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Abstract

The chromatic sum of G, Y.(G), is the minimum sum of vertex colors, taken over
all proper colorings of G using natural numbers. In general, finding Y,(G) is
NP-complete. This paper presents polynomial time algorithms for finding the
chromatic sum for unicyclic graphs and for outerplanar graphs.

1. Introduction

The concept of chromatic sum of a graph was introduced in [3]and [4]. If G =
(V, E) is a graph with vertex set V and edge set E, then the chromatic sum of G

denoted by Y.(G), is the minimum sum of vertex colors Y, c(v), taken over all
veV

proper colorings ¢ of G using natural numbers. A proper coloring ¢ of a graph
G is called a best coloring of G whenever Y, ¢(v)= Y(G). The smallest number

v
of colors used in a best coloring is called tvlfe strength_ (s(G)) of a graph G. The
strength of a graph G might be larger than the chromatic number, (G), of G.
For example, Figure 1 represents the smallest tree requiring 3 colors for any best
coloring.

Figure 1.

In fact, it was shown in [1], that the strength of a tree can be arbitrary large.
Similar fact is true for maximal outerplanar and maximal planar graphs [5], [6].

The problem of finding chromatic sum is NP-complete in general ([4]), it is
NP-complete even for interval graphs [2). However there is a linear algorithm for
finding chromatic sum for trees [4). The purpose of this paper is to present
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polynomial algorithms for computing the chromatic sum for two new families of
graphs, unicyclic graphs and outerplanar graphs.

2. Unicyclic Graphs.

The algorithm for finding chromatic sum for unicyclic graphs will use the known
[4] linear algorithm for finding chromatic sum for trees (actually a small
modification of it).

We will recall now the algorithm for trees from [4]. Givenatree T we root it

at an arbitrary vertex and label vertices using preorder traversal. At each vertex v
we keep record of the following set of data:

- Minsum(v) = chromatic sum for the subtree of T rooted at v, T,.
- Rcolor(v) = color of v in a best coloring of T,.

- Delta(v) = the difference between the chromatic sum of T, and the
minimum sum of colors if we change Rcolor(v) to some other
color, denoted Ncolor(v).

- Ncolor(v) = next best color for v.

Knowing these data for all children of a vertex, the algorithm computes the
corresponding entries for the parent note. Thus, after reaching the root r of the
tree T, the algorithm finds the chromatic sum of T together with the root color
¢(r) and the second smallest sum of colors for T with root color different from
c(r). Itis easy to see that after traversing the tree for the second time in the reverse
order, we can reconstruct both best and second best colorings of the whole tree.

We will use two straightforward modifications of the above algorithm.

The first modification, Algorithm A, will produce the chromatic sum for T, here

denoted by Y ,(G), with the color ¢, of the root, the smallest sum of colors
Y. ,(G) withthecolor c, of the root different from c,, and finally the smallest
sum of colors Y, ,(G) with the color c, of the root different from ¢, and from c,.
Shortly, the output of the algorithm is: (X 1.¢;)(X 2:c2.)(X 31¢3)-

The second modification, Algorithm B, produces the minimum sum of colors

F, and a second minimal sum of colors F, with different root colors and with
restriction that a specified color is forbidden at a specified vertex z other than the

root.

Obviously, both Algorithm A and Algorithm B are linear.
Theorem 1. ) L
There exist a linear algorithm for finding the chromatic sum of a unicyclic graph.
Proof. Let G be a unicyclic graph. Select a vertex, say X, on a unique cycle of
G. Let y and z be its neighbors on the cycle. After deleting two edges xy and

xz from G, we obtain a disconnected graph with two components, trees 7, and
T,. Weroot the tree T, at vertex x and 7, at y (see Figure 2).
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; Figure 2.
First we apply Algorithm A to the tree T, Its output will be
(X1 h(X506)(X50c5), where X,, X,, and X, are best, second best and third best
sums of colors for T, with corresponding colors of root x, namely c,,c,, and cs,

where ¢, # ¢,,¢;3 # ¢,, and ¢; # ¢,. In order to avoid a color conflict on vertices z,
x and y in G, we run three times the modified Algorithm B for. 7,. First we

forbid the color c, to appear at vertex z, and we obtain the following information:
(Y,’,b,') and (Yz',bz'), where Y,' is the smallest sum of colors for T, b, is the

color of the root y and similarly Y, ,b, is the second smallest sum of colors for
T,, the colorof y, respectively. For the second time we run Algorithm B with

color ¢, forbidden on vertex z  obtaining the following data:
(Y,”,b,”), (Yz",bz”). And finally we run Algorithm B with color ¢, forbidden

on vertex z obtaining: (Yl'",bl'”), (Yz"',bz”').
Let us define three values:
X, +Y, if ¢, #h
X, +7Y;, otherwise

L=1X + Y if c,#b and
X, +Y,, otherwise .
Mo X E i cs#b
X; +Y,, otherwise

We will prove that Y(G) = min{K,L,M}.

