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ABSTRACT

A circulant digraph G(ay, a;,...,a) where 0 < a;< a;<...< a,< |V(G)| = nis the
vertex transitive directed graph that has vertices i+a,, i+ay, ..., i+a; (mod n)
adjacent to each vertex i. We give the necessary and sufficient conditions for
G(a,, a5) to be hamiltonian, and we prove that G(a, n-a, b) is hamiltonian. In
addition, we identify the explicit hamiltonian circuits for a few special cases of
sparse circulant digraphs.
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1. Introduction

Circulants have been widely studied in the literature [1,3,4,6,7]. An undirected
graph G of order n is circulant if its automorphism group contains an n-cycle.
This in turn means that G has vertices iZa,, i#a,, ..., iZa, (mod n) adjacent to
each vertex i for 0 < a; < a;<...< a; <n/2. The integers as are called the jumps
[3]. A lot is known about hamiltonian properties of circulants. It has been shown
that all connected circulants are hamiltonian {8}, none-bipartite circulants of
degree at least three are hamilton-connected, and bipartite circulants of degree at
least three are hamilton-laceable [5]. Furthermore, it has also bean established
that connected circulants of girth three are pancyclic, and connected circulants
with at least two jumps are edge-bipancyclic [4]. However, not too much has
been done to identify hamiltonian properties of circulant digraphs. In this work
we partly address this issue and identify several properties of sparse circulant
diagraphs (i.e., circulant diagraphs with two and three jumps).

In order to present the results we first extend the definition of circulant
to a digraph. That is, circulant digraph G,(a,, a,,...,a)) is a directed graph of
order n with vertices i+a,, i+a,, ..., i+a; (mod n) adjacent to each vertex i,
where 0 < a; < a;<...< a; < n (see Figure 1). One can easily verify that not all

circulant digraphs are hamiltonian. For example, G,,(2,3) illustrated in Figure 1
is not hamiltonian.

Figure 1 — Circulant diagraph G,»(2,3)
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Throughout this paper our terminology and notation is based on the
book by C. Berge except as indicated below [2]. Unless explicitly stated
otherwise throughout the proofs in this paper, gcd(x,y) will be denoted by (x,).
We give hamiltonian properties for circulant digraphs restricted to either two or
three jumps. For convenience, G,(a,b) (or G,(a,b,¢)) will denote circulant
diagraph of order » with two (or three) distinct jumps, so a<b(<c) is not
enforced. The paper is organized in such a way that in Section 2 we focus on
results for G,(a,b), and in Section 3 we give results for G,(a,n-a,b). Our main
result (Theorem 2.3) gives the necessary and sufficient conditions for G,(a,b) to
have a hamiltonian circuit. We then show that connected G,(a,n-a,b) that
contains edges corresponding to jump a is always hamiltonian (Theorem 3.2). In
addition, we identify explicit hamiltonian cycles for a few special cases of
sparse circulant digraphs in both sections.

2. Hamiltonian Circuits in Circulant Digraphs with Two Jumps

From this point on by circulant we mean a circulant digraph and by path we
mean a directed path. To present our main result we first prove the following
two lemmas.

Lemma 2.1 Let G,(a,b) be a hamiltonian circulant digraph without a
hamiltonian circuit formed by a single jump. Let g be the number of circuits
xI%is{ ... Xisr moarj formed by jump a in G,(a,b), and r be the size of such a
circuit. Then every hamiltonian circuit of G has associated integer p (r2p>0)
and is of the form C= P°P’...P*'x,’, where Po =xx/’... xp,",

P’ = x,-(md,;" (”"’d")x;+1 (mod'r, .(mo‘iq)...x“.p.] (modrjj (mod q) , and 0<j<k.

Proof: Clearly, C must include at least one arc of the form x/x;-/*' ™% and at
least one arc of the form x/x;,; (,,,ad,)’. Thus, one of the vertices in C must be
incident to both types of arc. By vertex transitivity assume without loss of
generality that C contains x'x,” and xo’x,°. Thus, C contains path P’ x,,;)’ for
some integer p (where r2p>1). .

Suppose that C contains path P xsp.s moary-’"' ™% (Figure 2).

