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Abstract

In a given graph G, a set S of vertices with an assignment of
colors is a defining set of the vertex coloring of G, if there exists a
unique extension of the colors of S to a X (G)—coloring of the ver-
tices of G. A defining set with minimum cardinality is called a small-
est defining set (of vertex coloring) and its cardinality, the defining
number, is denoted by d(G, X). We study the defining number of
regular graphs. Let d(n,r, X = k) be the smallest defining number
of all r-regular k-chromatic graphs with n vertices, and f(n,k) =
sty + 2"'('2“(',‘2_)(1';"3). Mahmoodian and Mendelsohn (1999) deter-
mined the value of d(n, k, X = k) for all k < 5, except for the case
of (n,k) = (10,5). They showed that d(n,k, X = k) = [f(n,k)],
for k < 5. They raised the following question: Is it true that for
every k, there exists no(k) such that for all n > no(k), we have
d(n,k, X =k) =[f(n,k)]?

Here we determine the value of d(n, k, X = k) for each k in some
congruence classes of n. We show that the answer for the question
above, in general, is negative. Also here, for k = 6 and k = 7 the
value of d(n, k, X = k) is determined except for one single case, and
it is shown that d(10,5, X = 5) = 6.
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1 Introduction

A k—coloring of a graph G is an assignment of k different colors to the
vertices of G such that no two adjacent vertices receive the same color.
The (vertex) chromatic number of a graph G, denoted by X(G), is the
minimum number k, for which there exists a k—coloring for G. A graph
G with X(G) = k is called a k—chromatic graph. In a given graph G, a
set of vertices S with an assignment of colors is called a defining set of
vertex coloring, if there exists a unique extension of the colors of S to a
X(G)-coloring of the vertices of G.

EXAMPLE 1.1 In the following figure the set of bold vertices with the
assigned colors is a defining set for the given graph.

A defining set with minimum cardinality is called a smallest defining set
(of vertex coloring) and its cardinality is the defining number, denoted by
d(G, X). For example in the case of a bipartite graph, this number is
obviously equal to the number of connected components. For Petersen
graph P, d(P, X) = 4. In Section 5 we will show that the defining set
given in Example 1.1 is a smallest defining set. There are some results on
the defining numbers in [6).

The concept of a defining set has been studied, to some extent, for block
designs, see [8], and also under another name, a critical set, for latin squares,
see [1] and [3]. In [4] this concept is extended to graphs (see also [3]). Morrill
and Pritikin [7] generalized this concept for any k-coloring of graphs for
k> X(G).

We study the defining number of regular graphs. Let d(n,r, X = k)
be the smallest defining number of all r-regular k-chromatic graphs with
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n vertices. Mahmoodian and Mendelsohn [5], determined the value of
d(n,r, X = k) for each r and for k = 2 and 3. Let f(n,k) = ﬂ%n +

2+(’;(-,3_)<1’°-3 . In [5] it is proved that for k < 5, d(n,k, X = k) = [f(n, k)],

except for the case of (n,k) = (10,5). The following question is raised in

[5]:

QUESTION s it true that for every k, there exists no(k) such that for
all n > no(k), we have d(n,k, X =k) = [f(n,k)}?

We determine the value of d(n,k, X = k) for the following cases:

e For each even k and for n, such that n=k+3 (mod 2(k-1)),
or n=4 (mod 2(k-—1)).

e For each odd & and for n, such that n =k +3 (mod 2(k —1)).

These results show that the answer to the question above, in general, is
negative. Also here, for k = 6 and 7 the value of d(n,k, X = k) are
determined, except for the case of (n,k) = (26,7). Also we show that
d(10,5, X =5) =6.

In the rest of this section we give some necessary definitions and state
some results from [5] which will be used later on. The following theorem
which is a slight generalization of Theorem § in (5], can be proved similarly.

THEOREM A Let G be a k-regular k-chromatic graph with |V(G)| = n,
and let S be a defining set for G. Then |S| = ﬂ%n + ££¢, where e is
the number of edges of the subgraph induced by S end c is the number of

components in the induced subgraph < V(G) — S >.

