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Abstract

In this paper, we consider transformations between posets P and
Q, whose semi bound graphs are the same. Those posets with the
same double canonical posets can be transformed into each other by
a finite sequence of two kinds of transformations, called d_additions

and d_deletions.

Introduction

In this paper, we consider finite undirected simple graphs. For a poset

P

= (X, <), the semi bound graph (SB-graph) of P = (X, <) is the graph

SB(P) = (X, Esp(p)), where uwv € Esp(p) if and only if u 3 v and there
exists a common lower bound of u and v in P or a common upper bound u
and v in P. We introduced this concept and gave characterizations of semi
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bound graphs in [3]. We already know other kinds of graphs on posets, that
is, upper bound graphs and double bound graphs. In [5] and [6) we deal
with properties of transformations on upper bound graphs. And we also
obtained properties of transformations on double bound graphs in [2] and
(7]

Figure 1 shows two different posets which have the common semi bound
graphs. This example induces an interest in properties of posets with the
same SB-graph: how to obtain any corresponding poset of an SB-graph
from any other one in finitely many steps? In this paper, we shall answer
this question, introducing two kinds of transformations of such posets.

’

Figure 1: Posets P and Q.

2 Transformations of posets

For a poset P = (X,<)andz € X, Lp(z) = {y € X;y < z} and Up(z) =
{y € X;y > z}. Furthermore M az(P) is the set of all maximal elements
of P, Min(P) is the set of all minimal elements of P.

For a vertex v in G, the neighborhood of v is the set of vertices which are
adjacent to v in G, and denoted by Ng(v). A cligue in the graph G is the
vertex set of maximal complete subgraph. In some cases, we consider that a
clique is a maximal complete subgraph. A family C of complete subgraphs
edge covers G if and only if for each edge uv € E(G), there exists C € C
such that u,v € C.

For a graph G with fixed two disjoint independent subsets M and N
of V(G) and u € V(G) — (M U N), define the sets Ug(v) = {u € M;uv €
E(G)}, Lg(v) = {u € N;uw € E(G)}.

Theorem 1. ([6]) Let G be a graph with n vertices. G is an SB-graph
if and only if G has spanning subgraphs H and K satisfying the following
conditions:

(0) E(G) = E(H)U E(K),

(1) there exists a family C = {C1, C,...,Ck} of cliques of H and disjoint
independent subsets M and N such that

(a) C edge covers H,
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(b) for each C;, there exist m; € M, n; € N such that {mi,n;} C C;
and {my,n;} € C; for all i # j, and

(¢) for each v € V(H) — (M UN), [Ug(v)| x |[Lu(v)| equals the

number of elements of C containing v.

(2) uv € E(K) if and only if MNNu(u)NNy(v) #0 and NN Ny(w)N
Ng(v) =0, or MONy(u)NNg(v) = 0 and NONy(u)NNy(v) # 0.0

For an SB-graph G and an edge clique cover C = {C;,C,,...,Cy,} sat-
isfying the conditions of Theorem 1, M is called an upper kernel U Ksp(G)
of G and N is called a lower kernel LKsp(G) of G. In the following sec-
tions, we consider a fixed labeled connected SB-graph G with a fixed upper
kernel UKsp(G) and a fixed lower kernel LKgp(G). We know that for a
corresponding posets P of an SB-graph G, UKsg(G) corresponds to the
set Max(P) and LKgg(G) corresponds to the set Min(P).

For an SB-graph G, Psg(G) = {P; SB(P) = G, Maxz(P) = UKsg(G),
Min(P) = LKsp(G)}. Each poset P in Pgp(G) is identified with the
set of comparability’s in P. Thus Psg(G) is a poset by set inclusions.
For a poset P, the double canonical poset of P is the poset d_can(P) =
(V(P), <d_can(p))> Where = <y con(p) ¥ if and only if (1) y € Maz(P) and
z<py,or(2)ze€ Min(P)andz <py,or (3) z=y.

We classify posets in Psp(G) according to double canonical posets.
That is, we classify Psp(G) having each class a type Psp(G; D) = { P; SB(P)
= G, Maz(P) = UKsp(G), Min(P) = LKsp(G),d_can(P) = D}. Each
Psp(G; D) is a subposet of Psp(G). Note that D is the minimum element
of Psg(G; D), Maz(D) = UKgp(G) and Min(D) = LKsp(G).

To consider some relations among elements of Psp(G; D), we need some
concepts as follows: For elements x € Min(P) and y ¢ Maz(P) in a poset
P such that z is covered by y, the poset P;., is obtained from P by
subtracting the relation z < y from P, and we call this transformation the
z < y-d_deletion. For an incomparable pair z ¢ Min(P) and y ¢ Maz(P)
in a poset P such that Up(y) C Up(z) and Lp(y) 2 Lp(z), the poset
PZZ, is obtained from P by adding the relation z < y to P, and we call
this transformation the z < y-d-addition. We obtain the following facts on
these transformations.

