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Abstract

We find a family of graphs each of which is not Hall t-chromatic
for all t > 3, and use this to prove that the same holds for the Kneser
graphs K. when a/b > 3 and b is sufficiently large (depending on 3—
(a/b)). We also make some progress on the problem of characterizing
the graphs that are Hall t-chromatic for all ¢.

1 Introduction

Throughout, G will be a simple graph with vertex set V(G), of order
[V(G)| = n(G) = n. The vertex independence number of G will be de-
noted a(G). (In this and other notation we will follow [7].) The Hall
ratio of G is p(G) = max[n(H)/a(H); H is a subgraph of G]. Clearly
p(G) = n(H)/a(H) for some induced subgraph H of G.

If ¢ is a non-negative integer and & : V(G) = N={0,1, .. .}, a proper
(t, K)-coloring of G is a function ¢ : V(G) — 2L, for some set L with ¢
elements, satisfying, for all u,v € V(G),

(i) lo(v)] = x(v) and

(ii) if » and v are adjacent in G, then w(u) Np(v) = 0. Note that (ii) is
equivalent to: (i5)’ if o € L then {v € V(G);0 € w(v)} is an independent
set of vertices, in G. k is sometimes called a color demand function.
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We will say that G, t, and & satisfy Hall’s condition if and only if, for
each subgraph H of G,

ta(H)> Y &(v) ()

veV(H)

If G is properly (t,x) colored, then so is each subgraph H of G. The
properness of the coloring implies that each of the ¢ colors can appear
at most a(H) times in the subsets of L coloring the vertices of H , while
the total number of appearances on those vertices is ZveV( ) %(v). Thus,
satisfaction of Hall’s condition is necessary for the existence of a proper
(t, k)-coloring. We will say that G is Hall t-chromatic if and only if Hall’s
condition (a condition on &, with G and t fixed) is sufficient for the existence
of a proper (¢, k)-coloring of G.

Hall’s condition as given here is a special (some would say degenerate)
case of a more general condition on a graph, a list assignment, and a color
demand function «; see [2]. In this special case, the list assignment is
constant. The study of Hall t-chromaticity began in [1]; it turns out to have
some useful connections with the study of the k-fold chromatic numbers,
the fractional chromatic number, and the Hall ratio.

The k-fold chromatic number of G, x¥)(G), is the smallest integer ¢ such
that there is a proper (t, k)-coloring of G. (Here, k stands for the function
on V(G) with constant value k.) The fractional chromatic number of G,
x5(G), is given by x4(G) = minzx*)(G) = infzx*(G) = Jim £x (@)
(See [4] and [5]; the former gives three or four other equivalent definitions
of x/(G).)

The following easy observation and several of its corollaries appear in
various forms in [1] and [2].

Lemma 1 Suppose thatk andt are positive integers. Then G, t, and k = k
satisfy Hall’s condition if and only if kp(G) < t.

Proof: If kp(G) < t, then for any subgraph H of G, k%% <kp(G) <t
so ta(H) > kn(H) = 2vevyn s) if s =k

If t < kp(G) then for some subgraph H of G ta(H) < kn(H), so G, t
and & = k do not satisfy Hall’s condition. 0

Corollary 1 For all positive integers k, [kp(G)] < x*)(G). If G is Hall-
[kp(G)]-chromatic then equality holds.

The proof is straightforward from the Lemma, the definition of x(*)(G),
and the necessity of Hall’s condition for a proper coloring.

Corollary 2 p(G) < x5(G).
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This follows easily from Corollary 1 and previous remarks about xs(G).
Corollary 3 If G is vertez transitive, then p(G) = x(G) = n(G)/a(G).

Proof: Clearly n(G)/a(G) < p(G). It is proven in [4] that if G is vertex
transitive then x;(G) = n(G)/a(G). The conclusion now follows from

Corollary 2. ]

Corollary 4 Ifk andt are positive integers and kp(G) < t < x¥)(G) then
G is not Hall t-chromatic.

Proof: By the Lemma, G, t, and & = k satisfy Hall’s condition, but ¢ <
x*)(G) implies that there is no proper (2, k)-coloring of G. 0
Let T(G) = {t € N; G is Hall t-chromatic}.

Corollary 5 If p(G) < xs(G) then T(G) is finite.

