Pseudograceful Labelings of Cycles MAGED Z. YOUSSEF ¹

Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

In this paper, we give a complete characterization of the pseudogracefulness of cycles.

Keywords: Graceful labeling; Pseudograceful labeling.

1. Introduction

We follow the basic notations and terminology of graph theory as in [1].

A vertex labeling of a graph G is a function f of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels f(x) and f(y). The most known kinds of vertex labelings are the graceful labelings [6] and the harmonious labelings [5]. Several authors introduced variations on these labelings. For a survey on the vertex labelings, readers are referred to Gallian [4].

Recall that a (p,q) graph G is called graceful if there exists an injective function f, called a graceful labeling of G, $f:V(G) \to \{0,1,\cdots,q\}$ such that the induced function $f^*:E(G) \to \{1,2,\cdots,q\}$ defined by $f^*(xy) = |f(x) - f(y)|$, for all edge $xy \in E(G)$ is an injection. The concept of graceful labeling was introduced by Rosa [6] in 1967, who has shown that if G is a graceful Eulerian graph with q edges, then $q \equiv 0$ or $3 \pmod 4$. We call this condition the graceful parity condition. Rosa [6] also proved that this necessary condition is sufficient for cycles by showing that the cycle C_n is graceful if and only if $n \equiv 0$ or $3 \pmod 4$.

Frucht [3] give a slight variation to the definition of graceful graph by calling a (p,q) graph with p=q+1 (i.e., graphs that are trees or the disjoint union of a tree and uncyclic graphs) is pseudograceful if there exists an injective function f, called a pseudograceful labeling of G, $f:V(G) \to \{0,1,\cdots,q-1,q+1\}$ such that the induced function $f^*: E(G) \to \{1,2,\cdots,q\}$ defined by $f^*(xy) = |f(x)-f(y)|$ for all edge $xy \in E(G)$ is an

¹E-mail address: myoussef11566@yahoo.com

injection. Frucht [3] showed that some families of graphs are pseudograceful.

Seoud and Youssef [7] extended the definition of pseudograceful to all graphs with $p \leq q+1$. Extending the definition enable them to obtain a large families of graceful disconnected graphs as well as of pseudograceful disconnected graphs. They proved that if G is a pseudograceful graphs, then $G \cup K_{m,n}$ is graceful for $m, n \geq 2$ and $G \cup K_{m,n}$ is pseudograceful for $m, n \geq 2$ and $(m, n) \neq (2, 2)$. Youssef [8] proved that if G is a pseudograceful graph and if H is an α -labeled graph, then $G \cup H$ can be graceful or pseudograceful under some conditions on the α -labeling function of H. See Gallian [4] for the definition of α -lebeled graphs.

In this paper, we complete the characterization of the pseudograce-fulness of cycles by showing that the cycle C_n is pseudograceful if and only if C_n is graceful.

2. Pseudogracefulness of Cycles

Seoud and Youssef [7] observed that if G is a pseudograceful Eulerian graph of q edges, then $q \equiv 0$ or $3 \pmod{4}$. We call this condition the pseudograceful parity condition. They also have completely settled the pseudogracefulness of the graphs K_n , $K_{m,n}$ and $P_m + \overline{K}_n$ while for the cycle C_n , they gave pseudograceful labelings for n = 3, 4, 7 and 8. In the following theorem, we give all values of n for which C_n is pseudograceful.

Theorem 1.

 C_n is pseudograceful if and only if $n \equiv 0$ or $3 \pmod{4}$.

Proof.

