Comment on "Properly Coloured Hamiltonian Paths in Edge-coloured Complete Graphs without Monochromatic Triangles"

Lane Clark
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901-4408

Fix a positive integer c. Let K_n^{ϕ} denote the complete graph K_n of order n whose edges have been colored by ϕ : $E(K_n) \to C$ with # C = c. A subgraph H of K_n^{ϕ} is properly colored if any two adjacent edges in H have distinct colors; and, is monochromatic if all edges in H have the same color. Olof Barr [1] recently proved the following result (here $c \ge 3$).

Theorem [1; Theorem 2.1] If K_n^{ϕ} contains no monochromatic triangle, then K_n^{ϕ} contains a properly colored hamiltonian path.

While this is an aesthetically-pleasing result it, unfortunately, applies to at most $1 \le n < (c+1)!$ for each $c \ge 3$.

For $c \ge 1$, let $f(c) = \min\{n: \operatorname{each} K_n^{\phi} \text{ contains a monochromatic triangle}\}$. Observe that if f(c) exists, then each K_n^{ϕ} contains a monochromatic triangle whenever $n \ge f(c)$.

Observation. For $c \ge 2$, f(c) exists and is at most (c+1)!.

Proof. (Induction on c) Clearly f(2) exists and equals 6. Assume f(c-1) exists and is at most c! where $c \ge 3$. Set n = (c+1)!. We assume $\phi: E(K_n) \to [c] = \{1,...,c\}$ and fix a vertex $v \in V(K_n^{\phi})$. Let $V_i = \{w \in V(K_n^{\phi}): \phi \{v,w\} = i\}$ for $i \in [c]$. Then some $m = \#V_i \ge \lceil ((c+1)!-1)/c \rceil \ge c!$. If $\phi \{w_j, w_k\} = i$ for some $w_j, w_k \in V_i, K_n^{\phi}$ contains a monochromatic triangle. Otherwise, the edges of $K_n^{\phi}[V_i] \cong K_m^{\phi}$ are colored using the c-1 colors $[c] - \{i\}$. By induction, $K_n^{\phi}[V_i]$ contains a monochromatic triangle using colors $[c] - \{i\}$.

Our bound for f(c) is not best possible but suffices here. Consequently, Theorem 2.1 of [1] is of limited use, since it applies to at most $1 \le n < (c+1)!$ for each $c \ge 3$.

Reference

1. Olof Barr, Properly Coloured Hamiltonian Paths in Edge-coloured Complete Graphs without Monochromatic Triangles, *Ars Combinatoria* **50** (1998), 316-318.