To prove this theorem, as in [5], one may note that the induced subgraph
< V(G)— S > is a forest and therefore |E(G — S)| = |V(G — S)| —c. This
implies the assertion. Also since < V(G)~S > is a forest, it is 2~colorable,
which implies that the chromatic number of < S > is at Jeast k — 2. Since
< S > has at least one edge between every two color classes, it has at least
(%3?) edges in total, i.e. €> (*3%). Then the following corollary follows.

COROLLARY A [5] Theorem A implies that,

k-2 24 (k—2)(k—3), _
e s e R )

d(n,k, X=Fk) =

If some of the vertices of a k—colorable graph G have pre-assigned colors,
then for each of other vertices of G, there is a list of available colors induced
by this pre—coloring.
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DEFINITION [5] A defining set S with an assignment of colors in graph
G, is called a strong defining set, if there exists an ordering {v;,va,. .. yUn—|s|}
of the vertices of < V(G) — S > such that, in the induced list of col-
ors in each of the subgraphs < V(G) - S >, < V(G) - (SU {v1}) >,
< V(G)-— (SU{’Ul,‘Uz}) >,...,and < V(G)-— (SU{'UI,vz, . ,'l)n_|s|}) >,
there exists at least one vertex whose list of colors is of cardinality 1.

LEMMA A [5] Any defining set of a k-regular k-chromatic graph is
strong.

LEMMA B (5] Let G be a k-regular k-chromatic graph with n vertices.
Then there exists a k-regular graph H with n+ 2(k — 1) vertices, and a set
S C V(G) of size d(G, X) + (k — 2) with assignment of colors for which
there erists a unique extension of colors of S’ to a k—coloring of H.

2 Some necessary lemmas

The following results are useful in our discussion.

LEMMA 2.1 Let G be a k-regular k~chromatic graph with n vertices and
let S be a defining set for G. Then the minimum number of edges necessary
to determine the color of all vertices is (kgz) +(n—|SPH(k-1).

PROOF Since the chromatic number of induced subgraph < S > is at
least k — 2, it has at least (*;%) edges. On the other hand since S is a
strong defining set, therefore there must appear k — 1 different colors in
the neighborhood of each vertex of V(G) — S. Thus if we consider these
vertices ordered as in the definition of strong defining set, we note that the
minimum number of edges necessary is (k'z'z) +(n—|S)(k - 1). ]

DEFINITION Let G be a k-chromatic graph and let S be a defining set
for G. Then a set F(S) of edges is called nonessential edges, if the chromatic
number of G — F(S), the graph obtained from G by removing the edges in
F(S), is still k, and S is also a defining set for G — F(S).

The following corollary is immediate from Lemma 2.1.

COROLLARY 2.1 With the conditions of Lemma 2.1 the number of
nonessential edges in G is at most "2—'° - (kgz) —(n—|S)(k-1).

LEMMA 2.2 With the conditions of Lemma 2.1 and assuming that S is a
proper subset of V(G), the number of edges in the induced subgraph < S >
satisfies the inequality,

(’“;2) SIE(<S>) <%~ (n-Ish(k-1) -1,
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PROOF We already discussed the left hand side inequality earlier. For
the right hand side, we note that since the graph < V(G)—§ > is a forest,
|E(< V(G) - S >)] £ n—|S5|—1. The number of edges not in < S > is at
least equal to (n—|S|)k—|E(< V(G) =8 >)| = (n—|Sk—-(n—|S|-1)m

LEMMA 2.3 A connected k—chromatic graph with the minimum number
of edges is necessarily a K.

PROOF Let G be a k—chromatic graph. Then G has at least k vertices.
Since between every two color classes there exists at least one edge, G has
at least (';) edges. Suppose that G has more than k vertices. Since G is
connected, the degree of each vertex is a positive number. We show that
in each color class there exists at least one vertex of degree k — 1. If the
degree of all vertices in a color class, say with color &, is less than k — 1,
then we can change the color of each vertex to one of the other k—1 colors.
This contradicts that G is k-chromatic. So each color class has only one
vertex and the graph is a K. n

The following lemma is straight forward.