Necessity follows from the pseudograceful parity condition [7]. For sufficiency, let $V(C_n) = \{u_1, u_2, \cdots, u_n\}$, $n \geq 3$ whewre $u_i u_j \in E(C_n)$ if and only if $i - j \equiv \pm 1 \pmod{n}$. The pseudograceful labelings of C_n , n = 3, 4, 7 and 8 are in [7]. For n > 8, we have the following four cases: Case $1: n = 8k, k \geq 2$. We define the labeling function

$$f: V(C_n) \to \{0, 1, \dots, n-1, n+1\}$$

as follows

$$f(u_1) = n + 1, \quad f(u_3) = n - 1,$$

$$f(u_{4i}) = \begin{cases} 2(i-1), & 1 \le i \le k-1 \\ 2i, & k \le i \le 2k \end{cases}$$

$$f(u_{4i+1}) = \begin{cases} n-1-2i, & 1 \le i \le k-1 \\ n-2i, & k \le i \le 2k-1 \end{cases}$$

$$f(u_{4i-2}) = \begin{cases} 2i-1, & 1 \le i \le k-1 \\ 2(i-1), & i = k \\ 2i-1, & k+1 \le i \le 2k \end{cases}$$

$$f(u_{4i+3}) = \begin{cases} n-2i, & 1 \le i \le k-1 \\ n-1-2i, & k \le i \le 2k-1 \end{cases}.$$

Observe that f is injective with $2k-1 \notin f(V(C_n))$. We have to show that f^* is injective as well. We abbreviate $f^*(u_iu_j)$ to $f^*(i,j)$.

$$\begin{array}{ll} f^*(E(C_n)) & = & \{f^*(1,2), f^*(2,3), f^*(3,4), f^*(n,1)\} \cup \\ & \{f^*(4i,4i+1): 1 \leq i \leq 2k-1\} \cup \\ & \{f^*(4i+1,4i+2): 1 \leq i \leq 2k-1\} \cup \\ & \{f^*(4i+2,4i+3): 1 \leq i \leq 2k-1\} \cup \\ & \{f^*(4i+3,4i+4): 1 \leq i \leq 2k-1\} \end{array}$$

$$= \begin{cases} \{n, \ n-2, \ n-1, \ n-4k+1\} \cup \\ (\{f^*(4i,4i+1): 1 \leq i \leq k-1\} \cup \\ \{f^*(4i,4i+1): k \leq i \leq 2k-1\}) \cup \\ (\{f^*(4i+1,4i+2): 1 \leq i \leq k-2\} \cup \\ \{f^*(4i+1,4i+2): i = k-1\} \cup \\ \{f^*(4i+1,4i+2): k \leq i \leq 2k-1\}) \cup \\ (\{f^*(4i+2,4i+3): 1 \leq i \leq k-2\} \cup \\ \{f^*(4i+2,4i+3): i = k-1\} \cup \\ \{f^*(4i+2,4i+3): k \leq i \leq 2k-1\}) \cup \\ (\{f^*(4i+3,4i+4): 1 \leq i \leq k-2\} \cup \\ \{f^*(4i+3,4i+4): i = k-1\} \cup \\ \{f^*(4i+3,4i+4): k \leq i \leq 2k-1\}) \end{cases}$$

$$= \begin{cases} \{n, \ n-1, \ n-2, \ n-4k+1\} \cup (\{n-4i+1 : 1 \leq i \leq k-1\} \\ \{n-4i : k \leq i \leq 2k-1\}) \cup (\{n-4i-2 : 1 \leq i \leq k-2\} \cup \\ \{n-4k+3\} \cup \{n-4i-1 : k \leq i \leq 2k-1\}) \cup \\ (\{n-4i-1 : 1 \leq i \leq k-2\} \cup \{n-4k+4\} \cup \\ \{n-4i-2 : k \leq i \leq 2k-1\}) \cup (\{n-4i : 1 \leq i \leq k-2\} \cup \\ \{n-4k+2\} \cup \{n-4i-3 : k \leq i \leq 2k-1\}) \ . \end{cases}$$