Corollary 5 was proved, but not stated, in [1]. Also in [1] the question
was posed: is the condition in Corollary 4 the only circumstance under
which a graph G is not Hall t-chromatic? That is, if G is not Hall ¢-
chromatic, does there exist a positive integer k such that

kp(G) < t < x*)(G)? We shall see below that the answer is no, for
easy reasons, and that even when the question is refined to rule out easy

conterexamples, the answer is still no.
We might also ask if the converse of Corollary 5 is true. Again, we will

see below that the answer is no, for easy reasons, but, in this case, the
question has a refinement to which we do not as yet know the answer.

Compendium of other results from [1]

(1) The following are Hall t-chromatic for all t € N: bipartite graphs,
completevmul’cipa.rtite graphs, and odd cycles.

(2) For any graph G, {0,1,2} C 7(G).

(3) If H is an induced subgraph of G, and G is Hall ¢-chromatic, then H
is Hall t-chromatic.

(4) If G, and G are Hall t-chromatic and V(G1)NV/(G2) induces a clique
in both G, and Gg, then G; | G is Hall t-chromatic.

Now we can give the easy reason why the condition of Corollary 4 is
not necessary for G to be not Hall ¢-chromatic, and why the converse of
Corollary 5 is not true. Take a graph H which is not Hall t-chromatic, or,
in the second question, for which 7(H) is finite, and make H an induced
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subgraph of a graph G satisfying kp(G) = x¥)(G) for all k (which implies
P(G) = x;(G)). If this can be done, then both questions are settled, since
T(G) € T(H) by Compendium (3).

An easy way to so embed H as a subgraph of such a G is to attach a
clique Km, m > x(H) = xV(H), to H, either as a satellite unconnected
to H, or sharing a clique K,, s < m, with H. Suppose that G is formed
in this way. Since m > x(H), by standard arguments x(G) = m, and thus
x*(@) < kx(G) = km for each k = 1,2,..., by the subadditivity of the
sequence (X(*)(G))x. (See [4].) On the other hand, since G contains a K,
m < p(G). Thus m < p(G) < +x*)(G) < m for each k, by Corollary 1, so
G satisfies p(G) = £x¥)(G) for all k.

The refinement of the question about Corollary 5 to which we do not
know the answer is the following.

Problem 1 Suppose that T(G) is finite. Does G necessarily have an in-
duced subgraph H satisfying p(H) < x;(H)?

The refinement of the other question is: suppose G is eritically not Hall
t-chromatic, meaning ¢ € 7(G) but t € 7(G —v) for all v € V(G). Is there
necessarily some integer k such that kp(G) < t < x*)(G)? We shall see
later (Corollary 10) that the answer to this question is no.

Partly because of their historic role in the study of the x(*) (see [6] and
[4]), we are especially interested in the Hall t-chromaticity of the Kneser
graphs. If a and b are positive integers, with a > 2b, the Kneser graph
Ko has for vertices the b-subsets of some a-set, with two vertices adjacent
if and only if they are disjoint. A succinct account of the essential facts
about and the role of these graphs in combinatorial theory may be found
in [4]; and even after 27 years, there is much to be learned in [6]. Two facts
we need here are that (i) p(Kas) = Xx7(Kaw) = a/b (see [4], taking note
of Corollary 3), and (ii) x(Ka:) = a — 2b+2 (This was, in modern terms,
Kneser’s conjecture, proven by Lovész [3]).

Corollary 6 (of Lemma 1) Ifb>2 and a > 2b+2 then 3 ¢ T (Ka.).

Proof: If @ > a3 > 2b then K, is an induced subgraph of K,.;. By
Compendium (3), it suffices to prove the result for @ = 2b+ 2. In this case,
with G = K3p42., We have p(G) = 242/b <3 < 2b4+2~2b+2 =4 = x(G).
The conclusion follows from Corollary 4, with k = 1. 0

We will see later that T(K..) = {0,1,2} for a great many pairs a, b
with a > 3b; we suspect that this equation holds whenever a > 2b+ 2. The
case a = 2b + 1 is special.

