Note on transformation of posets with the same semi bound graphs

Hiroshi ERA
Faculty of Information and Communication
Bunkyo University

Chgasaki 253-0007, Japan

Kenjiro OGAWA

Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, Japan

Morimasa TSUCHIYA*

Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, Japan

and

Department of Mathematics, MIT Cambridge MA 02139-4307, USA e-mail: tsuchiya@ss.u-tokai.ac.jp

Abstract

In this paper, we consider transformations between posets P and Q, whose semi bound graphs are the same. Those posets with the same double canonical posets can be transformed into each other by a finite sequence of two kinds of transformations, called d_additions and d_deletions.

1 Introduction

In this paper, we consider finite undirected simple graphs. For a poset $P = (X, \leq)$, the semi bound graph (SB-graph) of $P = (X, \leq)$ is the graph $SB(P) = (X, E_{SB(P)})$, where $uv \in E_{SB(P)}$ if and only if $u \neq v$ and there exists a common lower bound of u and v in P or a common upper bound u and v in P. We introduced this concept and gave characterizations of semi

^{*}Corresponding author

bound graphs in [3]. We already know other kinds of graphs on posets, that is, upper bound graphs and double bound graphs. In [5] and [6] we deal with properties of transformations on upper bound graphs. And we also obtained properties of transformations on double bound graphs in [2] and [7].

Figure 1 shows two different posets which have the common semi bound graphs. This example induces an interest in properties of posets with the same SB-graph: how to obtain any corresponding poset of an SB-graph from any other one in finitely many steps? In this paper, we shall answer this question, introducing two kinds of transformations of such posets.

Figure 1: Posets P and Q.

2 Transformations of posets

For a poset $P = (X, \leq)$ and $x \in X$, $L_P(x) = \{y \in X; y < x\}$ and $U_P(x) = \{y \in X; y > x\}$. Furthermore Max(P) is the set of all maximal elements of P, Min(P) is the set of all minimal elements of P.

For a vertex v in G, the neighborhood of v is the set of vertices which are adjacent to v in G, and denoted by $N_G(v)$. A clique in the graph G is the vertex set of maximal complete subgraph. In some cases, we consider that a clique is a maximal complete subgraph. A family C of complete subgraphs edge covers G if and only if for each edge $uv \in E(G)$, there exists $C \in C$ such that $u, v \in C$.

For a graph G with fixed two disjoint independent subsets M and N of V(G) and $u \in V(G) - (M \cup N)$, define the sets $U_G(v) = \{u \in M; uv \in E(G)\}$, $L_G(v) = \{u \in N; uv \in E(G)\}$.

Theorem 1. ([6]) Let G be a graph with n vertices. G is an SB-graph if and only if G has spanning subgraphs H and K satisfying the following conditions:

- (0) $E(G) = E(H) \cup E(K)$,
- (1) there exists a family $C = \{C_1, C_2, \dots, C_k\}$ of cliques of H and disjoint independent subsets M and N such that
 - (a) C edge covers H,

- (b) for each C_i , there exist $m_i \in M$, $n_i \in N$ such that $\{m_i, n_i\} \subseteq C_i$ and $\{m_i, n_i\} \not\subseteq C_i$ for all $i \neq j$, and
- (c) for each $v \in V(H) (M \cup N)$, $|U_H(v)| \times |L_H(v)|$ equals the number of elements of C containing v.
- (2) $uv \in E(K)$ if and only if $M \cap N_H(u) \cap N_H(v) \neq \emptyset$ and $N \cap N_H(u) \cap N_H(v) = \emptyset$, or $M \cap N_H(u) \cap N_H(v) = \emptyset$ and $N \cap N_H(u) \cap N_H(v) \neq \emptyset$. \square

For an SB-graph G and an edge clique cover $C = \{C_1, C_2, \ldots, C_n\}$ satisfying the conditions of Theorem 1, M is called an *upper kernel UK_{SB}(G)* of G and N is called a *lower kernel LK_{SB}(G)* of G. In the following sections, we consider a fixed labeled connected SB-graph G with a fixed upper kernel $UK_{SB}(G)$ and a fixed lower kernel $LK_{SB}(G)$. We know that for a corresponding posets P of an SB-graph G, $UK_{SB}(G)$ corresponds to the set Max(P) and $LK_{SB}(G)$ corresponds to the set Min(P).