If we group the edge labels according to the congruence class modulo 4, then

$$f^*(E(C_n)) = (\{n\} \cup \{n-4i : 1 \le i \le k-2\} \cup \{n-4k+4\} \cup \{n-4i : k \le i \le 2k-1\}) \cup (\{n-4i+1 : 1 \le i \le k-1\} \cup \{n-4k+1\} \cup \{n-4i-3 : k \le i \le 2k-1\}) \cup (\{n-2\} \cup \{n-4i-2 : 1 \le i \le k-2\} \cup \{n-4k+2\} \cup \{n-4i-2 : k \le i \le 2k-1\}) \cup (\{n-1\} \cup \{n-4i-1 : 1 \le i \le k-2\} \cup \{n-4k+3\} \cup \{n-4i-1 : k \le i \le 2k-1\})$$

$$= \{1, 2, \dots, n\}.$$

Hence f is a pseudograceful labeling of C_n .

Case 2: n = 8k + 3, $k \ge 1$. As in Case 1, we define a labeling function f as follows

$$f(u_1) = n + 1, f(u_3) = n - 1,$$

$$f(u_{4i}) = \begin{cases} 2(i-1), & 1 \le i \le k \\ 2i - 1, & k + 1 \le i \le 2k \end{cases}$$

$$f(u_{4i+1}) = n - 1 - 2i, 1 \le i \le 2k$$

$$f(u_{4i-2}) = \begin{cases} 2i - 1, & 1 \le i \le k \\ 2(i-1), & k + 1 \le i \le 2k + 1 \end{cases}$$

$$f(u_{4i+3}) = \begin{cases} n - 2i, & 1 \le i \le k - 1 \\ n - 2 - 2i, & k \le i \le 2k \end{cases}$$

Also, observe that f is injective with $6k + 3 \notin f(V(C_n))$.

$$f^*(E(C_n)) = \begin{cases} f^*(1,2), f^*(2,3), f^*(3,4), f^*(n,1) \} \cup \\ (\{f^*(4i,4i+1): 1 \le i \le k\} \cup \\ \{f^*(4i,4i+1): k+1 \le i \le 2k\}) \cup \\ (\{f^*(4i+1,4i+2): 1 \le i \le k-1\} \cup \\ \{f^*(4i+1,4i+2): k \le i \le 2k\}) \cup \\ (\{f^*(4i+2,4i+3): k \le i \le 2k\}) \cup \\ (\{f^*(4i+2,4i+3): k \le i \le 2k\}) \cup \\ (\{f^*(4i+3,4i+4): 1 \le i \le k-1\} \cup \\ \{f^*(4i+3,4i+4): k \le i \le 2k-1\}) \end{cases}$$

$$= \begin{cases} n, n-2, n-1, n-4k\} \cup (\{n-4i+1: 1 \le i \le k\} \cup \\ \{n-4i: k+1 \le i \le 2k\}) \cup (\{n-4i-1: 1 \le i \le k-1\} \cup \\ \{n-4i-1: k \le i \le 2k\}) \cup (\{n-4i-1: 1 \le i \le k-1\} \cup \\ \{n-4i-2: k \le i \le 2k\}) \cup (\{n-4i-1: 1 \le i \le k-1\} \cup \\ \{n-4i-3: k \le i \le 2k-1\}) . \end{cases}$$

If we group the edge labels according to the congruence class modulo 4, then

$$\begin{array}{ll} f^*(E(C_n)) & = & (\{n-4i+1:1\leq i\leq k\}\cup\{n-4i-3:k\leq i\leq 2k-1\})\cup\\ & (\{n-2\}\cup\{n-4i-2:1\leq i\leq k-1\}\cup\\ & \{n-4i-2:k\leq i\leq 2k\})\cup\\ & (\{n-1\}\cup\{n-4i-1:1\leq i\leq k-1\}\cup\\ & \{n-4i-1:k\leq i\leq 2k\})\cup\\ & (\{n\}\cup\{n-4i:1\leq i\leq k-1\}\cup\{n-4k\})\cup\\ & \{n-4i:k+1\leq i\leq 2k\})\\ & = & \{1,\,2,\,\cdots,\,n\}\,. \end{array}$$

Hence f is a pseudegraceful labeling of C_n .