Fact 2. For a poset P,

(1) P and P;_, have the same SB-graph,
(2) P and Pj’é; also have the same SB-graph, and

(3) z < y-d_addition and z < y-d_deletion are inverse transformations to
each other. O
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By these facts, we obtain the following result.
Theorem 3. Let G be an SB-graph and P, Q be posets in Psp(G; D).

(1) P can be transformed into Q by a sequence of z < y-d_deletions and
T < y-d_additions.

(2) Every poset in Psp(G; D) is obtained from D by z < y-d_additions
only.

Proof. For a poset P, the number of comparable pairs in P7_, is less than
the number of comparable pairs in P. Since P and Q are finite, we obtain

the sequences of d_deletions such that

d_daletion d_dcletion

P — ... — " d.can(P),
and d_deletion d_deletion
and . —_ d.can(Q),

Since the double canonical posets of P and Q are the same, we obtain
the transformations from P to Q by combining the following procedures of
d_deletions and d_additions:

d_delction d_delction

P — ... — "dcan(P)=D
d_delation d_deletion

— decan(Q) = D.

0
For an SB-graph G with an upper kernel UK sg(G) and a lower kernel
LKsp(G), G is a unique SB-graph on the double canonical poset D if it has
only one realizing poset whose double canonical poset is D. By Theorem 3
we get the following result.
Proposition 4. Let G be an SB-graph with an upper kernel UK sp(G) and
a lower kernel LK sp(G). Then the following are equivalent:

(1) G is o unique SB-graph on the double canonical poset D,
(2) Psp(G; D) = {D},

(3) For all u,v € V(G)—(UKsp(G)ULKsp(G)), if Nuk(u) 2 Nyk(v),
then Npy(u) € Npk(v), and Npk(u) € Npk(v), then Nyk(u) 2
Nuk(v), where Nyk(u) = {m; € UKsp(G);um; € E(G)} and
NLK('U,) = {m € LKSB(G);uni € E(G)} O

180



3 Distances of posets on semi bound graphs

For a poset P = (X, <), the double bound graph (DB-graph) of P = (X, <) -
is the graph DB(P) = (X, Epp(p)), Where uv € Epp(p) if and only if
u # v and there exist m,n € X such that n < u, v < m. Diny (1] gives a
characterization of double bound graphs.

Theorem 5. (Diny [1]) A graph G is a DB-graph if and only if there
exists a family C = {Cy,...,Cpn} of complete subgraphs of G and disjoint
independent subsets Mg and Ng such that

(1) C edge covers G,

(2) for each C;, there exist m; € Mg and n; € Ng such that {m;,n;} C
Ci and {mi,n;} £ C; for all i # j, and

(3) for each v € V(G) — (Mg U Ng), |Upmg(v)] X |Lng(v)| equals the
number of cliques of C containing v.

Furthermore, a family C is the unique, minimal edge covering family of
cliques in G. 0

We already know that for a corresponding poset P of a DB-graph
G, M¢ corresponds to Maxz(P) and Ng corresponds to Min(P). For a
fixed labeled DB-graph G with Mg and Ng, Ppp(G) = {P;DB(P) =
G, Maz(P) = Mg, Min(P) = Ng} is a poset. We define the double canon-
ical poset on a graph as follows: the double canonical poset of a graph G is
the poset (V(G) <d_can(c)), Where £ <4 _can(c) ¥ if and only if (1) y € Mg
and zy € E(G), or (2) x € Ng and zy € E(G), or (3) z=1y.

We know that an SB-graph G, the graph H of Theorem 1 is a DB-graph,
My = UKsp(G) and Ny = LKsp(G). Then the double canonical poset
d_can(G) with My and Ny is a poset whose SB-graph is G. So we have
the next result.

Proposition 6. Every poset in Psp(G;d-can(G)) has the same double
bound graph and Psg(G; D) = Ppp(G) if D = d_can(G). o

We know the following results on DB-graphs in [2] and [7]. In the

following we deal with a fixed labeled DB-graph G with a fixed upper
kernel Mg and a fixed lower kernel Ng.
Theorem 7. ([2]) Let G be a DB-graph with an upper kernel M¢ and a
lower kernel Ng. Let P be a mazimal poset on Ppg(D), Ma(z) = {m; €
Mg = Max(P);x <p m;} and Mi(z) = {n; € Ng = Min(P);n; <p z}
for z € V(G) - (Mg U Ng).