Consider any best coloring ¢ of G with sum of colors Y,(G). When
restricted to tree T, this coloring has sum of colors equal to X,, X,, or X,. This
follows from the fact that at most two different colors can occur on vertices y and
z, and at least one of the colors among c¢,,c;,c5 is available for vertex x.
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Therefore, it is sufficient to use no colorings on T, other than those produced by
Algorithm A. If the coloring (X l,c,) is used for T, then for a proper coloring of
T, (the rest of G) we cannot use color ¢, on z. The minimum sum of colors

for the whole graph G is given by K. If the coloring (Xz,cz) is used for T,

X?
then color ¢, cannot be used on z and the minimum sum of colors for the whole

graph G is L. And finally, with colormg (Xa,ca) on T, the minimum sum of
colors for G is M. ®

Comment. It can be shown that if the coloring (X,,ca) has to be used on T,
then the corresponding coloringon 7, is in fact a best coloring of this tree with
no restrictions. However this observation does not simplify the algorithm.

3. Outerplanar Graphs.

The construction of the algorithm for finding chromatic sum for outerplanar
graphs will be done in three steps. First we will consider maximal outerplanar
graphs, then 2-connected cuterplanar graphs, and finally all outerplanar graphs.

An outerplanar graph is such a graph which has a planar imbedding with all its
vertices lying on the boundary of the exterior region. A maximal outerplanar
graph is such an outerplanar graph that addition of any edge to it destroys the
outerplanar property. It is well known that all interior regions of maximal
outerplanar graphs are triangles. Given a maximal outerplanar graph G
embedded in the plane, we select a vertex for every interior region (a triangle) of
G. Two such vertices are adjacent if the corresponding regions share an edge. A
graph constructed in this way is called a spine of the graph G. It is known that the
spine of a maximal outerplanar graph is a tree (see Figure 3).

Figure 3.
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Theorem 2. )
There is a polynomial algorithm for finding chromatic sum for a maximal
outerplanar graph.

Proof. Let G be a maximal outerplanar graph with the spine S. Select a leaf of
the spine as the root r, and consider S to be a directed rooted tree with all arcs
directed towards r. The Algorithm M for finding the chromatic sum of G will
examine every triangle of G in order given by a preorder traversal of spine S. If
x, x #71, is a vertex of the spine adjacent to the vertex y and if triangular regions
of G comesponding to x and y share the edge wvyv,, then Algorithm M
computes all minimal sums of colors for the graph induced by triangles visited so
far for all possible pairs of colors assigned to vertices v, and v,.

The possible pairs of colors for v, and v, are

(c(vi)hc(v,)), where 1S c(v;) < deg(v))+1 i=1,2, and c(v,)# c(v,).
We consider three cases depending on in-degree of vertex x.

Case 1. The vertex x has in-degree O or, equivalently, x is aleaf of S.

“Then 3 (c(w)c(v2)) =6, if (c(m)he(v) = (12)(13),(21), or (3.1),
3 (c(vi):e(v2)) =c(v,) + c(v,) +2, if one of the colors is 1.and the other s at least
4. Also, Z(c(vl),c(vz)) =c(v,) + c(vz) +1, if none of the colors c(vl),c(vz) is 1.

Case 2. The vertex x has in-degree 1.

Let H, be the graph induced by triangles visited so far (predecessors of x). Let
Z be the immediate predecessor of x and v;w the edge common to the triangles
corresponding to x and z (see Figure 4). :

Figure 4.

Then Z(c(v,),c(vz))=mkin2 u,(c(v():k) + j, where the minimum is taken
over all integers k such that 1< k<degw +1 and k# c(v,).c(v,).
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Case 3. The vertex x has in-degree 2.
Let | and r be immediate predecessors of x. Denote the graph induced by

triangles corresponding to I and all its predecessors by H.. Denote the graph

induced by triangles corresponding to r and all its predecessors by H (see
Figure 5).

Then Z(c(vl) (v,))=mgn(2 ( (). )+ p He (k c(vz)) k), where the
?nsmum is laken over all integers k such that 1 < k< degw + 1 and & # ¢(v)),
V2

Finally we reach the root r whose only predecessor is z and v,v, is the

edge shared by the triangles corresponding to z and r. Let w be the third vertex
of the triangle corresponding to r (see Figure 6)

Figure 6.

