Extremal Trees with Respect to
Dominance Order
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Abstract. Let (T;)i>o be a sequence of trees such that T;y; arises by
deleting the b; vertices of degree < 1 from T;. We determine those trees of
given degree sequence or maximum degree for which the sequence bg, by, ...
is maximum or minimum with respect to the dominance order. As a con-
sequence we also determine trees of given degree sequence or maximum
degree that are of maximum or minimum Balaban index.
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1 Introduction

For somep > 0let wy > 2y > ... 22y, 2 0and yo > 3
real munbers such that S 2 = S oy I Yo 2
0 <k <p, we wrile

w2 yp > 0be
Yo o vi for all

(%o, £1, - Tp) =X (Y0, YLy --s YUp)-

The partial order induced by ‘<’ on the set of partitions of 2¢ + 2, +
... + 2, where the summands are rearranged in non-increasing order is
usually refered to as the dominance order. It is a classical result (cf. e.g.
Theorem 108 in [10]) that (zo,#1, ..., Zp) = (Y0, ¥1,---, ¥p) holds if and only
if o4 g g(xi) < ¥F_; y(yi) for all continuous and convex functions g.

A tree T = (V(T), E(T)) is a connected graph without cycles with vertex
set V(T) and edge set E(T). The degree of some vertex v € V(T) is
denoted by d(u,T). Let

Vei(T) = {u € V(T) [ d(u,T) < 1},

i.e. if [V(T)| > 2, then V¢ (T) is exactly the set of endvertices of the tree
T and if [V(T)| = 1, then Vi (T) = V(T). Starting from a given tree T
we define a sequence of trees as follows. Let Tp =T and for i > 1 let T; =
Tioy = Vi (Ti-1). Let n(T) = [V(Ti)| and bi(T) = [V< i (T3)| = ni(T) —
[ NN (T) for ¢ Z 0.
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It is easy to see that n;(T") > 2 implies b;(T") > 2 and thus b;(T') = 0 for
i 2 ng(T') + 1. Furthermore, since the deletion of an endvertex from a tree
can only lead to at most one new endvertex, we have b;(T) > b;41(T') for
i >0.

Hence b(T) + bi(T) + --. + bpo(1y (T) = no(T) = |V(T)| represents a
partition of {V(T')}, where the summands are in non-increasing order. Let
b(T) = (bo(T), b1(T), -y byg(7(T))- In this note we determine those trees
T of given degree sequence or maximum degree for which b(7T’) is maximum
or minimum with respect to dominance order among all trees of the same
degree sequence or maximum degree.

We have been motivated by the so-called Balaban index B defined for a
tree T as B(T) = 3,5, 0i(T)?. The Balaban index is one of the molecu-
lar descriptors cf. [5] which arc studied in chemistry in order to capture
chemnically relevant properties of molecules using graph-theoretical invari-
ants derived from the graphs representing the olecular structure. Such
paramneters have recently received growing attention from mathematicians
el eg. [2,3,4,6,7,8,9] and [12]. Balaban showed in [1] that B correlates
well with the octane number of certain compounds.

Since x — 27 is continuous and convex, the trees T for which b(T) is
maximun or minimuwmn with respect to the dominance order are also of
maximum or minimum Balaban index.

For an ingenious application of the dominance order to the Wiener index
which is another chemical descriptor see [11].

2 Degree sequence

It is well-known that the positive integers dy < da < ... < dp, are the degree

sequence of a tree T if and only if 0 = 2+ 5. (di — 2). Therefore, if
ueV(T)

1 2 2 and the tree T has degree sequence d; < d» < ... < d,, then the

munber by(T) of its endvertices equals

ho(T) =2+ Y (di—2).

od; >3
Our argument relies on the following two observations.

Lemma 2.1 If T is o lree with degree sequence d; < do < ... < dp, where
n > 2, then fork > 1

k ! k-1
> ob(T) < max{l Z(d,-—l)ga;(T)}. (1)
=0

i=1 i=0
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Proof: Let ; = X b;(T) and l» = max {z |z§.=1 (di — 1) < 52 by(T) }
Let u € V<;(Tw) for some 0 < k' < k. If k' = 0, then let V,, = 0
and if k' > 1, then let V,, denote a set of (d(u,T) — 1) neighbours of u
in U,L’:(_,' V<1(T:). (Note that such a set always exists and that there are
exactly (d(u,T) — 1) such neighbours provided |V<y (Tw)| 2 2.)
Clearly, V, NV, = @ for all u,u’ € Uf:o V<1 (T;) with u # «'. This
implies

k-1
> biT)

i=0

U Vi@

i=0

uEULo Ve (Ty)

= > (@dw,T)-1)

welJi, Vel
h
> ) (di—1).
i=1

This iinmediately implies {; <l and the proof is complete. O

k-1 |

v

Lemma 2.2 Forn,by >21lell1 =d) =ds = ... = dpy < dpg41 < dig2 <
... < d,, be inlegers. Lel by be such that

!
Z(di—l)s%}.

bo + b, = max {l

=1
Let
1 7j= 1)2a"':bl
’ bo-+by .
dj = (ll,(,...j -~ (b() - Z (i = 1)) =0 +1
i=1
dbu’i‘.i ,j = bl 4+ 2, b] -+ 3, ceey B — b().

