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Abstract

A weighted graph is onc in which every edge e is assigned a non-
negative number, called the weight of e. TFor a vertex » of a weighted
graph, d”(v) is the sumn of the weights of the edges incident with v.
For a subgraph /I of a weighted graph G, the weight of /7 is the sum
of the weights of the edges belonging to H. In this paper, we give a
new sufficient condition for a weighted graph to have a heavy cycle.
Let G be a k-connected weighted graph where 2 < k. Then G con-
Lains cither a Hamilton eycle or a cycle of weight at least 2m./(k+1),
if G satisfics the following conditions: (1) The weighted degree surmn
of any k independent. vertices is at least m, (2) w(zz) = w(yz) for
every vertex z € N(z) N N(y) with d(z,y) = 2, and (3) In every
triangle " of ©, cither all edges of T have dillerent weights or all

edges of 7" have the same weight.
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1 Terminology and notation

We only consider finite undirected graphs without loops or multiple edges.
Let V(C) and E(G) denote the sct of vertices and cdges of a graph G,
respectively. A weighted graph is one in which each edge e is assigned a
nonnegative number w(e), called the weight of e. For a subgraph I/ of G,
the weight of H is defined by

w()= Y wle).
c€ E(H)
IFor each vertex v € V(G), Ng(v) is the set, and dg(v) the number, of
ncighbors of v in G. We define the weighted degree of v in G by

dg(v) = Z w(uv).
wCNe(v)
When no confusion occurs, we will denote Ng(v), dg(v), and dg(v) by
N (v), d(v), and d“(v), respectively. An (z,y)-path is a path whosc end
vertices are z and y. The distance between two vertices z and y, denoled
by d(z,y), is the minimum length of an (z, y)-path.

The number of vertices in 2 maximum independent set of G is denoted
by a(G). For a positive integer & < a(G), ox(G) denotes the minimum
value of the degree sum of any k independent vertices, and o}’ (G) denotes
the minimum value of the weighted degree sumn of any k independent ver-
tices.

2 Results

There have been many results on the existence of long cycles in graphs.
The following results are well-known.

Theorem A (Dirac [4]) Let G be a 2-connecled graph such that d(v) > d
Jor every vertez v in V(G). Then G contains either a Hamillon cycle or a

cycle of length al least 2d.

Theorem B (Pésa [6]) Let G be a 2-connected graph such thal d(u) +
d(v) > ¢ for cach pair of nonadjacent vertices u and v in V(G). Then G

contains cither o Hamillon cycle or a cycle of length al least c.
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Theorem C (Fournicr and Fraisse [5]) Let G be a k-connecled graph
where 2 < k < a(G), such thal ok41(G) = m. Then G conlains cilher a
Hamilton cycle or a cycle of length at least 2m/(k + 1).

An unweighted graph can be regarded as a weighted graph in which
each cdge e is assigned weight w(e) = 1. Thus, in an unweighted graph,
d”(v) = d(v) for every vertex v, and the weight of a cycle is simply the
length of the cycle.

Theorem A and Theorem B were extended to weighted graphs by the
following two theorems, respectively.

Theorem 1 (Bondy and Fan [2]) Let G be a 2-connecled weighted graph
such that d“(v) > d for every vertex v in V(G). Then G conlains o cycle
of weight al least 2d or every heaviest cycle in G is a Hamillon cycle.

Theorem 2 (Bondy ct al. [1]) Let G be a 2-connecled weighled graph
such that d"(u) + d”(v) 2 ¢ for each pair of nonadjacent verlices u and v
wn V(C). Then G conlains cither a llamilton cycle or a cycle of weight al
least c.

And, Theorem C was extended to weighted graphs by the following theorem
in the casc k = 2.

Theorem 3 (Zhang ct al. [7]) Let G be a 2-connected weighted graph

which salisfies the following condilions:
(1) o (G) =z m.
(2) w(zz) =w(yz) for cvery verlex z € N(z) N N(y) with d(z,y) = 2.

(8) In cvery triangle T of G, cither all edges of T have different weights

or all edges of T have lhe sarne weight.
Then G contains either a Hamilton cycle or a cycle of weight al least 2rn /3.

In this paper, we extend Theorem C to weighted graphs for all k. Our main
result is the following theorem.

Theorem 4 Lel G be a k-connected weighled graph where k > 2. Suppose

that G salisfics the follownng condilions.
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(1) o2, (G) 2 m.
(2) w(zz) = w(yz) for every verlex zke N(z) N N(y) with d(z,y) = 2.