LEMMA 2.4 Let G be a k-chromatic graph G which does not contain a
K. Then G has at least k + 2 vertices and (k’;z) — 5 edges.

The following lemma shows the importance of the function f(n, k), defined
in Corollary A, in our discussion.

LEMMA 2.5 Let G be a k-regular k—chromatic graph with n vertices and
let S be a defining set for G such that |S| = f(n,k). Then < S > isa
union of a Ki_o and |S| — k + 2 isolated vertices. Moreover < V(G)—S >
is a tree.

PROOF By Theorem A we have |S| = f('i‘_—zﬁn + 77355 Since e > (*33)

and ¢ > 1 we obtain |§] > 5=y + &(’;7%3_)11.’%:32 = f(n,k). Since the
equality holds, ¢ and e must be as small as possible. So e = (*3%) and
c=1,ie < V(G)—S >is atree. Thus by Lemma 2.3 the statement
follows. ]

Let H be a graph with a k-coloring and degyv < k, for all v € V(H).
For each vertex v of H we call k — degyv, the capacity of v. For each ¢
(1 <4 < k) let z;(H) = Y(k — degyv) be the capacity of color ¢ in H,
where the sum is taken over all vertices with color 7 in H. Sometimes we
write z; for z;(H), for short, when it is clear from the context what the
subgraph H is.

In the following lemma some useful inequalities are given.
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LEMMA 2.6 Let G be a k-regular k-chromatic graph with n vertices, S
a defining set for G, e’ the number of nonessential edges in G, and let y;
denote the number of vertices with color i in V(G) — S. Then we have:

() i > [2=2 —5 <S>)], i=1,2,...,k; and
() z(<S>)<n—|S|+¢€, i=1,2,... k.

In particular, if H is a spanning subgraph of < 8 > then:
(1) ys > [2E=y o g9, k.

PROOF (i) There is a unique extension of colors of § to V(G). Since by
Lemma A any defining set of G is a strong defining set, there exists k — 1
distinct colors appearing in the neighborhood of each vertex in V(G)-S.
Let W; be the set of vertices of color i in V(G) — §. All of the vertices
in V(G) — (S UW;) have different colors from i. To determine the color
of each of these vertices, we need to have at least one vertex of color i
in its neighborhood, which is either in S or in W;. There are at most
zi(< S >) times when these vertices are in S and at most y; times when
they are in W;. Because, for each vertex v € V(G) — S, k —1 edges
incident to v are used to determine the color of v itself and at most one
remaining edge may be used to determine the color of an adjacent vertex
tov. Thus n - |S| —y; = |V(G) — (SUW;)| < z:(< S >) + ¥;. Therefore
X n— S|-—x;!<S>!

vi [ D) 1.

(i) The capacity of color 7 in < S > may be used to determine the
color of at most n — |S| vertices in V(G) — S. And the vertices with
color i in < § > are incident to at most e’ nonessential edges. Therefore
zi(<S>)<n—|S|+¢.

(') The statement follows from the fact that z;(H) > z;(< S >), for
each color . [ ]

We also need the following lemma for our results.

LEMMA 2.7 Let G be a k-regular k-chromatic graph with n vertices, then
n>2k-—1.

PROOF Let G be a k-regular k~chromatic graph with n vertices. If G
contains no Ky as a subgraph, then by the main Theorem of [2] we have
n>2k—-1.

Otherwise if G contains a K}, as a subgraph. By deleting the vertices of K
from G, there remains n — k vertices. The induced subgraph H on these
n — k vertices has g"—_—kzkf edges. Because each vertex of K} adjacent to
H by exactly one edge. This results that:

(n;k)z.(n__k;k_—_k_:nz%.
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3 A construction algorithm

To construct a k-regular k—-chromatic graph on n vertices with a defining
set S, |S| > k — 1, we introduce the following algorithm. This algorithm
will be used frequently in the rest of this paper.