It is an unsolved problem to determine the numbers x(™ (K,.;). Stahl
conjectures [6] that if m =gb+r, 1 <7 <b, then x(™ (Ku3) = (g+1)a —
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2b + 2r, and this conjecture has withstood assault since 1976. It is known
to hold whenever a = 2b or a = 2b+ 1; or when b < 3; or when 7 = b; or
when g =0 and 1 < r < b. If the conjecture holds whenever m = gb + 1,
then it holds for all m and a > 2b. Note that if b > 2 and a > 2b + 2 and
xWHD(K,p) = (g+ 1)a—2b+2, ¢ =0,1,2,..., then there are infinitely
many t, namely all t € {[(gb+1)%],. x("b“)(K ab)—1},¢=0,1,2,...,
such that K. is not Hall t~chromat1c, by Corollary 4. (We leave it as an
exercise to verify that a > 2b+ 2, b > 2, implies that

|'(qb+1)%] <(g+1)a—2b+1,g=0,1,2,...,

so that those intervals, {[(gb + 1)p(Ka:)], - .., X%+ (Kap) — 1} are non-
empty, if Stahl’s conjecture holds.) Thus, if it turns out , for some a > 2b+2,
b > 2, that N\7 (K, ) is finite, or even that N\7 (K,.5) fails to contain even
one value that it must contain if Stahl’s conjecture is true, then Stahl’s
conjecture is not true. However, so far all the evidence is on Stahl’s side.

2 Results and Problems

Proofs are postponed until the last section. The first theorem generalizes
part of Compendium (1).

Theorem 1 Suppose that S, C V(G1) satisfies: for allu,v € S1, Ng, (u)\
Sy = Ng,(w\S1. Let U = Ng, (u)\S1, for any u € S1. Let H be either
a bipartite graph with bipartition X1, X2, or a complete multipartite graph
with parts X1,...,X», 7 > 3. Suppose that S C X;. Form G by taking
disjoint copies of Gy — S) and H, and making every vertex of S adjacent
to every vertez of U. If Gy is Hall t-chromatic, then so is G.

Corollary 7 Suppose that E is an independent set of edges of a clique Ky,
and G is formed by, for each e € E, ezther deleting e or by 'replaczng e by
a path of even length. Then T(G) =

Let V denote the join operation; that is, G V H is formed by taking
disjoint copies of G and H and making all vertices of V(G) adjacent to all
vertices of V(H). It is easy to see that x*)(G v H) = x(*)(@) + x*)(H),
k=1,2,..., and thus that xs (G V H) = x;(G) + x7(H).

For m > 3, let W,, = K, V Cp,, the wheel with m spokes. Of course,

W3 = K.
Theorem 2 Ifp > 2, T(Wa,) = N and T(Wapya) = {0,1,2}.

Corollary 8 If, for some integer p, b > p > 2 and o > 3b 4 ]':'—,'l, then
T(Kas) = {0,1,2).
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Corollary 9 If0 < € < 1/2,b > 1 and a/b > 3 +¢, then T(K,p) =
{0,1,2}.

Corollary 10 There exist integers t > 3 and graphs G which are crit-
ically not Hall t-chromatic, such that for every positive integer k, t ¢

{[kP(G)L cry X(k)(G) - 1}'

The next, and last, theorem will help out in the search for critically not
Hall t-chromatic graphs, and thus may be of service in attacking problems
3 and 4, below.

Theorem 3 If G is critically not Hall t-chromatic, then t > 2(G).

Corollaries 9 and 10 give answers that were promised in section 1. A
great many questions remain; the following tasks and questions seem to
us especially notable, beyond Problem 1 and the problem of determining
T(Kap) for all a > 2b > 4.

Problem 2 Is 7(G) always a block of consecutive integers, either N or
{0,1,2,...,7(G)} for some 7(G)?

If the answer is yes, the problem of determining the sets 7 (K,.;) would
be greatly simplified, and the possible threat to Stahl’s conjecture men-
tioned at the end of section 1 would evaporate. (From Corollary 6 it would
follow that T (Kap) = {0,1,2} whenever b > 2 and a > 2b+ 2.) It seems
quite reasonable that the answer is yes; as t increases the restrictions on
« imposed by the inequalities (x) ease; that is, a greater variety of color
demand functions x must be dealt with, and it seems plausible that the
increased supply of s should overpower the advantage of having more col-
ors. So it becomes harder for the graph to be Hall t-chromatic, so to speak,
as t goes up. But we have no proof.

Problem 3 Characterize the graphs G such that T(G) = {0, 1,2}.