Then dy < dy < ... € d,, is the degree sequence of a lree if and only if

dy <dy <...<d is the degree sequence of a tree.

1~ by
Proof: Since

n—beo

> (d-2)

i=1
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bo+b, n
= —b + (d,,°4.,,l+, - (bo - - 1)) —2) + ) (-2
i=1 i=bo+by+2
bo+-by n
= Y =D+ -2+ Y. (di-2)
i=1 i=bo4-b142
= D di-2),
i=1

the desired result follows. O

We proceed to the main result of this section.

Proposition 2.3 Lel T be a tree with degree sequence dy < do < ... <d,,
where n > 2.

(i) b(T') X B(T) for all lrees T' with degree sequence dy < dy < ... < d, if
and only if

24 3 (di —2) k=0

d;>3

bi(T) = ] k-1 k=1
max {zl Si-1)< Y b,-(T)} ~ S b(T) k> 1
=1 =0 i=0

(2)

(ii) b(T) <X b(T') for all lrees T' with degree sequence dy < da < ... < dy,
if and only if

24 Y (di —2) k=0

d;i >3

be(T) = { 2 1<kg |2l (g

9 (nn('l");bo('l') _ [nn(T);bo(T)J) k= [nnm;bg('r)] +1.

k-1

Proof: Since the term on the right side of (1) is non-decreasing in >~ b;(T),
i=0
the *if-part of (i) follows iinmediately. The ‘if-part of (ii) is trivial.

In order to prove the *only if-part of (i) (or (ii)), we have to prove the
existence of a tree T with degree sequence d) < di < ... < d, such that (2)
(or (3)) holds.

For (i) this follows easily by induction using Lemma 2.2. For (ii) there
is obviously a caterpillar with the desired property, i.e. T} is a path. O
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3 Maximum degree

Let T be a tree of order n > 0 and maximum degree at most A > 2. It is
an easy exercise to verify that

(A-2)ni2
Ja(n) = [ea22] Jn2s
n , <2,

b(T) < (4)

Furthermore, bo(T) > 2, if 0 > 2 and bo(T") > A, if T has maximum degree
A. Obviously, the function fa is non-decreasing in n. Furthermore, one
easily checks that n < n implies n — fa(n) <m — fa(m).

If T is a tree of order n and maximum degree at most A such that
bi(T) = fa(ni(T)) for all i > 0 and T’ is an arbitrary tree of order n

and maximumn degree at mnost A, then (4) implies bp(T) > be(T”) and, by
induction, for k > 1

k-1

&
DObAT) = > bi(T)+be(T)

i=0 =0

k-1 k~1
= S 0T+ fa (n - Zb;(T))

i=() i=0

k-1 k-1
= n- ((n— Zbi(T)) —fa (n.— Zbi(T)))
— o
n— ((n— Zb,-(T')) —fa (n ~ Zb;(T’)))
=0 =0

k- k-1
= Z 1);(T’) + fA (IL - Z b,(T’))

= i=0

v

kot k
> Y (T + (T = D bi(T).

=0 i=0
We proceed to the results of this section.
Proposition 3.1 Let T be a tree of order n > 0 and maexzimum degree at
most A > 2.

Then b(T') <X b(T) for all trees T' of order n and maximum degree at
most A if and only if b;(T) = fa(ni(T)) for ¢ll i > 0.

Proof: The *if-part follows [romn the above inequalities. For the only if-
part, we construct a trec T(n,A) of order n and maximum degree at most

A with b;(T(n, A)) = fa(ni(T(n,A))) lor all 7 > 0.
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Let V(T(n,A)) = {u1,us,...,us} for n > 1. Let E(T(1,A)) = @. For
i>2,let E(T(,A)) = B(T(@—1,A)) U {ujuir} such that ¢/ =min{j |1 <
j <i-—1and d(u;, T(i — 1,A)) < A}. It is straightforward to check that
T(n,A) has the desired properties. O

Proposition 3.2 Let T be a tree of order n > A+ 1 and mazimum degree
exaclly A > 2.

Then b(T) < b(T') for all trees T' of order n and mozimum degree
ezactly A if and only if

A , k=0
(T)=1< 2 J1<k<[258)
2(238 - [238]) k= 1230041

Proof: Since a tree of maximun degree A has at least A endvertices, the
“if-part follows. The “only if-part follows by considering the tree that
arises by attaching (A — 1) new endvertices to one endvertex of the path
P, apyofordern—A+1.0

Finally, we want to point out that b(P,) X b(T") < b(&} ;1) for all trees
T of order n, b{P,) = b(T) if and only if P, =T and b(T) = b(K,,-1)
iland only if T = K, ,,_,;, where P, and K, ,_; denote the path and the
star of order n, respectively.
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