J+l {mod g)

Xitp-t (mod )’ X(i+p-1 (mod 1))

Figure 2 - P/
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Xi+p-1 (mod r)J

j*+!1 (mod
Xirp-1 (mod iy ‘

Figure 3 — P and its implied P’

If C doesn’t contain arc (x;./,x.;)- "' ™*9) then p is equal to the size of

circuit formed by a single jump, & equals to the number of such circuits (i.e.,

=q), and we are done. Suppose that C contains arc (x;./,x. - S mod®)) In this
case, there are exactly p vertices between vertices X;.; moary-’ ' ™*? and
X(ipt modry” (09 that immediately follow vertex x.; moary” "' ™% in C. So,
C must also contain P con51st1ng of exactly p vertices (Figure 3). Then, by
induction every path P°,P’ ... ,P*'! must consist of exactly p vertices and each
one must be followed by exactly one arc of the form x/x;/*! ™% jn C,

Lemma 2.2 Let G,(a,b) be a connected circulant digraph with two relatively
prime jumps a,b and without a hamiltonian circuit formed by a single jump. Let
r,s,t be positive integers such that »>1, n/ged(n,a)>s=>1 and n/ged(n,b)>t>1. Then

Gu(a,b) is hamiltonian if and only if either #n = r(s+1) -gcd(n,a) -gcd(n,b) and
ged(n,sa+b) = s+1, or n = r(t+1) -gcd(n,a) -ged(n,b) and ged(na+1b) = t+1.

Proqf: Consider a circulant H,(a) with ¢ = sa+b or ¢ = a+tb. It must have either
s+1 or t+1 circuits formed by c respectively. Without loss of generality consider
c to be one of the above, say ¢ = sa+b. Each arc (i,i+a) in H corresponds then to
apath P = (P, i+sa+b) in G, where P’ is of the form P’ = (i,i+a, i+2a, ..., i+sa).
Because (n,sa+b) = s+1 theni = i+sa+b (mod s+1). In addition, vertlces

i, i+a, i+2a, ..., i+sa in P’ must be all distinct (mod s+1). Otherwise, i=i+s’a
(mod s+ 1) for some s°< s+1. That in turn would mean that a can be divided by
one of the factors, say f, of s+1. Since sa+b is also divisible by fthen it would
further imply that b must be divisible by £, which would be a contradiction
because a and b are relatively prime (i.e., (@,b) = 1). So, i = i+sa+b (mod s+1)
and vertices i, i+a, i+2aq, ..., i+sa (mod s+1) in P are all distinct.
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Consider now a circuit (0, ¢, 2, ..., (W/(s+1))c) (mod n) in H,(a) and
traverse a corresponding circuit P°P*... P™“*1-130 (mod n) in G,(a,b). In P’ail
vertices 0, a, 2a, ...,sa are distinct (mod s+1), and hence they are visited exactly
once. In addition, the next vertex c satisfies sa+b =0 (mod s+1) and sa+b> 0,
so it is visited once as well. Suppose that all vertices in P’P*... P* are visited
exactly once for i<(n/(s+1)-1). Then unvisited vertex (i+1)c, where (i+1)c=0
(mod s+ 1), will be visited next. Furthermore, the next s+ vertices will be
distinct (mod s+1) , uniquely implied by current vertex (i+1)c, and hence visited
exactly once. So, all the vertices in P°P°... P P must be visited exactly once
for i+1<(n/(s+1)-1). Thus, by induction there exists a circuit of » vertices
corresponding to circuit (0, ¢, 2c, ..., (n/(s+1))c) (mod n) of n/(s+1) arcs in
H,(c). This completes the sufficient conditions.