For an SB-graph G, $\mathcal{P}_{SB}(G) = \{P; SB(P) = G, Max(P) = UK_{SB}(G), Min(P) = LK_{SB}(G)\}$. Each poset P in $\mathcal{P}_{SB}(G)$ is identified with the set of comparability's in P. Thus $\mathcal{P}_{SB}(G)$ is a poset by set inclusions. For a poset P, the double canonical poset of P is the poset $d_{can}(P) = (V(P), \leq_{d_{can}(P)})$, where $x \leq_{d_{can}(P)} y$ if and only if (1) $y \in Max(P)$ and $x \leq_{P} y$, or (2) $x \in Min(P)$ and $x \leq_{P} y$, or (3) x = y.

We classify posets in $\mathcal{P}_{SB}(G)$ according to double canonical posets. That is, we classify $\mathcal{P}_{SB}(G)$ having each class a type $\mathcal{P}_{SB}(G;D) = \{P;SB(P) = G, Max(P) = UK_{SB}(G), Min(P) = LK_{SB}(G), d_can(P) = D\}$. Each $P_{SB}(G;D)$ is a subposet of $\mathcal{P}_{SB}(G)$. Note that D is the minimum element of $\mathcal{P}_{SB}(G;D)$, $Max(D) = UK_{SB}(G)$ and $Min(D) = LK_{SB}(G)$.

To consider some relations among elements of $\mathcal{P}_{SB}(G;D)$, we need some concepts as follows: For elements $x \notin Min(P)$ and $y \notin Max(P)$ in a poset P such that x is covered by y, the poset $P_{x < y}^{--}$ is obtained from P by subtracting the relation $x \leq y$ from P, and we call this transformation the x < y-d-deletion. For an incomparable pair $x \notin Min(P)$ and $y \notin Max(P)$ in a poset P such that $U_P(y) \subseteq U_P(x)$ and $L_P(y) \supseteq L_P(x)$, the poset $P_{x < y}^{++}$ is obtained from P by adding the relation $x \leq y$ to P, and we call this transformation the x < y-d-addition. We obtain the following facts on these transformations.

Fact 2. For a poset P,

- (1) P and $P_{x \le y}^{--}$ have the same SB-graph,
- (2) P and $P_{x \le y}^{++}$ also have the same SB-graph, and
- (3) x < y-d_addition and x < y-d_deletion are inverse transformations to each other.

By these facts, we obtain the following result. Theorem 3. Let G be an SB-graph and P, Q be posets in $\mathcal{P}_{SB}(G; D)$.

- (1) P can be transformed into Q by a sequence of x < y-d_deletions and x < y-d_additions.
- (2) Every poset in $\mathcal{P}_{SB}(G; D)$ is obtained from D by x < y-d_additions only.

Proof. For a poset P, the number of comparable pairs in $P_{x < y}^{--}$ is less than the number of comparable pairs in P. Since P and Q are finite, we obtain the sequences of d_deletions such that

$$P \xrightarrow{d_deletion} \dots \xrightarrow{d_deletion} d_can(P),$$

and

$$Q \stackrel{d_deletion}{\longrightarrow} \dots \stackrel{d_deletion}{\longrightarrow} d_can(Q),$$

Since the double canonical posets of P and Q are the same, we obtain the transformations from P to Q by combining the following procedures of d_deletions and d_additions:

$$P \xrightarrow{d_dalction} \dots \xrightarrow{d_dalction} d_can(P) = D$$

$$Q \stackrel{d_delation}{\leftarrow} \dots \stackrel{d_deletion}{\leftarrow} d_can(Q) = D.$$

For an SB-graph G with an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$, G is a unique SB-graph on the double canonical poset D if it has only one realizing poset whose double canonical poset is D. By Theorem 3 we get the following result.