(3) In every triangle T of G, cither all edges of T have different weights
or all edges of T have the same weight.

Then C contains either a Hamillon cycle or a cycle of weight al least
2m/(k+1).

In our proof of Theorem 4, we need the following lemma.

Lemma 1 Lel G be a connecled weighted graph salisfying Condilions (2)
and (8) of Theorem 4. Then G salisfies one of the Jollowing:

(a) all edges of G have the same weight, or
(b) G is a complele mulli-partile graph.

’

3 Proof of Lemma 1

Let & be a connected weighted graph satisfying Conditions (2) and (3) of
Theorem 4. Suppose that there exists ey, ea € 15(G) such that w(e;) #
w(ez). We need to prove that G is a complete multi-partite graph.

Since G is conneeted, we can choose a vertex z so that there exist
u,v € N(z) such that w(uz) # w(vz). Let |J_, V; be a partition of N(z)
such that for w € V; and v € V;, w(uz) = w(vz) il and only il i = . Now
we denote the weight of the edges joining z and V; by w; for 1 <i < n.

Claim 1 Let 1 <4, <nandv; € Vi, v; € V;. Ifi 4 3, vivj € B(C).

Proof. Since w(zv;) # w(zv;), Condition (2) of Theorem 4 implics d(v;, v;) #
2. Hence viv; € I5(G). D

Claim 2 If there exisls a vertex y such that d(z,y) = 2, then vy € F(C)
Jor all v € N(z).

Proof. The fact d(z,y) = 2 shows that there is a neighborhood v; of 3 in
N(z). Without loss of generality, we may assume v; € V;. And Condition
(2) of Theorem 4 implics w(yv,) = w,.
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Now suppose that there exists a vertex v € |JI_, Vi with yv ¢ E(G).
Then Claim 1 implies v3v € E(G), and Condition (2) of Theorem 4 shows
w(viv) = w(yv;) = wy. Ilence, applying Condition (3) of Theorem 4 to
the triangle zv;v, we have w(zv) = wy. This contradicts the definition of
the partition |JV;i. So we must have yv € E(G) for all v € Ui, Vi

Applying the same argument Lo v2 € Vo N N(y) and v € Vi, we have
yv € [5(C) for every v € V4. a

IT there exists a vertex y such that d(z, y) = 2, Condition (2) of Theorem
4 implics w(vy) = w; for all v; € V5.

Claim 3 There is no verlex z such that d(z, z) = 3.

Proof. Supposc that there exists a vertex z such that d(z, 2) = 3. Then 2z
has a ncighbor y such that d(z,y) = 2. Now Claim 2 implics that we have
vy € N(y) NV, and vy € N(y) N Ve with w(yv,) = w and w(yve) = wn.
Since d(z,v1) = d(z,v2) = 2, Condition (2) of Theorem 4 shows w(zy) =
w(yw) = wn and w(zy) = w(yve) = wy. So we have wy = wp, a contradic-
tion. m]

Lot Vo = {z} U {y : d(zx,y) = 2}. Then U, Vi is a partition of V(G).
Claim 4 lLet0<i<j<nandv; € V;, v; €V;. Thenvv; € I(G).
Proof. If i # 0 and j # 0, Claim 1 implics v;v; € E(G). So we may

assume i = 0. If v; = z, the definition of |J_, Vi shows v;u; € 15(G), and
if v; # z, Claim 2 implies v;v; € L(G). m}

Note that for all vy € Vo, v = z or d(z,v9) = 2. Hence for all »; €
Vi(1 <1 € n), w(vov;) = uy.

Claim 5 upuy' ¢ 15(G) for all vy, v’ € V.

Proof. [ vy = z, d(z,vo") = 2 for all vertices v’ € Vo\{w}. ence vovy’ ¢
I2(G). So we may assume vo, v’ # 2. Now we suppose wvo’ € I5(G).
Claim 2 implies that there exists vy € Vi, vg € V such that vy, vz € N(w)N
N(w'). Now we have w(vgvy) = w(vgv1) = wi, w(vovz) = w(vhue) = wy.
So applying Condition (3) of Theorem 4 to the triangles vovgur and VOUHV2,

