A σ_k type condition for heavy cycles in weighted graphs

Hikoe Enomoto¹
Department of Mathematics
Hiroshima University
Higashi-Hiroshima, 739-8526 Japan

Jun Fujisawa²
Department of Mathematics
Keio University
Yokohama, 223-8522 Japan

Katsuhiro Ota³
Department of Mathematics
Keio University
Yokohama, 223-8522 Japan

Abstract

A weighted graph is one in which every edge e is assigned a non-negative number, called the weight of e. For a vertex v of a weighted graph, $d^w(v)$ is the sum of the weights of the edges incident with v. For a subgraph H of a weighted graph G, the weight of H is the sum of the weights of the edges belonging to H. In this paper, we give a new sufficient condition for a weighted graph to have a heavy cycle. Let G be a k-connected weighted graph where $2 \le k$. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k+1), if G satisfies the following conditions: (1) The weighted degree sum of any k independent vertices is at least m, (2) w(xz) = w(yz) for every vertex $z \in N(x) \cap N(y)$ with d(x,y) = 2, and (3) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Keywords. Weighted graph, heavy cycle, weighted degree sum

¹e-mail: enomoto@math.sci.hiroshima-u.ac.jp

 $^{^2\}mathrm{e\text{-}mail}$: fujisawa@math.keio.ac.jp

³c-mail: ohta@math.keio.ac.jp

1 Terminology and notation

We only consider finite undirected graphs without loops or multiple edges. Let V(G) and E(G) denote the set of vertices and edges of a graph G, respectively. A weighted graph is one in which each edge e is assigned a nonnegative number w(e), called the weight of e. For a subgraph H of G, the weight of H is defined by

$$w(H) = \sum_{e \in E(H)} w(e).$$

For each vertex $v \in V(G)$, $N_G(v)$ is the set, and $d_G(v)$ the number, of neighbors of v in G. We define the weighted degree of v in G by

$$d_G^w(v) = \sum_{u \in N_G(v)} w(uv).$$

When no confusion occurs, we will denote $N_G(v)$, $d_G(v)$, and $d_G^w(v)$ by N(v), d(v), and $d^w(v)$, respectively. An (x,y)-path is a path whose end vertices are x and y. The distance between two vertices x and y, denoted by d(x,y), is the minimum length of an (x,y)-path.

The number of vertices in a maximum independent set of G is denoted by $\alpha(G)$. For a positive integer $k \leq \alpha(G)$, $\sigma_k(G)$ denotes the minimum value of the degree sum of any k independent vertices, and $\sigma_k^w(G)$ denotes the minimum value of the weighted degree sum of any k independent vertices.

2 Results

There have been many results on the existence of long cycles in graphs. The following results are well-known.

Theorem A (Dirac [4]) Let G be a 2-connected graph such that $d(v) \ge d$ for every vertex v in V(G). Then G contains either a Hamilton cycle or a cycle of length at least 2d.

Theorem B (Pósa [6]) Let G be a 2-connected graph such that $d(u) + d(v) \ge c$ for each pair of nonadjacent vertices u and v in V(G). Then G contains either a Hamilton cycle or a cycle of length at least c.

Theorem C (Fournier and Fraisse [5]) Let G be a k-connected graph where $2 \le k < \alpha(G)$, such that $\sigma_{k+1}(G) \ge m$. Then G contains either a Hamilton cycle or a cycle of length at least 2m/(k+1).

An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight w(e) = 1. Thus, in an unweighted graph, $d^w(v) = d(v)$ for every vertex v, and the weight of a cycle is simply the length of the cycle.

Theorem A and Theorem B were extended to weighted graphs by the following two theorems, respectively.

Theorem 1 (Bondy and Fan [2]) Let G be a 2-connected weighted graph such that $d^w(v) \geq d$ for every vertex v in V(G). Then G contains a cycle of weight at least 2d or every heaviest cycle in G is a Hamilton cycle.

Theorem 2 (Bondy et al. [1]) Let G be a 2-connected weighted graph such that $d^{u}(u) + d^{u}(v) \ge c$ for each pair of nonadjacent vertices u and v in V(G). Then G contains either a Hamilton cycle or a cycle of weight at least c.