If G,(a,b) is hamiltonian then by Lemma 2.1 a hamiltonian circuit must
be of form either (0, sa, sa+b, 2sa+b, 2sa+2b, 3sa+2b,) (mod n) or
(0, tb, a+th, a+2th, 2a+2th, 2a+3tb ) (mod n). This induces H,(c) with
¢ = sa+b or ¢ = a+tb respectively. If ¢ = sa+b then the size of a circuit formed
by c in Hy(c) is s+1 times smaller than ». So, in this case there must be s+/ such
circuits in Hy(c) (i.e., (n,c) = s+1). If c=a+tb then the size of a circuit formed by
¢ in H,(c) is t+1 times smaller than n. So, in this case there must be #+/ such
circuits in H,(c) (i.e., (n,c) = t+1). Since there is no hamiltonian circuit in
G.(a,b) formed by a single jump, and aand b are relatively prime then (n,a ) and
(n,b) can not have a common factor f (> 1). These terms however represent the
number of circuits in G,(a,b) generated by a and b respectively. In addition, »
must be divisible by either (s+1) or (¢+1) since one of these terms (depending on
which one is applied) must be relatively prime with respect to aand b. Thus, the
number of vertices in G,(a,b) must be either n = r(s+1)(n,a )(n,b) or
n = r(t+1)(n,a)(n,b) for some r>I. This completes the necessary conditions.

O

Theorem 2.3 Let G,(a,b) be a connected circulant digraph and let ,s, and ¢ be
positive integers such that r>1, n/ged(n,a)>s21, and n/ged(n,b)>121.Then
G(a,b) is hamiltonian if and only if any of the following holds:

(1) gedna) =1
(2) ged(nb) =1

(3) n=r(s+1) -ged(n,a) -ged(n,b) and ged(nsatb) = s+l

(4) n=r@t+1) -ged(n,a) -ged(n,b) and ged(n, a+tb) = t+1.
Proof: If either (n,a) = I or (n,b) = I holds then the case is obvious where a
hamiltonian circuit is formed by a single jump. Suppose that (1) and (2) do not

hold. Since no single jump forms a hamiltonian circuit in G.then jumps a,b can
be represented by Ca’,Cb’, where (n,C) = [ and (a 'b*) = 1. Note, that for G to
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be connected there must exist jumps a’, b’ that are relatively prime. If a and b
are relatively prime then C = 1 (or otherwise G would be disconnected) and
proof follows from Lemma 2.2. Otherwise, G = G,(Ca’,Ch ) for some C>1.In
this case isomorphism C*i (mod n) — i induces a circulant H with jumps a’ and
b’ (i.e., H=H,(a’b’)) that is isomorphic with G (i.e., H = G). Furthermore, the
following relations are satisfied: (n,a’) = (n,Ca ) (n, b’) = (n,Cbh), (nsa’+b’) =
(n,sCa’+Cb’), and (n,a’+th’) = (n,Ca’+tCh"). So, the proof follows from
Lemma 2.2.

Based on Theorem 2.3 a circulant digraph with two jumps and
nontrivial hamiltonian circuit requires at least 2*3*5 vertices. By the above
theorem Gjy(3,5) is hamiltonian.

Corollary 2.4 Let G, be a circulant digraph with at least two jumps. Define
H,(a,b) to be a connected subgraph of G,,. Let s, be positive integers such that
n/ged(n,a)>s21 and n/ged(n,b)>t>1.Then G, is hamiltonian if it contains H,(a,b)
that satisfies at least one of the following conditions:

(1) aforms a hamiltonian circuit, or
(2) ged(nsa+b) =s+1, or
(3) ged(nm, a+th) =t+1.

Proof: Follows directly from Theorem 2.3.
0

Corollary 2.5Let G 2(n, a) (n, b )(a,b) be a connected circulant digraph with two
odd jumps a,b and without a hamiltonian circuit formed by a single jump. Then

G, (where n = 2 -gcd(n, a) -ged(n, b)) has a hamiltonian circuit of form (0, a,
a+b, 2a+b, , 2a+2b, 3a+2b, 3a+3b...) (mod n).

Proof: It is sufficient to show that n = 2(n,a)(n,b) implies (n,a+b) = 2. Since
jumps a,b are odd then among other factors # must have exactly one factor §A
where f'= 2. Suppose that there exists an odd factor f* that satisfies (n,a+5), (i.e.,
n=0 (modf’) and a+b=0 (mod f’)) . Such a factor could not satisfy at the same
time g and b (i.e., a= 0 (mod f°) and b= 0 (mod f*)) because that would mean that
G is disconnected. On the other hand, if it just satisfied only one jump then it
could not satisfy a+b - a contradiction. In addition a+b must be even, so (1,a+b)
= 2 is satisfied. Rest of the proof follows directly from Lemma 2.1 and Theorem
2.3 as a special case.