Proposition 4. Let G be an SB-graph with an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$. Then the following are equivalent:

- (1) G is a unique SB-graph on the double canonical poset D,
- (2) $\mathcal{P}_{SB}(G; D) = \{D\},\$
- (3) For all $u, v \in V(G) (UK_{SB}(G) \cup LK_{SB}(G))$, if $N_{UK}(u) \supseteq N_{UK}(v)$, then $N_{LK}(u) \not\subseteq N_{LK}(v)$, and $N_{LK}(u) \subseteq N_{LK}(v)$, then $N_{UK}(u) \not\supseteq N_{UK}(v)$, where $N_{UK}(u) = \{m_i \in UK_{SB}(G); um_i \in E(G)\}$ and $N_{LK}(u) = \{n_i \in LK_{SB}(G); un_i \in E(G)\}$.

3 Distances of posets on semi bound graphs

For a poset $P=(X, \leq)$, the double bound graph (DB-graph) of $P=(X, \leq)$ is the graph $DB(P)=(X, E_{DB(P)})$, where $uv \in E_{DB(P)}$ if and only if $u \neq v$ and there exist $m, n \in X$ such that $n \leq u, v \leq m$. Diny [1] gives a characterization of double bound graphs.

Theorem 5. (Diny [1]) A graph G is a DB-graph if and only if there exists a family $C = \{C_1, \ldots, C_n\}$ of complete subgraphs of G and disjoint independent subsets M_G and N_G such that

- (1) C edge covers G,
- (2) for each C_i , there exist $m_i \in M_G$ and $n_i \in N_G$ such that $\{m_i, n_i\} \subseteq C_i$ and $\{m_i, n_i\} \not\subseteq C_j$ for all $i \neq j$, and
- (3) for each $v \in V(G) (M_G \cup N_G)$, $|U_{M_G}(v)| \times |L_{N_G}(v)|$ equals the number of cliques of C containing v.

Furthermore, a family C is the unique, minimal edge covering family of cliques in G.

We already know that for a corresponding poset P of a DB-graph G, M_G corresponds to Max(P) and N_G corresponds to Min(P). For a fixed labeled DB-graph G with M_G and N_G , $\mathcal{P}_{DB}(G) = \{P; DB(P) = G, Max(P) = M_G, Min(P) = N_G\}$ is a poset. We define the double canonical poset on a graph as follows: the double canonical poset of a graph G is the poset $(V(G) \leq_{d_can(G)})$, where $x \leq_{d_can(G)} y$ if and only if (1) $y \in M_G$ and $xy \in E(G)$, or (2) $x \in N_G$ and $xy \in E(G)$, or (3) x = y.

We know that an SB-graph G, the graph H of Theorem 1 is a DB-graph, $M_H = UK_{SB}(G)$ and $N_H = LK_{SB}(G)$. Then the double canonical poset $d_can(G)$ with M_H and N_H is a poset whose SB-graph is G. So we have the next result.

Proposition 6. Every poset in $\mathcal{P}_{SB}(G; d_can(G))$ has the same double bound graph and $\mathcal{P}_{SB}(G; D) = \mathcal{P}_{DB}(G)$ if $D = d_can(G)$.

We know the following results on DB-graphs in [2] and [7]. In the following we deal with a fixed labeled DB-graph G with a fixed upper kernel M_G and a fixed lower kernel N_G .

Theorem 7. ([2]) Let G be a DB-graph with an upper kernel M_G and a lower kernel N_G . Let P be a maximal poset on $\mathcal{P}_{DB}(D)$, $Ma(x) = \{m_i \in M_G = Max(P); x \leq_P m_i\}$ and $Mi(x) = \{n_i \in N_G = Min(P); n_i \leq_P x\}$ for $x \in V(G) - (M_G \cup N_G)$.