It will suffice to characterize the critical such graphs, the G such that
T(G) = {0,1,2} but T(G — v) # {0,1,2} for each v € V(G); T(G) =
{0,1, 2} if and only if G contains one of those critical graphs as an induced
subgraph.

The only such critical graphs that we know of so far are the Wap41,p >
2. In view of Theorem 2, to see this it suffices to note that Waps1 — v is
Hall t-chromatic for all ¢, for each v € V(Wap4;), by Compendium (1) and
(4); Wap41 — v is either an odd cycle or is built up from K3 by attaching
K3’s along edges.

Problem 4 Characterize the graphs G such that T(G) = N.
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Compendium (3) implies that this family of graphs has a forbidden-
induced-subgraph characterization. The forbidden induced subgraphs are
those H which are vertex-critical with respect to the property 7(H) # N,
and it seems rather a long, dry task to describe all of those. Compendium
(4) and Theorem 1 give us hope that there may be a constructive charac-
terization of the graphs which are Hall t-chromatic for all £, or at least a
constructive component in their characterization.

Problem 5 Find T(Kapt+14),b > 2. We think the answer is N.

3 Proofs

Proof of Theorem 1 If S; =@ or S = 0 then G is the disjoint union
of Gy — S; and H and is therefore Hall ¢-chromatic (by Compendium (1)
and the obvious fact that a graph is Hall ¢-chromatic if and only if each
component of it is). So assume Sy # @ # S.

Let x : V(G) — N be a color demand function satisfying Hall’s condi-
tion, with G and . Let v € S be such that s(v) = max k(w). Since Sy # 0

and v seems to Gy — S; like any vertex of S, (V(G)\S1) U {v} induces
in G a graph G, isomorphic to an induced subgraph of G1, which is Hall
t-chromatic; therefore G5 has a proper (t, &)-coloring ¢. We suppose that
L ={1,...,t} and that the colors are named so that ¢(v) = {1,...,s(v)}.
We can immediately extend ¢ properly to the other vertices in S by setting
o(u) = {1,...,&(u)}, v € S\{v}, invoking the hypothesis of the theorem
and the choice of v. What remains is to extend ¢ properly to the other
vertices in H.

Suppose that H is bipartite. Applying (*) in the case when the subgraph
is a single edge uw, v € X1, w € X2, we have s(u) + klw) < t; we
extend ¢ to V(H)\S by setting p(u) = {1,...,s(u)} if u € X;\§ and
pw) = {t — &(w) +1,...,t} for w € Xo.

Suppose that H is complete multipartite with parts Xj,.. ., X, >3
Let p; = max x(w). Applying (%) to a clique in H with vertices w; € X;

with x(w;) = pi, i = 1,...,r, we see that py +--- +pr < ¢ Therefore
{1,...,t} can be partitioned into sets P,...,P., with P, = {1,...,;m}
and |P;| > pi,i = 2,...,7. Extend ¢ to all of V(H) by setting p(u) =
{1,...,4(u)} for v € X;\S and, for w € X;, i 2 2, o(w) is any subset of
P; of cardinality x(w) (< pi). 0

Proof of Corollary 7  Taking the edges of E one at a time, this is a
straight-forward application of the theorem in the cases when H is bipartite.

0
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Proof of Theorem 2 Suppose that p > 2. Whether m = 2p or 2p+1, let
u be the vertex of W, of degree m, and let the other vertices be vy, . . ., Upn,
around the cycle Cy,. In what follows, the subscript 7 in v; is to be read
mod m.

Suppose that ¢ > 3 and that & : V(Wa,) — N satisfies Hall’s condition
with W, and t. Let L = {1,...,t} and color u with {t — «(u) + 1...,t}.
Applying () with H being the K3 induced by v, v;, and Vi+1, we have that
£(vi) + K(viga) <t —k(u), i=1,...,2p; color v; with {4 k() ifi s
odd, and with {t — k(u) — k(v;) +1,...,t - k(u)} if i is even, and we have
a proper (t, k)-coloring of Wap.

