Enumeration of order ideals of a garland

Emanuele Munarini

Summary. We enumerate all order ideals of a garland, a partially
ordered set which generalizes crowns and fences. Moreover we give some
bijection between the set of such ideals and the set of certain kinds of lattice
paths.
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1 Introduction

Let G, be the partially ordered set (poset) with elements z,, ..., Zn,
Y1, -.-» Yn and with cover relations z; < y1, 1 < y2, Zi < ¥Yi-1,
Ti <Yi, Ti <Yip1 for 1=2,...,n—1 and Zp < Yn-1, Tn <¥Un for
n>2. Thenlet Go be the empty set and G; be a chain of length 1. The
poset G, will be called garland. Notice that G, contains as subposets
the crown C, and the fence Z2, [6, 9]

Let gnx be the number of all order ideals of size k of G, and
similarly let gn be the number of all order ideals of G,. Then let gn(q)
be the rank polynomial of the lattice J(Gn) of all order ideals of G, that
is gn(q) = Lo nk a* -

Consider the garland Gn42. Then partition all the ideals of Gn+t2
according to the containment of Zn+2. The ideals containing ZTn42
are equivalent to the ideals of Gy = On+2 \ {Zn+2}, while the ide-
als not containing Tn42 are equivalent to the ideals of Gp = On+2 \

{Tn+2,Yn+2,Yn+1} -
n Yn Yni4l Yn+t2 n Yn Yn+1 Ynt2 51 Yn

=q +

T Tn TntlTnd2 T In Tn+l 3] Tn Tnil
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Consider now G, . This time the ideals can be partitioned according
to the containment of yn43. The ideals not containing y,43 are equivalent
to the ideals of Gy, \ {¥n+3} = Gnt2, while the ideals containing yni3
are equivalent to the ideals of G, \ {yn43} = Gni2 containing zn,,.
These latter ideals are all the ideals of Gn,3 except those not containing
Tn+2 Which are equivalent to the ideals of Gny2\{Tn+2,Ynt2,¥nt1} =G .

n UYn Yn+1Ynt+2Yni3 j1 Yn Yn+1Yni2 )1 Yn
=(1+4q) -q
T Tn Tp+1Zn42 T Tn Tn+1Tn42 T Tn Tntl

Finally consider Gy, and partition its ideals according to the contain-
ment of z,13. The ideals containing .., are equivalent to the ideals of
Gn+1 \ {Zn+2} = Gn, while the ideals not containing zn,., are equivalent
to the ideals of Gy, \ {Znt+2,Yns1} =G".

31 Yn Yn41 hn Yn Yn+1 n Yn
= q +

31 ZIn Tp4lTni2 Ty Tn Tp+l T Tn Tntl

Let hn(g) and in(g) be the rank polynomials of the lattices J(G!)
and J(Gy), respectively. Then the above analysis yields the system

In+2(9) = qhnta(g) + in(q)
hns2(q) = (1 +q) gn+2(q) — qin(q) 1)
in+1(9) = g gnt1(q) + in(q)

Recall that the incremental ratio of a series s(t) = 35, 5n t" is the
linear operator R defined by -

Rs(t) := M = Z Sp+1 ™.
n>0

Hence, if g(g;t), h(q;t) and i(g;t) are respectively the ordinary gener-
ating series for the polynomials gn(g), hn(g) and i.(g), system (1) can
be rewritten as

R%h(q;t) = (1+ q) R%(q; t) — qi(g; t) (2)

{ R?g(g;t) = q Rh(q; t) +i(g; ?)
Ri(g;t) = q Rg(g;t) +1i(g; %)

It is easy to see that the initial conditions are go(q) =1, 91(q) = 1+q+¢2,
ho(g) =1+4q, hi(g) =1+g+2¢° +¢® and ig(g) = 1 +q. Therefore,
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solving system (2) with these initial conditions, we obtain the series

1- q2t2

) = . 3
9(6it) = 7 Qg+ D)i+PE+ P )
This series implies the recurrence
gnt3(@) = (1 + g+ %) gn42(0) = ¢°Gn+1(0) — T°9n(a) 4)

which is equivalent to the recurrence

Ont3,k43 = Ont2.k+3 + Int2,6+2 + Ins2,k+1 — Int1k+1 — Gnk - (5)

Moreover, for ¢ =1 we obtain the generating series for the numbers
gn
1-¢2

t) = " = ;t = —————
n>0
that is L+t
9O =15 5" (6)
The form of this series implies the recurrence
gnt+2 = 29n+1 + 9n (7

and the initial conditions go = 1 and g; = 3. Then {gn}n is the
sequence #A001333 in [8].