And, Theorem C was extended to weighted graphs by the following theorem in the case k = 2.

Theorem 3 (Zhang et al. [7]) Let G be a 2-connected weighted graph which satisfies the following conditions:

- (1) $\sigma_3^w(G) \geq m$.
- (2) w(xz) = w(yz) for every vertex $z \in N(x) \cap N(y)$ with d(x,y) = 2.
- (3) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3.

In this paper, we extend Theorem C to weighted graphs for all k. Our main result is the following theorem.

Theorem 4 Let G be a k-connected weighted graph where $k \geq 2$. Suppose that G satisfies the following conditions.

- (1) $\sigma_{k+1}^{w}(G) \geq m$.
- (2) w(xz) = w(yz) for every vertex $z \in N(x) \cap N(y)$ with d(x,y) = 2.
- (3) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k+1).

In our proof of Theorem 4, we need the following lemma.

Lemma 1 Let G be a connected weighted graph satisfying Conditions (2) and (3) of Theorem 4. Then G satisfies one of the following:

- (a) all edges of G have the same weight, or
- (b) G is a complete multi-partite graph.

3 Proof of Lemma 1

Let G be a connected weighted graph satisfying Conditions (2) and (3) of Theorem 4. Suppose that there exists $e_1, e_2 \in E(G)$ such that $w(e_1) \neq w(e_2)$. We need to prove that G is a complete multi-partite graph.

Since G is connected, we can choose a vertex x so that there exist $u, v \in N(x)$ such that $w(ux) \neq w(vx)$. Let $\bigcup_{i=1}^{n} V_i$ be a partition of N(x) such that for $u \in V_i$ and $v \in V_j$, w(ux) = w(vx) if and only if i = j. Now we denote the weight of the edges joining x and V_i by w_i for $1 \leq i \leq n$.

Claim 1 Let $1 \le i, j \le n$ and $v_i \in V_i$, $v_j \in V_j$. If $i \ne j$, $v_i v_j \in E(G)$.

Proof. Since $w(xv_i) \neq w(xv_j)$, Condition (2) of Theorem 4 implies $d(v_i, v_j) \neq$ 2. Hence $v_i v_j \in E(G)$.

Claim 2 If there exists a vertex y such that d(x,y) = 2, then $vy \in E(G)$ for all $v \in N(x)$.

Proof. The fact d(x, y) = 2 shows that there is a neighborhood v_1 of y in N(x). Without loss of generality, we may assume $v_1 \in V_1$. And Condition (2) of Theorem 4 implies $w(yv_1) = w_1$.

Now suppose that there exists a vertex $v \in \bigcup_{i=2}^n V_i$ with $yv \notin E(G)$. Then Claim 1 implies $v_1v \in E(G)$, and Condition (2) of Theorem 4 shows $w(v_1v) = w(yv_1) = w_1$. Hence, applying Condition (3) of Theorem 4 to the triangle xv_1v , we have $w(xv) = w_1$. This contradicts the definition of the partition $\bigcup V_i$. So we must have $yv \in E(G)$ for all $v \in \bigcup_{i=2}^n V_i$.

Applying the same argument to $v_2 \in V_2 \cap N(y)$ and $v \in V_1$, we have $yv \in E(G)$ for every $v \in V_1$.

If there exists a vertex y such that d(x, y) = 2, Condition (2) of Theorem 4 implies $w(v_i y) = w_i$ for all $v_i \in V_i$.

Claim 3 There is no vertex z such that d(x, z) = 3.

Proof. Suppose that there exists a vertex z such that d(x, z) = 3. Then z has a neighbor y such that d(x, y) = 2. Now Claim 2 implies that we have $v_1 \in N(y) \cap V_1$ and $v_2 \in N(y) \cap V_2$ with $w(yv_1) = w_1$ and $w(yv_2) = w_2$.

Since $d(z, v_1) = d(z, v_2) = 2$, Condition (2) of Theorem 4 shows $w(zy) = w(yv_1) = w_1$ and $w(zy) = w(yv_2) = w_2$. So we have $w_1 = w_2$, a contradiction.