Now suppose that ¢ > 3; we show that Wapy1 is not Hall ¢t-chromatic by
setting x(u) =t —2 and w(v;) =1,i=1,...,2p+1. Clearly, Wyp4, is not
properly (t, k)-colorable. It remains to be seen that Waops1, t, and & satisfy
Hall’s condition. Check (%) for all proper induced subgraphs H of Wapt1 by
verifying that Wap,1 — w is properly (¢, k)-colorable for all w € V(Wapt1)
[keep in mind that ¢ > 3.] As for H = Wap+1, ZweV(H) Kw) =2p+t—-1<
ta(H) = tp because p > 2 and ¢ > 3, which imply that 0 < (t—2)(p—1)—1.

O

Proof of Corollary 8 If ¢ > a then K, is an induced subgraph of
K, so, by Compendium (2) and (3), it suffices to prove the claim with
a=3b+ I'%]. The idea of the proof is to show that Wapy1 is an induced
subgraph of K.4; by Theorem 2 and Compendium (2) and (3), again, this
will suffice.

First we properly (2p + 1, p)-color Cap1 With the colors {1,...,2p -+ 1}
by setting p(v:) = {(i —1)p+1,...,ip} (mod 2p+1),i=1,...,2p + 1.
This was the coloring used by Stahl [6] to embed Cap4+1 as a subgraph of
Kapt1:p. What is important here is that this coloring embeds Capy1 as
an induced subgraph of Kpy1.p; that is, not only are w(v;) and @(vizy)
disjoint, i = 1,...,2p+ 1, but, also, if v; and v; are not adjacent in Capi1,
(7 #i%1 (mod 2p +1)) then ¢(v;) No(v;) # 0. (Verifications omitted.)

Ifb=pset § =¢. If b > p we will eventually define # by first setting
by = b—p. It is well known that x®)(Cypt1) = [b1p(Cops1)] = 2b3 +
[ %}]; this also follows from Corollary 1, with & = b; and G = Capyy,
and Compendium (1), for odd cycles. Let 1 be a proper (2b; + [%}], b1)-
coloring of Cp41 using colors none of which are among 1,...,2p+ 1, and
let § = o U . (That is, 8(v;) = p(vi) UY(vi),i=1,...,2p+1.) Then 8 is
a proper (2b; + [%] + 2p +1,b; + p)-coloring (i.e., a proper (2b+ f%], b)-
coloring) of Cap41 such that for non-adjacent vertices v,w on the cycle,
6(v) N B(w) # . Now bring in b new colors to color u, and we see that
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Wap41 is an induced subgraph of Ku,a = 3b+ [%] v O

Proof of Corollary 9  Suppose that b > 1 and that @ > (3 + €)b. Let
p=[1]>2. Thenb > p, because b is an integer, and % <€ s0 % < eb.
Therefore a > 3b+ eb > 3b + £ implies that a > 3b+ | %], because a and b
are integers. Now the conclusion follows from Corollary 8. O

Proof of Corollary 10 If G = Wapy1, p > 2, then p(G) = 3 and
x*®(G) = k+x®(Cops1) = k+[kp(Cap1)] = 3k + [g], because Wopt1 =
K, VCapy1, and by previous remarks about x*)(Caps1). Now, {3,4,...}is
the set of t such that Wa,41 is not Hall ¢-chromatic, by Theorem 2, and it is
straightforward to verify directly that >, {[kp(Waps1)]s- - - » X (Wapy1)—
1} =Ups,{3%,...,3k— 1+ [%]} misses some of the values in this set (al-
though the union covers a tail of N, because p(Waps1) =3 < x5(Wapy1) =
3+ 1/p). For instance, taking p = 2, we see that the claim of the corollary
is verified with G = W5 (previously noted, as have all the Wa,41,p 2 2, to
be critically not Hall t-chromatic , for all ¢ > 3) and t = 4,5,7, 8,11, or 14.
O

Proof of Theorem 3 Suppose that G is critically not Hall ¢t-chromatic,
and t < p(G). Because G is not Hall t-chromatic, there is a color demand
function % : V(G) — N which satisfies Hall’s condition, with G and ¢, but
such that there is no proper (¢, &)-coloring of G. Because t < p(G), for some
subgraph H of G, t < n(H)/a(H). Applying (x), we have 3, .y gy #(v) <
ta(H) < n(H). Therefore, x(v) = 0 for some v € V(H). But G — v is Hall
t-chromatic; therefore, there is a proper (t, &)-coloring ¢ of G — v, which
we can extend to a proper (t, s)-coloring of G by setting p(v) = @. This
contradiction establishes the claim of the theorem. O
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