(1) For all z,y € V(G) — (Mg U Ng) such that Ma(z) # Ma(y) or
Mi(z) # Mi(y), z <p y if and only if Ma(z) 2 Ma(y) and Mi(z) C
Mi(y).
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(2) For all z,y € V(G) — (Mg U Ng), if Ma(z) = Ma(y) and Mi(z) =
Mi(y), thenz <p yory<p z. (]

For a DB-graph G with an upper kernel M and a lower kernel Ng,
S C Mg and T C Ng, we denote

I(S!T) = n':eei ) NG’(n: m) — U:g:!‘g:’ls‘ ) NG(nv m)»

where Ng(n,m) = {v € V(G) : vn,vm € E(G)}.
Theorem 8. ([2]) Let G be a DB-graph with an upper kernel Mg and o
lower kernel Ng. Then two mazimal posets on Ppp(G) are isomorphic.
Furthermore, differences of two mazimal posets on Ppg(G) are only total
orderings of the elements in I(S,T) for each ® # S C M¢ and each @ #
T C Ng. ]
In a DB-graph G with an upper kernel Mz and alower kernel Ng, the
distance between posets P and Q in Pppg(G), denoted by dpp(P, Q), is
the minimum number of transformations from P to @ by d_deletions and
d-additions. The diameter d(Ppg(G)) is maz{dpp(P,Q); P,Q € Pps(G)}.
Theorem 9. ([7]) For a DB-graph G with an upper kernel Mg and o
lower kernel Ng,

d(Ppp(G))=2 x gwguc,(ll(s,m)

8£TCNG 2
+  Zoxs,csaeme, (1(S1, Th)| x | (S2, T2)|).
9£TCT1CNg

O
By Proposition 6, similar results hold in SB-graphs with the double
canonical poset D, an upper kernel U Ksg(G) and a lower kernel LK sg(G)
as follows.
Theorem 10. Let G be an SB-graph with the double canonical poset D, an
upper kernel UKsg(G) and a lower kernel LKsg(G). Let P be a mazimal
poset on Psg(G; D), Ma(z) = {m; € UKsp(G) = Max(P);z <p m;}
and M;(z) = {n; € LKsg(G) = Min(P);n; <p z} for z € V(G) —
(UKsg(G)U LK sp(G)).

(1) For all z,y € V(G) — (UKsp(G) U LKsp(G)) such that Ma(zx) #
Ma(y) or Mi(z) # Mi(y), =z <p y if and only if Ma(z) 2 Ma(y)
and Mi(z) C Mi(y).

(2) For all z,y € V(G) — (UKsp(G) U LKsp(G)), if Ma(z) = Ma(y)
and Mi(z) = Mi(y), then z <p yor y<p z. u]

For an SB-graph G with the double canonical poset D, an upper kernel
UKsg(G) and a lower kernel LKsg(G), we use

I(S,T) =Nmes, Ng(n,m) — Umevksgior-s, Ng(n,m),
ne€T nELKgp(G)-T
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where S C UKsp(G), T C LKsg(G) and Ng(n,m) = {v € V(G);vn,vm €
E(G)}. We also have the following result.
Theorem 11. Let G be an SB-graph with the double canonical poset D,
an upper kernel UKsp(G) and a lower kernel LKsp(G). Then the two
mazimal posets on Psp(G; D) are isomorphic. Furthermore, differences of
two mazimal posets on Psp(G; D) are only total orderings of the elements
in I(S,T) for each @ # S C UKsp(G) and each § # T C LKsg(G). m]
Theorem 10 means that relations on a maximal poset in Pgp(G; D) are
determined by the set inclusions on Ma(z) and Mi(z). In Theorem 11
V(G) is decomposed as follows:

V(G) = (Uegscuksg,I(S, T)UUKsp(G) U LKsp(G).

0ATCLKSg(G)
Then for a maximal poset P in Psg(G; D), z € I(S1,T1) and y € I(Ss, T3),
z <p yifand only if 51 D Sz and T} C T3.

The elements in I(S,T) also form a total order in P.

For an SB-graph G with the double canonical poset D, an upper kernel
UKsp(G) and a lower kernel LK ¢5(G), we introduce some definitions. The
distance between posets P and Q in Psp(G; D), denoted by dsp(P,Q),
is the minimum number of transformations from P to Q by d._deletions
and d_additions. The diameter d(Psg(G; D) is maz{dsp(P,Q) : P,Q €
Psg(G; D)}. Then we have the following result.

Theorem 12. For an SB-graph G with the double canonical poset D, and
upper kernel UKsp(G) and a lower kernel LK sp(G),

8#TCLKSR(G) 2

+  Zogsicsicuksp@, (1(S1,Th)| x |[1(S2, T2)]).

0#£T2CTICLKsp(G)

d(Psp(G; D)) =2 x Zesscuxsp(@, (II(S, T)I)
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