Let $V_0 = \{x\} \cup \{y : d(x,y) = 2\}$. Then $\bigcup_{i=0}^n V_i$ is a partition of V(G).

Claim 4 Let $0 \le i < j \le n$ and $v_i \in V_i$, $v_j \in V_j$. Then $v_i v_j \in E(G)$.

Proof. If $i \neq 0$ and $j \neq 0$, Claim 1 implies $v_i v_j \in E(G)$. So we may assume i = 0. If $v_i = x$, the definition of $\bigcup_{i=1}^n V_i$ shows $v_i v_j \in E(G)$, and if $v_i \neq x$, Claim 2 implies $v_i v_j \in E(G)$.

Note that for all $v_0 \in V_0$, $v_0 = x$ or $d(x, v_0) = 2$. Hence for all $v_i \in V_i (1 \le i \le n)$, $w(v_0 v_i) = w_i$.

Claim 5 $v_0v_0' \notin E(G)$ for all $v_0, v_0' \in V_0$.

Proof. If $v_0 = x$, $d(x, v_0') = 2$ for all vertices $v_0' \in V_0 \setminus \{v_0\}$. Hence $v_0 v_0' \notin E(G)$. So we may assume $v_0, v_0' \neq x$. Now we suppose $v_0 v_0' \in E(G)$. Claim 2 implies that there exists $v_1 \in V_1, v_2 \in V_2$ such that $v_1, v_2 \in N(v_0) \cap N(v_0')$. Now we have $w(v_0 v_1) = w(v_0' v_1) = w_1$, $w(v_0 v_2) = w(v_0' v_2) = w_2$. So applying Condition (3) of Theorem 4 to the triangles $v_0 v_0' v_1$ and $v_0 v_0' v_2$, we have $w_1 = w_2$, a contradiction.

Claim 6 Let $0 \le i \le n$ and $t, u, v \in V_i$. If $tu, uv \notin E(G)$, then $tv \notin E(G)$.

Proof. If i=0, Claim 5 implies that $tv \notin E(G)$. So we assume that $1 \leq i \leq n$. Suppose $tv \in E(G)$. Without loss of generality, we may assume i=1. Let $v_2 \in V_2$. Now, since $t,u,v \in V_1$, $w(xt)=w(xu)=w(xv)=w_1$. Then applying Condition (3) of Theorem 4 to the triangle xtv, we have $w(tv)=w(xt)=w_1$. On the other hand, Claim 4 implies v_2t , v_2u , $v_2v \in E(G)$. Since tu and $uv \notin E(G)$, Condition (2) of Theorem 4 shows $w(v_2t)=w(v_2u)=w(v_2v)$. Then applying Condition (3) of Theorem 4 to the triangle v_2tv , we have $w(tv)=w(v_2t)$. Hence, $w(v_2t)=w(tv)=w(xt)=w_1$. So applying Condition (3) of Theorem 4 to the triangle xtv_2 , we have $w_2=w(xv_2)=w(xt)=w_1$, a contradiction.

Now on every V_i $(0 \le i \le n)$, nonadjacency is an equivalence relation. Let $V_{i,1}, \ldots, V_{i,m_i}$ be the equivalence classes of V_i . Then, for all vertices $u \in V_{i,j}$ and $v \in V_{i',j'}$, $uv \in E(G)$ if and only if $(i,j) \ne (i',j')$. Hence, G is a complete multi-partite graph with partite sets $V_0, V_{i,j} (1 \le i \le n, 1 \le j \le m_i)$. This completes the proof of Lemma 1.

4 Proof of Theorem 4

Let G be a weighted graph satisfying the conditions of Theorem 4. If $k \ge \alpha(G)$, the following theorem implies the assertion.

Theorem D (Chvátal and Erdős [3]) Let G be a k-connected graph with at least three vertices. If $k \ge \alpha(G)$, then G contains a Hamilton cycle.

So we may assume $2 \le k < \alpha(G)$. Now Lemma 1 implies that all edges of G have the same weight or G is a complete multi-partite graph.