We have already computed all minimal sums of colors for the graph G-w
with fixed colors on vertices v, and v,. Let 3, 5(i) denote the minimum sum
of colors for the whole graph G with the color i on w. Then
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Y= Zc_w(c(v,),c(vz))+i. where the minimum is taken over all pairs
(c(vl ),c(vz)) such that c(v,) #1, c(vz) #i, and c(vl) # c(vz).
Finally, 3(G)= min 36(i)-

If d; are degmes of vertices of G, then the number of operations Algorithm
M performs is equal to

(4, +1)(a;, +1)(a,, +1)+(d, +1)(a,, +1)(d, +1)+...+(sz +1)(a,_, +1)(a,, +1)

where dj,d;,d, are degrees of vertices of triangles (n - 2 of them if the order of

G is n).
Since there is always at least one new vertex in the next product this sum is

bounded by (A+1)(A+1)(d, +d, +...+d,_,) where A is maximal degree of G,
and, therefore, is of order n°. ®

If an outerplanar graph is 2-connected, then its interior regions are n-gons with
n 2 3. The spine of such a graph is also a tree but degrees of vertices in this tree
might be larger than 3.

Theorem 3.
There exists a polynomial time algorithm for finding the chromatic sum for a 2-
connected outerplanar graph.

Proof. Let G be a 2-connected outerplanar graph with the spine S. Select a leaf
on Stobeitsroot r and direct all edges of S towards its root. The Algorithm
2C for finding the chromatic sum for G will examine all interior regions of G in
order given by a preorder traversal of S. Every vertex x of S, x# r, is adjacent
to exactly one vertex y of S. Suppose that the region corresponding to x is an
n-gon with the vertices v,,v,,...,v, and also w,v, is the edge of the region
corresponding to vertex y (see Figure 7).
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Forevery edge vy;,,, i=12,...,n-1, let H,;,, denote the following graph:
(@) if vy, is on the boundary of the exterior region, then H,,,, is the
graph induced by this single edge;

() if vy, is on the boundary of the interior region corresponding to
vertex z (a predecessor of x), then H,,,, is the graph induced by the
triangles corresponding to z and all its predecessors.

The Algorithm C is a modification of Algorithm M. If a triangular region is
encountered, Algorithm C behaves exactly like Algorithm M. If an n-gon
VipVaseosV,, i8 Visited with n 2 4, the Algorithm C finds minimal sums of colors
for the following graphs:

.= Hy, for every pair of fixed colors on vertices v, and v,,
- Hy, UHy, forevery pair of fixed colors on vertices v, and v,,
- H,UH,UH;, for every pair of fixed colors on vertices
v, and v,,
and finally
- HpUVH_zU.WUH,_,, for every pair of fixed colors on vertices
. vy and v,.

The last graph, H,, WH»U...UH,_,,, is the graph induced by vertices of all
regions corresponding to predecessors of y.

The complexity of Algorithm C is also cubic. ®

Theorem 4.
There exists a polynomial time algorithm for finding the chromatic sum for an
outerplanar graph.

Proof. Let G be an outerplanar graph that is not 2-connected. Consider blocks
of G (maximal 2-connected subgraphs). Each block is either a 2-connected
outerplannar graph or K,. An end-block is a block containing only one cut-vertex
of G. Put all blocks in an order B,,B,,....B, such that all end-blocks precede
other blocks. After all end-blocks are deleted from G, the remaining blocks are
divided into two groups: new end-blocks and the other blocks. New end-blocks
precede other blocks. This procedure is continued until all blocks are put in order.
For example, if an outerplanar graph has a block structure depicted in Figure 8§,
then one of the possible orderings of blocks is given.

We use Algorithm C for each end-block in such a way that all minimal sums
of colors are produced with a fixed color i on its unique cut-vertex v, 1<i <
degv+1. Then we examine all remaining blocks in the selected order, every time
finishing with finding all minimal sums of colors with fixed color i on the new
unique cut-vertex. When running Algorithm C for such a block we have to adjust
the partial chromatic sum at each vertex that was a previously considered cut-
vertex. For example, if Algorithm C is run for block B (Figure 8) and vertex u
is encountered the first time, we find color i for which the subgraph induced by
block B, and all vertices of B, visited so far has minimal sum of colors. Then

we continue to examine the rest of block B, until we reach the cut-vertex v.
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Figure 8.

We will remember for this vertex all minimal sums of colors for the graph induced
by blocks B, and B, foreach color i on vertex v, 1<i<degv+l.
As for previous algorithms, the complexity of this one is cubic. ®
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