2 Central ideals

Let I be an order ideal of the garland G,. We say that I isa central
ideal when |I| =n. Let ¢, be the number of all central ideals of G, .
The first few values are 1, 1, 1, 3, 7, 15, 33, 75, 171, 391, 899, 2077, 4815,
11195, 26097, 60975, 142751. The generating function for these numbers
is the diagonal of the double series g(g,y) . By Cauchy’s integral theorem
[2, 4, 10] it is given by

o - Fue-difol-) ¥

n>0

1 f{ 1-1¢2 dz
omi f =22+ (1 -t+t2+13)z -t
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where the integral is taken over a simple contour containing all the singu-
larities s(t) of the series such that s(t) = 0 as ¢t — 0. The polynomial
tz> — (1 —t+t2+13)z+1¢ at the denominator has roots

e 1—t+2+83+ /(1 -t+12+8)2 - 42
2t

of which only 2~ =0 as t 5 0. Therefore, by the residue theorem, we
have

1-1¢2 1-1¢2
t = ll =
o(?) Py —tz~2t)  t(zt -2z7)
that is
1-¢2 \/ 1-¢2
t) = = .
(t) V1-2t—12 =314 + 215 4 t6 1-2t—-2t3 — ¢4 (8)

Differentiating c(t) we obtain the identity
(1-2t =22~ ¢ 4+ 265+ 28)c'(2) = (1 — £ + 482 + 263 — £ — 15)c(t)
which implies the following linear recurrence for the numbers Cn

(n+6)cnys — (2n +11) coys — (0 + 3) Cnpat
—dcniz—(n+4) ez~ (20 +3)cnpr + (R+1)ca =0, (9)

Finally we give a first-order asymptotic formula for cn - Recall ([1], p.
252) that given a complex number ¢ # 0 and a complex function f(t)
analytic at the origin, if f(t) = (1 - t/£)~%¢(t) where ¥(t) is a series
with radius of convergence R > |¢| and a ¢ {0,-1,-2,.. .}, then

¥ no?

[tn]f(t) ~ En r(a) *

In our case we have

N 1—¢2 _ (1-)(1+1¢)
©O=\ T oa-z- #2) "~V A=t/ T+ /)1 - t/a)(1 - t/B)

where @ = ~1+4++/2 and f=-1-+/2. Since a is the singularity with
minimum modulus, we have that

AN 1-—¢2
A= (l - 5) \/(1+t2)(1+t//3)'
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Hence, since I'(1/2) = /7, we have

1 [1+V2 n
e~ 5{— (1 +\/§) . (10)
In particular
lim 2L =142, (11)
n—o00 cﬂ

Using the generating series (6) it is easy to see that gn ~ 5 (1 + \/i)n'H .
Therefore we also have

. On _
nll)rgoa = \/(1+\/§)n7r.

3 A Riordan Matrix

In this section we will consider the matrix

1

1 1

1 2 1

3 3 3 1

7 6 6 4 1
R=[rilnk20=| 15 14 12 10 5 1

33 32 27T 22 15 6 1
7% 72 63 50 37 21 7 1
171 164 146 118 88 58 28 8 1

where rpx = gnn~k when k<n and r,; =0 otherwise. We will prove
that R is a Riordan matrix [7, 5]. First notice that recurrence (5) yields
the recurrence for the coefficients 7y &

Tnt3.k+1 = Tnd2.k + Tnd2 kbl + Tnt2,k42 = Tndl kel — Tngs1 - (12)

Then, considering the generating series 7x(t) = Y., 5ok t" of the
columns of R, recurrence (12) becomes B

trege(t) - (1—t+ 2+ t3)rk+1(t) +tre(t)=0. (13)

Now suppose there exist two series ¢(t) and f(t) such that rx(t) =
c(t)f(t)* for all k € N. Then c(t) = ro(t) is the series (8) and substi-
tuting 74(t) = c(t)f(t)* in (13) we have that f(t) is the solution of the
quadratic equation

tf? —(1-t+ 2 +83)ft)+t=0,
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that is