we have wy = wsy, a contradiction. o

Claim 6 Lel 0 <i<mnandl,u,v € Vs [flu,un & I5(G), then lu ¢ 15(G).
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Proof. If i = 0, Claim 5 implics that tv € E(G). So we assume that
1 €4 < n Suppose tv € E(G). Without loss of generality, we may
assume 1 = 1. Let vy € V. Now, since t,u,v € Vi, w(zt) = w(zu) =
w(zv) = wy. Then applying Condition (3) of Theorem 4 to the Lriangle
zty, we have w(lv) = w(zt) = wy. On the other hand, Claim 4 implics
val, vou, vav € L(G). Since tu and uv ¢ E(G), Condition (2) of Theorem 4
shows w(vat) = w(vyu) = w(vzv). Then applying Condition (3) of Theorem
1 to the triangle vaty, we have w(tv) = w(vat). Hence, w(vat) = w(tv) =
w(zt) = wy. So applying Condition (3) of Theorem 4 to the triangle zlv,,
we have wy = w(zve) = w(zt) = w,, a contradiction. o

Now on every V; (0 < i < n), nonadjacency is an equivalence rclation.
Let Vii,..., Vim; be the cquivalence classes of V;. Then, for all verlices
u€V,;andv € Vyj, uv € £(G) il and only il (3,5) # (¢,5'). Hence, G
is a complete multi-partite graph with partite sets Vo, Vi ;(1 <4 < n,1 <
J £ m;). This completes the proofl of Lemma 1. 0

4 Proof of Theorem 4

Lot @ be a weighted graph satislying the conditions of Theorem 4. If
k 2 o), the lollowing theorem implies the assertion,

Theorem D (Chvital and Erdés [3]) Let G be a k-connecled graph with
al least three verlices. [ k > «(QG), then G contains a IHamillon cycle.

So we may assume 2 < k < a(G). Now Lemma 1 implics that all edges of
G have the same weight or G is a complete multi-partite graph.

Assume that all edges of G have the same weight wy. If wy; = 0, the
assertion is obvious. If wy # 0, d'(v) = wid(v) for all v € V(C). Hence
k1 (G) = a1 (G)/un > mfw;. Then Theorem C implics that G contains
cither a Hamilton cycle or a cycle C of length at least 2mn/(k + 1)w;. Now
w(C) = un|l5(C)| = 2m/(k + 1).

Hence, we may assume that C is a complete multi-partite graph. Let
n = |G| and V4, ---, V{ be the partite scts of G.

Claim 1 If z,y € V;, then w(zz) = w(yz) for every z € V(G\V;. In
parlicular, d*(z) = d"(y).
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Proof. Since z and ¥ arc in the same partite set. Vi, zy ¢ £5(G). lence,
Condition (2) implics w(zz) = w(yz). And hence, the assertion d(z) =
d™(y) is obvious. u}

Claim 2 If G is nol hamiltonian, then |Vi| > n/2 for some i such thal
1<i<l.

Proof. Suppose that |Vi] < /2 for all i (1 <1 <1). Then for cach v € V;
(1<j<h,
dw) =Y _ Vel =n—|V;| 2 n/2.
T4
Hence, Theorem A implics that G has a Iamilton cycle, a contradiction.
a

Without loss of gencrality, we can assume that |Vi| > n/2. Let p = [Vi]
and ¢ =n —p. Then, since G is k-connected, it is obvious that k < g < p.
And let V) = {1)1,‘02, - ,vp}, V(C)\V] = {‘u,], ug, .. .uq}.

Claim 3 d“(v) > m/(k+1) for allv e V).

Proof. Since k < p, we can choose vy, v2, . .., Vg1 in Vi, Now, {vi,v2, ..., Ve
is independent, hence Zf’ 11 d"(v;) > m. Then Claim 1 implics &”(v1) =
d¥(vy) = - = d¥(vky1), so d¥(v) 2 m/(k+1). Using Claim 1 again, we
have d”(v) > m/(k+ 1) for all v € V;. O

Now we consider the cycle C = viuivauz « - - UVg— 11— 1 Vgliq¥1. Then Claim
1 implics
w(C) = w(vyu)+ w(uve) +w(vouz) + -
(Vg 1. 1)+ wW(g-19g) + w(vgug) + w(uyy)
= w(vyu) + wlwmw) + wvyug) + - -

+w(mug..1) + w(ug-1v1) + w(vig) + w(ugu)
q
= 2 Z w(v)u;)
i=1
= 2d"(vy).

Hence, by Claim 3, w(C) > 2m/(k + 1). This completes the proof of
Theorem 4.
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