Assume that all edges of G have the same weight w_1 . If $w_1 = 0$, the assertion is obvious. If $w_1 \neq 0$, $d^{w}(v) = w_1 d(v)$ for all $v \in V(G)$. Hence $\sigma_{k+1}(G) = \sigma_{k+1}^{w}(G)/w_1 \geq m/w_1$. Then Theorem C implies that G contains either a Hamilton cycle or a cycle G of length at least $2m/(k+1)w_1$. Now $w(G) = w_1|E(G)| \geq 2m/(k+1)$.

Hence, we may assume that G is a complete multi-partite graph. Let n = |G| and V_1, \dots, V_l be the partite sets of G.

Claim 1 If $x, y \in V_i$, then w(xz) = w(yz) for every $z \in V(G) \setminus V_i$. In particular, $d^w(x) = d^w(y)$.

Proof. Since x and y are in the same partite set V_i , $xy \notin E(G)$. Hence, Condition (2) implies w(xz) = w(yz). And hence, the assertion $d^{u}(x) = d^{u}(y)$ is obvious.

Claim 2 If G is not hamiltonian, then $|V_i| > n/2$ for some i such that $1 \le i \le l$.

Proof. Suppose that $|V_i| \le n/2$ for all i $(1 \le i \le l)$. Then for each $v \in V_j$ $(1 \le j \le l)$,

$$d(v) = \sum_{r \neq j} |V_r| = n - |V_r| \ge n/2.$$

Hence, Theorem A implies that G has a Hamilton cycle, a contradiction. \Box

Without loss of generality, we can assume that $|V_1| > n/2$. Let $p = |V_1|$ and q = n - p. Then, since G is k-connected, it is obvious that $k \le q < p$. And let $V_1 = \{v_1, v_2, \ldots, v_p\}$, $V(G) \setminus V_1 = \{u_1, u_2, \ldots u_q\}$.

Claim 3 $d^w(v) \ge m/(k+1)$ for all $v \in V_1$.

Proof. Since k < p, we can choose $v_1, v_2, \ldots, v_{k+1}$ in V_1 . Now, $\{v_1, v_2, \ldots, v_{k+1}\}$ is independent, hence $\sum_{i=1}^{k+1} d^w(v_i) \ge m$. Then Claim 1 implies $d^w(v_1) = d^w(v_2) = \cdots = d^w(v_{k+1})$, so $d^w(v_1) \ge m/(k+1)$. Using Claim 1 again, we have $d^w(v) \ge m/(k+1)$ for all $v \in V_1$.

Now we consider the cycle $C = v_1 u_1 v_2 u_2 \cdots v_{q-1} u_{q-1} v_q u_q v_1$. Then Claim 1 implies

$$w(C) = w(v_1u_1) + w(u_1v_2) + w(v_2u_2) + \cdots + w(v_{q-1}u_{q-1}) + w(u_{q-1}v_q) + w(v_qu_q) + w(u_qv_1) = w(v_1u_1) + w(u_1v_1) + w(v_1u_2) + \cdots + w(v_1u_{q-1}) + w(u_{q-1}v_1) + w(v_1u_q) + w(u_qv_1) = 2 \sum_{i=1}^{q} w(v_1u_i) = 2d^w(v_1).$$

Hence, by Claim 3, $w(C) \ge 2m/(k+1)$. This completes the proof of Theorem 4.

References

- J.A. Bondy, H.J. Broersma, J. van den Heuvel and H.J. Veldman, Heavy cycles in weighted graphs, *Discuss. Math. Graph Theory* 22 (2002), 7– 15.
- [2] J.A. Bondy and G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989), 53-69.
- [3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
- [4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
- [5] I. Fournier and P. Fraisse, On a conjecture of Bondy, J. Combin. Theory Ser. B 39 (1985), 17–26.
- [6] L. Pósa, On the circuits of finite graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 335–361.
- [7] S. Zhang, X. Li and H.J. Broersma, A σ_3 type condition for heavy cycles in weighted graphs, Discuss. Math. Graph Theory 21 (2001), 159–166.