A Note on Neighborhood Unions and Independent Cycles

Jill R. Faudree University of Alaska Fairbanks Fairbanks AK 99775

Ronald J. Gould Emory University Atlanta GA 30322

June 11, 2003

Abstract

We prove that if G is a simple graph of order $n \geq 3k$ such that $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x and y, then G contains k vertex independent cycles.

1 Introduction

In this paper, we only consider simple graphs. Other than the following instances, notation used is standard. We define $N(x_1, x_2, \dots, x_r) = N(x_1) \cup N(x_2) \cup \dots \cup N(x_r)$ and $N_H(x) = N(x) \cap V(H)$. Also, when we refer to k independent cycles we will always mean k vertex independent cycles.

In 1963 Corradi and Hajnal in [1] produced the following result which proved a conjecture of Erdos:

Theorem 1 If G is a graph of order $n \geq 3k$, $k \geq 1$, with $\delta(G) \geq 2k$, then G contains k independent cycles.

In 1989, Justesen in [2] generalized this result to degree sums of non-adjacent pairs and in 1999 Justesen's result was improved by Wang in [4] with the following sharp result:

Theorem 2 If G is a graph of order $n \geq 3k$ such that $deg(u) + deg(v) \geq 4k-1$ for all pairs u, v of nonadjacent vertices, then G contains k independent cycles.

A summary of results on independent cycles in graphs can be found in [3].

In this paper, we look at neighborhood unions that imply the existence of k independent cycles. Specifically we prove the following result:

Theorem 3 If G is a graph of order $n \ge 3k$ such that $|N(x,y)| \ge 3k$ for all nonadjacent pairs of vertices x and y, then G contains k vertex independent cycles.

The result above is sharp in the sense that for any k the graph $G = K_{3k-1} \cup K_2$ has |N(x,y)| = 3k-1 for all nonadjacent vertices x and y and does not have k independent cycles. Also, note that |N(x,y)| = 2 for all nonadjacent vertices x and y does not guarantee the existence of single cycle. Thus, for k = 1 and for any n, we need $|N(x) \cup N(y)| \ge 3k$.

2 Proof of Theorem 3

The proof will proceed by double induction on n and k.

The theorem is clearly true for small values of n. That is, for a graph G of order n=3,4 or 5, we have k=1 and so we assume $|N(x,y)| \geq 3$. Thus, G must contain a cycle. Thus, we assume the statement of the theorem is true for graphs of order less than n.

Let G be a graph of order n satisfying the hypothesis of the theorem. Let k=1. Then $|N(x,y)| \geq 3$ for all nonadjacent pairs of vertices. Thus G must contain a cycle.

Assume G does not contain k independent cycles for $k \leq n/3$. If G contains a triangle, T, then G-T clearly contains k-1 independent cycles by the inductive hypothesis. Thus, G contains k independent cycles. So we assume $g(G) \geq 4$.

Let $C = \{C_1, C_2, C_3, ..., C_{k-1}\}$ be a collection of k-1 vertex disjoint cycles which exist by the inductive hypothesis. Choose C so that |V(C)| is minimized. Let L = G - V(C). Note that our choice of C implies that $|V(L)| \geq 3$ since $G - \{v_1, v_2, v_3\}$ contains k-1 independent cycles for any choice of v_1, v_2, v_3 .

Of all collections $\mathcal C$ such that $|V(\mathcal C)|$ is minimized, choose one such that L has a minimum number of connected components. Finally, of all collections $\mathcal C$ with a minimum number of connected components, pick one such that the order of a maximum component of L is maximized. Note that each component of L must be a tree or a kth cycle can be found. Also, all cycles of $\mathcal C$ are induced.

Claim 1: L has exactly one connected component.

Assume L has two or more components. Let v and w be end vertices of distinct trees in L such that w is in a component of maximum order. Then $|N_{\mathcal{C}}(v,w)| \geq 3k-2$. So there exists $C_i \in \mathcal{C}$ such that $|N_{\mathcal{C}_i}(v,w)| \geq 4$. By the minimality of $|V(\mathcal{C})|$, we know that C_i must be a 4-cycle with vertices (in order), $u_1u_2u_3u_4$, such that without loss of generality $vu_1, vu_3, wu_2, wu_4 \in E(G)$.

Let C'_i be the cycle $u_1vu_3u_4u_1$. Let $C' = C - C_i \cup \{C'_i\}$. Now L' = G - V(C') has a larger maximum connected component than L. This contradicts our choice of C. Thus, L has at most one component.

Claim 2: We can assume L is a path.

If L is not a path, pick a path P of maximum length in L. Let w be an end vertex of this path. Let v be an end vertex of L not on this path. As in the proof of claim 1, we can simultaneously insert v into C and append u_2 to P. Continue this process until L is a path.

Claim 3: We can assume that at least one penultimate vertex on the path L has degree in G at least 3k/2. Note that if L has only three vertices there is only one penultimate vertex.

Pick v, w to be end vertices of L. Without loss of generality, we assume $d(w) \geq 3k/2$. If there does not exist a penultimate vertex with degree at least 3k/2, then, as in the proof of Claim 1, we can simultaneously insert v into C and append u_2 to L. Now w is a penultimate vertex with degree at least 3k/2.

Label the vertices of the path $L: x_1x_2...x_m$ and, without loss of generality, assume x_2 is the penultimate vertex of degree at least 3k/2. Now, $|N_C(x_1,x_2,x_3)|=|N_C(x_1,x_3)|+|N_C(x_2)|\geq 3k-2+\frac{3k}{2}-2=\frac{9k}{2}-4>4(k-1)$ for $k\geq 1$. But this means there exists $C_i\in \mathcal{C}$ such that $|N_{C_i}(x_1,x_2,x_3)|\geq 5$ which contradicts the minimality of $|V(\mathcal{C})|$. Thus, G has k independent cycles completing the proof.

3 Conjecture

We conjecture that if the order of the graph n is larger relative to k (perhaps $n \geq 4k$) then the neighborhood condition can be lowered (perhaps to 2k). This conjecture is motivated by the complete balanced bipartite graph of order 4k. This conjecture, of course, requires that $k \geq 2$.

References

- K. Corradi and A. Hajnal, On the maximal number of independent circuits in a graph. Acta. Math. Acad. Sci. Hungar. 14 (1963) 423-439.
- [2] P. Justesen, On independent circuits in finite graphs and conjecture of Erdos and Posa. Annals of Discrete Math 41 (1989) 299-306.
- [3] L. Lesniak, Independent cycles in graphs. J. Combin. Math. Combin. Comput. 17 (1995), 55-63.
- [4] H. Wang, On the maximum number of independent cycles in a graph. Discrete Math. 205 (1999), no. 1-3,183-190.