(1) For all $x, y \in V(G) - (M_G \cup N_G)$ such that $Ma(x) \neq Ma(y)$ or $Mi(x) \neq Mi(y), x \leq_P y$ if and only if $Ma(x) \supseteq Ma(y)$ and $Mi(x) \subseteq Mi(y)$.

(2) For all $x, y \in V(G) - (M_G \cup N_G)$, if Ma(x) = Ma(y) and Mi(x) = Mi(y), then $x \leq_P y$ or $y \leq_P x$.

For a DB-graph G with an upper kernel M_G and a lower kernel N_G , $S \subseteq M_G$ and $T \subseteq N_G$, we denote

$$I(S,T) = \bigcap_{\substack{m \in S \\ n \in T}} N_G(n,m) - \bigcup_{\substack{m \in M_G - S \\ n \in N_G - T}} N_G(n,m),$$

where $N_G(n, m) = \{v \in V(G) : vn, vm \in E(G)\}.$

Theorem 8. ([2]) Let G be a DB-graph with an upper kernel M_G and a lower kernel N_G . Then two maximal posets on $\mathcal{P}_{DB}(G)$ are isomorphic. Furthermore, differences of two maximal posets on $\mathcal{P}_{DB}(G)$ are only total orderings of the elements in I(S,T) for each $\emptyset \neq S \subseteq M_G$ and each $\emptyset \neq T \subseteq N_G$.

In a DB-graph G with an upper kernel M_G and allower kernel N_G , the distance between posets P and Q in $\mathcal{P}_{DB}(G)$, denoted by $d_{DB}(P,Q)$, is the minimum number of transformations from P to Q by d_deletions and d_additions. The diameter $d(\mathcal{P}_{DB}(G))$ is $max\{d_{DB}(P,Q); P,Q \in \mathcal{P}_{DB}(G)\}$. Theorem 9. ([7]) For a DB-graph G with an upper kernel M_G and a lower kernel N_G ,

$$\begin{split} d(\mathcal{P}_{DB}(G)) &= 2 &\times & \Sigma_{\substack{\emptyset \neq S \subseteq M_G \\ \emptyset \neq T \subseteq N_G}}, \begin{pmatrix} |I(S,T)| \\ 2 \end{pmatrix} \\ &+ & \Sigma_{\substack{\emptyset \neq S_1 \subseteq S_2 \subseteq M_G \\ \emptyset \neq T_2 \subseteq T_1 \subseteq N_G}}, (|I(S_1,T_1)| \times |I(S_2,T_2)|). \end{split}$$

By Proposition 6, similar results hold in SB-graphs with the double canonical poset D, an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$ as follows.

Theorem 10. Let G be an SB-graph with the double canonical poset D, an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$. Let P be a maximal poset on $\mathcal{P}_{SB}(G; D)$, $Ma(x) = \{m_i \in UK_{SB}(G) = Max(P); x \leq_P m_i\}$ and $M_i(x) = \{n_i \in LK_{SB}(G) = Min(P); n_i \leq_P x\}$ for $x \in V(G) - (UK_{SB}(G) \cup LK_{SB}(G))$.

- (1) For all $x, y \in V(G) (UK_{SB}(G) \cup LK_{SB}(G))$ such that $Ma(x) \neq Ma(y)$ or $Mi(x) \neq Mi(y)$, $x \leq_P y$ if and only if $Ma(x) \supseteq Ma(y)$ and $Mi(x) \subseteq Mi(y)$.
- (2) For all $x, y \in V(G) (UK_{SB}(G) \cup LK_{SB}(G))$, if Ma(x) = Ma(y) and Mi(x) = Mi(y), then $x \leq_P y$ or $y \leq_P x$.

