 43-54.