G

Note, we cannet extend Corollary 2.5 to apply it to Gl(n, a) (n, b)(ab) for
k>2, since ged(n,sa+b) and ged(n,a+1b) cannot be satisfied in general.
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3. Hamiltonian Circuits in Circulant Digraphs containing Edges Defined
by a Single Jump

Throughout this section we assume without loss of generality that a defines

edges in circulant G, (i.e., G, contains jumps a and n-a, or briefly aand -a).

Note, case a = n/2 was already implicitly covered as a special case in the

previous section. So, we assume now that a=n/2.

Lemma 3.1 Let G,(a,-a,b) be a connected circulant digraph. Let n satisfy n = k

-gcd(n,a) -gedn, b) for k21. Then G,(a,-a,b) is hamiltonian if any of the
following holds:

(1) ged(na) =1

(2) gednb)=1

(3) ged(n,a) even

(4) ged(n,a) > ged(n,b),
ged(kged(n,b),ged(n,b)((ged(n,b)-1) a+b)+(ged(n,a)-ged(n, b)) b) =
ged(n,b), and ged(n,b) odd.

Proof: If either (n,a)=1 or (n,b)=1 holds then the case is obvious where a
hamiltonian circuit is formed by a single jump. Suppose that (1) and (2) do not
hold. We will show that an explicit hamiltonian circuit can be formed for (n,a)
being even and for (1, a)>(n, b) if (n, a), (n, b) are odd and (n,b)((n,b)-1)
a+((n,b)-1)b=0 (mod k(n,b)). The relationship between circuits formed by aand
b is illustrated in Figure 4 for k=1, and in Figure 5 for k>1.

Case 1. (n,a) even. Then number of circuits formed by ais even and we first
traverse (n,a) circuits as follows:

0, a2a,..((nb)-1)a ((nb)-1)a+ b,

((n,b)-1) a+ b b-a, ((n,b)-1) a+b-2a,..., a+b,

b, b+a, b+2a,..., b+((nb)-1) a, ((n,b)-1) a+ 2b,

((n,b)-1) a+2b-a, ((n,b)-1) a+2b-2a,..., a+2b,

(. @)-2)b, (. - Db+a, (1, D-Db+2 a,.... (nb)-1) a* ((n, @)-D)b,

((n,b)-1) a+((n, a)-1)b-a, ((n.b)-1) a+((n, a)-1)b-2a,..., a+((n, a)-1)b, (mod n).
If k=1 then we terminate hamiltonian circuit with vertices ((n, a)-1)b, (n, a)b,
(mod n), where (n, a)b=0 (mod n). Otherwise, we follow with vertex ((n, a)-1)b

(mod n), (see Figures 4,5), and for every consecutive i iteration, 1 <i<k we
continue traversing (n,a) circuits in G,(a,-a,b) as follows:

(n, a)bi, (n, a)bi+a, (n, @)bi+2a,..., (n, a)bi+((n,b)-1) a, (n, a)bi+((n,b)-1) a+ b,
(n, @)bi+((n,b)-1) a+b-a, (n, a)bi+((n,b)-1) a+b-2a,..., (n, a)bi+a+b,
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(n, a)bi +b, b+a, (n, a)bi +b+2 a,..., (n, a)bi +b+((n,b)-1) a, ((n,b)-1) a+ 2b,
(n, @)bi +((n,b)-1) a+2b-a, (n, a)bi +((n,b)-1) a+2b-2a,..., (n, a)bi +a+2b,

(n, a)bi+((n, a)-2)b, (n, a)bi+((n, a)-2)b+a,..., (n, a)bi+((n,b)-1) a+ ((n, a)-1)b,
(n, a)bi+((n,b)-1) a+((n, a)-1)b-a, (n, a)bi+((n,b)-1) a+((n, a)-1)b-2a,...,
(n, a)bi+a+((n, a)-1)b, (n, a)bi+((n, a)-1)b (mod n)

After the last iteration i, we complete a hamiltonian circuit with vertex (n, a)bk
(mod n), where (n,a)bk (mod n) =0 (mod n).

