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Abstract

We prove that if G is a simple graph of order n > 3k such that
[N(z)UN(y)| > 3k for all nonadjacent pairs of vertices x and y, then
G contains k vertex independent cycles.

1 Introduction

In this paper, we only consider simple graphs. Other than the following
instances, notation used is standard. We define N(z;,z,, -, z,) = N(z))U
N(z2)U---UN(z,) and Ny(z) = N(z) N V(H). Also, when we refer to k
independent cycles we will always mean k vertex independent cycles.

In 1963 Corradi and Hajnal in [1] produced the following result which
proved a conjecture of Erdos:

Theorem 1 If G is a graph of order n > 3k, k > 1, with 6(G) > 2k, then
G contains k independent cycles.

In 1989, Justesen in [2] generalized this result to degree sums of non-
adjacent pairs and in 1999 Justesen’s result was improved by Wang in [4]
with the following sharp result:

Theorem 2 If G is a graph of order n > 3k such that deg(u) + deg(v) >
4k —1 for all pairs u,v of nonadjacent vertices, then G contains k indepen-
dent cycles.

A summary of results on independent cycles in graphs can be found in
[3].

In this paper, we look at neighborhood unions that imply the existence
of k independent cycles. Specifically we prove the following result:
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Theorem 3 IfG is a graph of order n 2> 3k such that |[N(z,y)| > 3k for all
nonadjacent pairs of vertices x and y, then G contains k verter independent
cycles.

The result above is sharp in the sense that for any k the graph G =
Kas—1 U K has |N(z,y)| = 3k — 1 for all nonadjacent vertices z and y
and does not have k independent cycles. Also, note that |N(z,y)| = 2 for
all nonadjacent vertices x and y does not guarantee the existence of single
cycle. Thus, for k = 1 and for any n, we need |N(z) U N(y)| > 3k.

2 Proof of Theorem 3

The proof will proceed by double induction on n and k.

The theorem is clearly true for small values of n. That is, for a graph G
of order n = 3,4 or 5, we have k = 1 and so we assume |{N(z,y)| > 3. Thus,
G must contain a cycle. Thus, we assume the statement of the theorem is
true for graphs of order less than n.

Let G be a graph of order n satisfying the hypothesis of the theorem.
Let k = 1. Then |N(z,y)| > 3 for all ronadjacent pairs of vertices. Thus G
must contain a cycle.

Assume G does not contain k independent cycles for k < n/3. If G
contains a triangle, T, then G — T clearly contains k —- 1 independent cycles
by the inductive hypothesis. Thug, G contains k independent cycles. So we
assume g(G) > 4. .

Let C = {C1,(C>,Cs3, ...,Ci-1} be a collection of k — 1 vertex disjoint
cycles which exist by the inductive hypothesis. Choose C so that |[V(C)|
is minimized. Let L = G — V(C). Note that our choice of C implies that
|V(L)] > 3 since G — {v1,v2,v3} contains k — 1 independent cycles for any
choice of vy, v, v3.

Of all collections C such that |V (C)| is minimized, choose one such that L
has a minimum number of connected components. Finally, of all collections
C with a minimum number of connected components, pick one such that
the order of a maximum component of L is maximized. Note that each
component of L must be a tree or a kth cycle can be found. Also, all cycles
of C are induced.

Claim 1: L has exactly one connected component.

Assume L has two or more components. Let v and w be end vertices of
distinct trees in L such that w is in a component of maximum order. Then
| Ne(v,w)| > 3k—2. So there exists C; € C such that |N¢,(v,w)| > 4. By the
minimality of |V(C)|, we know that C; must be a 4-cycle with vertices (in
order), ujusu3uy, such that without loss of generality vu,, vus, wuz, wuy €
E(G).
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Let C; be the cycle u;vuzuu,. Let C' =C ~ C; U {C!}. Now L' =G —
V(C') has a larger maximum connected component than L. This contradicts
our choice of C. Thus, L has at most one component.

Claim 2: We can assume L is a path.

If L is not a path, pick a path P of maximum length in L. Let w be an
end vertex of this path. Let v be an end vertex of L not on this path. As
in the proof of claim 1, we can simultaneously insert v into C and append
us to P. Continue this process until L is a path.

Claim 3: We can assume that at least one penultimate vertex on the
path L has degree in G at least 3k/2. Note that if L has only three vertices
there is only one penultimate vertex.

Pick v, w to be end vertices of L. Without loss of generality, we assume
d(w) > 3k/2. If there does not exist a penultimate vertex with degree at
least 3k/2, then, as in the proof of Claim 1, we can simultaneously insert v
into C and append u; to L. Now w is a penultimate vertex with degree at
least 3k/2.

Label the vertices of the path L : z;25...z,,, and, without loss of gen-
erality, assume z, is the penultimate vertex of degree at least 3k/2. Now,
|Ne(z1, 22, z3)| = [Ne(z1, z3)|[+|Ne(2:2)] > 3k—2+3k -2 = % _4 5 4(k-1)
for k > 1. But this means there exists C; € C such that [Ne,(z1,22,22)| > 5
which contradicts the minimality of |V(C)j. Thus, G has k independent cy-
cles completing the proof. .

3 Conjecture

We conjecture that if the order of the graph n is larger relative to k (perhaps
n > 4k) then the neighborhood condition can be lowered (perhaps to 2k).
This conjecture is motivated by the complete balanced bipartite graph of
order 4k. This conjecture, of course, requires that k > 2.

References

(1] K. Corradi and A. Hajnal, On the maximal number of independent
circuits in a graph. Acta. Math. Acad. Sci. Hungar. 14 (1963) 423-439.

[2] P. Justesen, On independent circuits in finite graphs and conjecture of
Erdos and Posa. Annals of Discrete Math 41 (1989) 299-306.

[3] L. Lesniak, Independent cycles in graphs. J. Combin. Math. Combin.
Comput. 17 (1995), 55-63.

(4] H. Wang, On the maximum number of independent cycles in a graph.
Discrete Math. 205 (1999), no. 1-3,183-190.

31