— 4+ 2+ 31212 38 25 1 10

1) =" 2t

Hence we have

J
1-—¢2 1—t+824+13 -1 -2t — 12 — 3t% + 245 + {9
Ti(t) =

1-2t—-213 —¢4 2t

In conclusion, since ¢ =1, fo =0 and f; #0, R is the Riordan
matrix
\/ 1-¢ 1—t+ 22 +83—v1-2t 12— 3t + 25 + £0
1-2t—2t3 -4’ 2t )

4 Self-avoiding paths

In [9] it is proved that g, is the number of n-step self-avoiding paths
starting at (0,0) with steps of type (1,0), (~1,0) and (0,1). This
implies that there exists a bijection between the set S, of all these paths
and J(G,). To obtain such a bijection it is convenient to regard the paths
in S, as words on the alphabet {z,%,y}, where z, ¥ and y stand for
the steps (1,0), (—1,0) and (0,1), subject to the restriction that z7
and Tz are forbidden subwords.

To each word a@ = a;---a, in S, we can associate a 3-filtering

multiset pq : [n] = {0,1,2} defined by

0 ifar=%
pa(k) =41 if ar =y
2 ifak=$

for every k € [n]. Since a is a self-avoiding path, the multiset p, has
to satisfy the conditions: (i) if pa(k) = 2 then po(k+1) # 0 (ii) if
Ba(k) =0 then po(k+1)#2, for every k € [n]. Here we consider k+1
and k—1 only when they are in [n]. Since the conditions (i) and (ii) are
equivalent, we will consider just the first one. Let M, be the set of all
3-filtering multisets on [n] satisfying condition (i). It is easy to see that
the map F:S, - M,, defined by F(a) = ua, is a bijection.

Also the ideals I of G, can be described as multisets. Indeed the
ideal I is equivalent to the 3-filtering multiset gy : [n) — {0,1,2} defined
by

0 if Tk Yk g I
/t](k)= 1 if :z:kGI,yk¢I
2 if o,y €1

190



for every k € [n]. It is easy to see that uy € M, and that the map
H : J(G,) - My, defined by H(I) = pr, is a bijection. Hence we have
that also the map HF~!: J(G,) = S» is a bijection.

In particular, if I € J(G,), p € M, and a € S, are equivalent in
the above bijections, then

=k <= ord(p)=k < 2walz)+waly)=Fk

where ord(p) = p(1)+---+u(n) and wa(z) is the number of occurrences
of z in a,etc. When a € S, then we also have wq(z)+wo(T)+waly) =
n. Hence it follows that g is the number of all paths in S, such that
wa(T) — wa(z) = n — k. In particular, 7nk = gn,n—k is the number of all
paths in S, with w.(T) = wa(z)+ k. Moreover the central ideals of G,
correspond to the paths in S, such that wo(Z) = wa(z), i.e. to the paths
with an equal number of right and left horizontal steps.

5 Central trinomial paths in the strip [-1,1]

A trinomial path is a lattice path starting at (0,0) with unitary steps
of type (1,1), (1,-1) and (1,0). In particular a central trinomial
path is a trinomial path ending on the z-axis. Let 7, be the set of all
central trinomial paths in the strip [-1,1]. In [3] it is proved that there
exist a bijection between the sets S, and Tp4;. Here we restate such a
bijection in terms of 3-filtering multisets. First of all notice that any path
in Tp41 can be described as a function f: {0,---,n+1} = {-1,0,1}
subject to the restrictions (i) f(0) = f(n+1) = 0, (i) if f(k) =1
then f(k+1) # —1 and (iii) if f(k) = -1 then f(k+1) # 1, for
every k € {0,---,n+ 1}. Condition (i) says that the path starts and
ends on the z-axis. Conditions (ii) and (iii) are equivalent and say that
the steps are unitary. Given such a function we can consider the multiset
ps i [n] = {0,1,2} defined by pys(k) = f(k)+1 for every k € [n]. It
follows that the paths in 7,41 are equivalent to the multisets in M, and
consequently to the paths in S, and to the ideals of G,. In particular
the set 741, ordered so that f; < f2 if and only if fi(k) < fo(k) for
all k € [n], is a distributive lattice isomorphic to J(Gn).

Let max(f) be the number of all points k such that f(k) =1 and
similarly let min(f) be the number of all points k£ such that f(k) = —1.

Then
n+1

ord(pg) =n+ Y f(k) = n+max(f) — min(f).
k=0
Hence g, is also the number of all paths in 7,4, such that min(f) —
max(f) = n — k. In particular the central ideals correspond to the paths
in 7p41 with an equal number of maxima and minima.
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