Case 2. (n,a)>(n,b), (k(n,b),(n,b)(((n,b)-1) a+b)+((na)-(n, b)) b)=(n,b), and
(n,b) odd. In this case we consider the number of circuits formed by ato be odd

(otherwise Case 1 is satisfied) and we traverse first J,J=(n,b) circuits in the first
iteration i, i=1 as follows:

0,a2aq,..,((nb)-1) a,

((nb)-1) a+ b, ((n,b)-1) a+ b+ a, ((nb)-1) a+ b+ 2a ..., 2((n,b)-1) a+ b,
(((n.b)-1) a+ b,)2, (((n,b)-1) a+ b)2+ a, (((nb)-1) a+ b )2+ 2a, ...,
3((n,b)-1) a+2b,

.............................................................................................

(((n.b)-1) a+ b,)(-1), (((nb)-1) a+ b)-1)+ a, (((n.b)-1) a+ b)(-1)+ 2a,...,
J((nb)-1) a+(j-1)b (mod n)

At this point the last vertex satisfies ji((n,b)-)a+(j-1)b = (n,b)((n,b)-1) a+((n,b)-
1)b and consequently satisfies (n,b)((n,b)-1) a+((n,b)-1)b=0 (mod (n,b)). This
vertex corresponds to Y in Figures 4 and 5 when k=1 or k=2 respectively. Since
(n,a)-(n, b) is even, the remaining (n,a)-n,b) circuits formed by a can follow a
pattern as in Case / for i-th iteration with starting vertex nb)(((nb)-1) a+b)i
(mod n) instead of (n, a)bi (mod n). If k=1 then we terminate hamiltonian circuit
with vertex (n,b)(((n,b)-1) a+b)+((n,a)-(n, b)) b (mod n). Otherwise, we
continue with subsequent iterations for i=2,3,..,k. After the last iteration i, i=k
we complete a hamiltonian circuit with vertex ((n,8)(((n,b)-1) a+b)+((n,a)-(n,
b)) b )k (mod n), where ((n,b)(((n,b)-1) a+b)+((n,a)-(n, b)) b)k =0 (mod n).
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a a a a a

Figure 5 — Relationship between circuits formed by a and b for k=3

Theorem 3.2 The connected circulant digraph G,(a,-a,b), (azn/2) is
hamiltonian.

Proof: If either (n,a)=1 or (n,5)=1 holds then the case is trivial. Suppose that
there is no hamiltonian circuit formed by a single jump. Order of G, must satisfy
n=k(n, a)(n, b) for k=>1. By Casel in Lemma 3.1

G,(a,-a,b) is hamiltonian for (,a) even. Case 2 in Lemma 3.1 is always satisfied
for (n,a) odd, and for k=1 or 2. Hence it remains to show that for (n,a) odd, and
for k>2 or (n,b) even, G,(a,-a,b) is hamiltonian. If k&>2 then the size of circuit
formed by 5 must be at least 4 (Figure 5). If (n,) is even then it would have to
be at least 4 because 2 would imply a=n/2. So, we must only consider odd
number of circuits formed by jump a, where the size of each circuit is at least 4.
We show that an explicit hamiltonian circuit can be constructed in this case.
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First we visit each circuit formed by jump a exactly once (i.e., (n,a) circuits) and
terminate on vertex (n-1)a (mod n) in Pass 1 as follows:

0,b,b-a,b-2a,...b+(k-1)(n,b)a-2a,
2b+(k-1)(n,b)a-2a, 2b+(k-1)(n,b)a-a,
3b+(k-1)(n,b)a-a, 3b+(k-1)(n,b)a-2a,

((n,a)-2)b+(k-1)(n,b)a-a, ((n,a)-2)b+(k-1)(n,b)a-2a,
((n,a)-1)b+(k-1)(nb)a-2a, ((n,a)-1)b+(k-1)(n,b)a-a, (n-1)a (mod n)

In Pass 2 we traverse through all circuits formed by a again visiting each circuit

once, visiting all the remaining vertices, and terminating on vertex 0 (refer to
Figures 3,4).