In the next two cases, we give the labeling functions and with an argument similar to that in Cases 1 and 2, the reader can show that the labeling is pseudograceful.

Case 3: n = 8k + 4, $k \ge 1$. We define a labeling function as follows

$$f(u_1) = n+1, \quad f(u_3) = n-1,$$

$$f(u_{4i}) = \begin{cases} 2(i-1), & 1 \le i \le k \\ 2i-1, & k+1 \le i \le 2k+1 \end{cases}$$

$$f(u_{4i+1}) = n-1-2i, \quad 1 \le i \le 2k$$

$$f(u_{4i-2}) = \begin{cases} 2i-1, & 1 \le i \le k \\ 2(i-1), & k+1 \le i \le 2k+1 \end{cases}$$

$$f(u_{4i+3}) = \begin{cases} n-2i, & 1 \le i \le k-1 \\ n-2-2i, & k \le i \le 2k \end{cases}.$$

Observe that f is injective with $6k + 4 \notin f(V(C_n))$. Case $4: n = 8k + 7, k \ge 1$. We define a labeling function as follows

$$f(u_1) = n+1, \quad f(u_3) = n-1,$$

$$f(u_{4i}) = \begin{cases} 2(i-1), & 1 \le i \le k \\ 2i, & k+1 \le i \le 2k+1 \end{cases}$$

$$f(u_{4i+1}) = \begin{cases} n-1-2i, & 1 \le i \le k \\ n-2i, & k+1 \le i \le 2k+1 \end{cases}$$

$$f(u_{4i+1}) = \begin{cases} 2i-1, & 1 \le i \le k \\ 2(i-1), & i = k+1 \\ 2i-1, & k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{4i+3}) = \begin{cases} n-2i, & 1 \le i \le k \\ n-1-2i, & k+1 \le i \le 2k+1 \end{cases}$$
Observe that f is injective with $2k+1 \notin f(V(C_n))$.

Finally, we complete the characterization of the graceful graphs in the family $C_n \cup K_{p,q}$, $n \equiv 0$ or $3 \pmod 4$. Seoud and Youssef [7] gave the complete characterization of the gracefulness of $C_n \cup K_{p,q}$ when n=3,4,7 and 8. We have $C_n \cup S_m$ is graceful for all $n \geq 7$ and $m \geq 1$ by [2]. Combining the result of this paper with the result of [7, Theorem 2.1] and the result of [2] mentioned above, we have the following corollary.

♦

Corollary 2.

If n > 8 and $n \equiv 0$ or $3 \pmod{4}$, then $C_n \cup K_{p,q}$ is graceful for all p and q and is pseudograceful for all $p, q \geq 2$ and $(p, q) \neq (2, 2)$.

Remark.

Note that, for $n \equiv 1$ or $2 \pmod{4}$, the graph $C_n \cup K_{p,q}$ may not be graceful by using the graceful parity condition [6].

References

- [1] G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (2nd Edition) Wadsworth, Belmont, California 1986.
- [2] S.A. Choudum and S.P.M. Kishore, Graceful lebeling of the union of cycles and stars, preprint.
- [3] R. Frucht, On mutually graceful and pseudograceful labelings of trees, Scientia Ser. A, 4 (1990 / 1991) 31-43.
- [4] J.A. Gallian, A dynamic survey of graph labeling, Elect. J. Combin. (2002) # DS6.
- [5] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Methods, 1 (1980) 382-404.
- [6] A. Rosa, On valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris (1967) 367-371.
- [7] M.A. Seoud and M.Z. Youssef, New families of graceful disconnected graphs, Ars Combin. 57 (2000) 233-245.
- [8] M.Z. Youssef, New families of graceful graphs, Ars Combin., 67 (2003).