For an SB-graph G with the double canonical poset D, an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$, we use

$$I(S,T) = \bigcap_{\substack{m \in S \\ n \in T}} N_G(n,m) - \bigcup_{\substack{m \in UK_{SB}(G) - S \\ n \in LK_{SB}(G) - T}} N_G(n,m),$$

where $S \subseteq UK_{SB}(G)$, $T \subseteq LK_{SB}(G)$ and $N_G(n, m) = \{v \in V(G); vn, vm \in E(G)\}$. We also have the following result.

Theorem 11. Let G be an SB-graph with the double canonical poset D, an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$. Then the two maximal posets on $\mathcal{P}_{SB}(G;D)$ are isomorphic. Furthermore, differences of two maximal posets on $\mathcal{P}_{SB}(G;D)$ are only total orderings of the elements in I(S,T) for each $\emptyset \neq S \subseteq UK_{SB}(G)$ and each $\emptyset \neq T \subseteq LK_{SB}(G)$.

Theorem 10 means that relations on a maximal poset in $\mathcal{P}_{SB}(G; D)$ are determined by the set inclusions on Ma(x) and Mi(x). In Theorem 11 V(G) is decomposed as follows:

$$V(G) = (\bigcup_{\substack{0 \neq S \subseteq UK_{SB}(G) \\ 0 \neq T \subseteq LK_{SB}(G)}}, I(S,T) \cup UK_{SB}(G) \cup LK_{SB}(G).$$

Then for a maximal poset P in $\mathcal{P}_{SB}(G;D)$, $x \in I(S_1,T_1)$ and $y \in I(S_2,T_2)$,

$$x \leq_P y$$
 if and only if $S_1 \supset S_2$ and $T_1 \subset T_2$.

The elements in I(S,T) also form a total order in P.

For an SB-graph G with the double canonical poset D, an upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$, we introduce some definitions. The distance between posets P and Q in $\mathcal{P}_{SB}(G;D)$, denoted by $d_{SB}(P,Q)$, is the minimum number of transformations from P to Q by d-deletions and d-additions. The diameter $d(\mathcal{P}_{SB}(G;D))$ is $max\{d_{SB}(P,Q): P,Q \in \mathcal{P}_{SB}(G;D)\}$. Then we have the following result.

Theorem 12. For an SB-graph G with the double canonical poset D, and upper kernel $UK_{SB}(G)$ and a lower kernel $LK_{SB}(G)$,

$$\begin{split} d(\mathcal{P}_{SB}(G;D)) = 2 & \times & \sum_{\substack{\emptyset \neq S \subseteq UK_{SB}(G) \\ \emptyset \neq T \subseteq LK_{SB}(G)}} & \binom{|I(S,T)|}{2} \\ & + & \sum_{\substack{\emptyset \neq S_1 \subset S_2 \subseteq UK_{SB}(G) \\ \emptyset \neq T_2 \subset T_1 \subseteq LK_{SB}(G)}} & (|I(S_1,T_1)| \times |I(S_2,T_2)|). \end{split}$$

References

- [1] D. Diny, The double bound of a partially ordered set, Journal of Combinatorics, Information & System Sciences 10 (1985), 52-56.
- [2] H. Era, K. Ogawa and M. Tsuchiya, On transformations of posets which have the same bound graph, *Discrete Mathematics* 235 (2001), 215–220.
- [3] H. Era, K. Ogawa and M. Tsuchiya, A note on semi bound graphs, Congressus Numerantium 145 (2000), 129-135.
- [4] F.R. McMorris and T. Zaslavsky, Bound graphs on a partially orders set, Journal of Combinatorics, Information & System Sciences 7 (1982), 134-138.
- [5] K. Ogawa, On distance of posets with the same upper bound graph, Yokohama Mathematical Journal 47 (1999), 231-237.
- [6] K. Ogawa and M. Tsuchiya, On distance of posets on upper bound graphs, Research Communications of the Conference held in the Memory of Paul Erdos, 201–203.
- [7] K. Ogawa and M. Tsuchiya, Note on distance of posets whose double bound graphs are the same, preprint.