(n-2)a, (n-3)a, ..., 2a,aq,

b+a, b+2a, ..., b+(k-1)(n,b)a -3a,

2b+(k-1)(n,b)a -3a, 2b+(k-1)(n,b)a -4a, ...,2b+(k-1)(n,b)a,
3b+(k-1)(n,b)a, 3b+(k-1)(nb)a+a, ..., 3b+(k-1)(n,b)a-3a,

................................................................................

((n,a)-2)b+(k-1)(n,b)a, ((n.a)-2)b+(k-1)(n,b)a+a, ..., ((na)-2)b+(k-1)(nb)a-3a,
((n,a)-1)b+(k-1)(n,b)a-3a, ((n,a)-1)b+(k-1)(n,b)a-4a, ..., ((n,a)-1)b+(k-1)(n,b)a,
0 (mod n)

G

Based on Theorem 3.2 we can state the following result.

Corollary 3.3 Let G, be a circulant digraph with at least three jumps and H,(a,-
a,b) ), (a=n/2), be a connected spanning subgraph of G,. Then G, is hamiltonian.

Finally, we give a miscelaneous special case result derived from the
proof of Lemma 3.1.

Corollary 3.4 Let G,(a,2a,b) be a connected circulant digraph without a
hamiltonian circuit formed by a single jump. Let » satisfy n = ged(n,a) -ged(n,b)
and at least one of the following cases be also satisfied:

(1) gcd(n a) even, or
(2) ged(n,a) > ged(n,b) and ged(n,b) odd.

Then G,(a,2a,b) is hamiltonian.
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Proof: Consider first circulant H,(a,-a,b) induced by G,(a,2a,b). By Lemma 3.1,
k = I and hence equation (k(n,b),(n,b)(((n,b)-1) a+b)+((n,a)-(n, b)) b) = (n,b) is
satisfied. So, by Lemma 3.1 circulant H,(a,-a,b) is hamiltonian. In addition, for
k = I each hamiltonian circuit C identified in proof of Lemma 3.1 can be
represented as C = P°P' .. .P*Ix,’, where P' = x/xi/ ..Xisn1-/ OF P = Xispnpy.f
x,+,,,_1,).zj .x!, and 0 <j< (n,b). But each P can be realized in G,(a,2a,b) as
follows:

() P=xixi]. X! =% x?+a, x/+2a, x/+3aq,...,
. x+((n,b)-1)a (mod (n,b)) or
(2) P =Xisipy-fXietm-d Xl =x7+((nb)-1)a, x/+((n,b)+1)a,
x/+(mb)+2)a, ..., x{+((nb)-2)a, x/ (mod (n.b)).
]

Finally we conclude that it would be a natural extension to this paper to
solve the following problem(s). Define G to be minimally connected if the
removal of arcs associated with any single jump in G would result in
disconnected graph. Identify the necessary and/or sufficient conditions for the
minimally connected graph G to be hamiltonian.

REFERENCES

1. B. Alspach, S. Locke, and D. Witte, The Hamilton spaces of Cayley graphs
on Abelian groups. Discrete Math. 82 (1990) 113-126.

2. C.Berge, Graphs and Hypergraphs. North-Holland, Reading, 1979.

3. F.T. Boesch and R. Tindell, Circulants and their connectivities. J. Graph
Theory 8 (1984) 129-138.

4. Z.R.Bogdanowicz, Pancyclicity of connected circulant graphs. J. Graph
Theory 22 (1996) 167-174.

5. C. Chen and N. Quimpo, On strongly hamiltonian abelian group graphs.
Combinatorial Mathematics VIII, Lecture Notes in Mathematics 884,
Springer-Verlag, Berlin (1981).

6. P.J. Davis, Circulant Matrices, Wiley, New York (1979)

7. B. Elspas and J. Turner, Graphs with circulant adjacency matrices. J.
Combin. Theory 9 (1970) 297-307.

8. L. Lovasz, Combinatorial Problems and Exercises, North-Holland,
Amsterdam (1979).

9. D.Marusic and T. D. Parsons, Hamiltonian paths in vertex-symmetric
graphs of order 4p. Discrete Math. 43 (1983) 91-96

223