At the beginning, let Hy be a graph which consists of a K2 on the
vertex set U = {uy,...,ux_2} and |S| — k + 2 isolated vertices V =
{vi,...,v5)—k+2}- Assign color i to u, fori =1,2,...,k — 2; and for
the vertices in V assign colors 1,2, ..., k, such that at least one of the col-
ors k —1 and k be used. For each i (1 < i < k) determine x;, the capacity
of color i in Hy. We add n — |S| new vertices W = {w,...,wn_5} to Ho
as follows.

In step j (1 < j < n—|S|) assume that i is a color in H;_ which has
a minimum capacity so far. Among all such colors we choose the smallest
i. Add a vertex w; to the vertices of Hj_; and join this vertex to k-1
vertices in H;_; whose colors are distinct and is different from i. By doing
this the color of w; is forced to be 4. Call this graph H;. In graph Hj,
compared with H;_;, the capacity of each color, except ¢, is decreased by
1, while the capacity of color i is increased by 1. This last 1 is due to the
capacity of w;.

In each step the aim is that newly increased capacities be used and also
try to create a K by extending the original Kj_,. This is to make sure
that the resulting graph is k-chromatic. In the last step the resulting graph
H,_|s| has n vertices and the sum of capacities for all colors is equal to
€= 2[1‘219 - (k;2) — (n —|S])(k - 1)]. Now, this algorithm will produce a
graph with the desired properties, if we can add as many as § edges to the
set of vertices with positive capacities. Actually here we have a kind of
“graphical degree sequence” problem. The constraint is that two vertices
can be joined together if they have positive capacities and different colors.

If a graph is produced by this algorithm, it will be k-regular k-chromatic
with a defining set of size |S|.

4 General results

In this section we discuss d(n,k, X = k) for the values of n for which
f(n,k) is an integer. The results show that the answer to Question 1 in
[5], in general, is negative. First we note the following trivial lemma.

LEMMA 4.1 he value of f(n,k) is an integer if either of the following
cases holds:

(3) kis even andn =k+3 (mod 2(k—1)), or n=4 (mod 2(k—1));
(6) k is odd and n =k +3 (mod 2(k —1)).
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By Lemma 4.1, with the conditions given in the following theorems, f (n, k)
is an integer.

THEOREM 4.1 For each evenk (k > 6) and forn = k + 3 (mod 2(k — 1)),
we have d(n,k, X = k) = f(n,k) + 1.

PROOF By Corollary A we have d(n,k, X = k) > f(n,k). First we
show that equality is impossible. Let n = 2(k — 1)/ 4 (k+3) and G be a k-
regular, k-chromatic graph with n vertices. Note that by Lemma 2.7, 1 > 1.
Assume that there exists a defining set S of size f(n, k) for G. We show a
contradiction. By Lemma 4.1 and Lemma 2.5 the graph < S > consists of
the union of |S| — k + 2 isolated vertices and a Ki_,. Suppose without loss
of generality that the vertices of Kk_5 are colored by 1,2,...,k—2. So for
< S > we have:

z; =34+ kmy, fori=1,2,...,k~2; and
z; = km;, fori=%k—1 and %,

where m; is the number of isolated vertices of color i in < S >. On the
other hand we have 3%, z; = 3(k—2)+k(|S|~k+2), |S| = (k—2)l+(k—1),
and n — |S| =kl + 4.
For each i = 1,2,...,k — 2, the number z; is odd, while zx_; and z are
even. Thus by Lemma 2.6 we have:

yi > "—“@2:"—“, fori=1,2,...,k—2; and

inn—_'%_—z", fori=k—1,k.

Adding these inequalities together we obtain

k k

n—|S 1 k-2
E . > __E: AT
i=1y,_k 3 5 z; + 5

i=1

But Zé;l yi =n—|S|. Son—|S| > k#l -3 ZLI z;+ %52, Substituting
for Zf=1 z; and n — |S| from above, we obtain: kI +4 > ki + 5—#, which
is a contradiction to k > 6.

Next, by Lemma B, it is sufficient to construct a graph with the con-
ditions given in the statement, and with the minimum possible n (i.e. for
{ = 1) which has a defining set of size f(n,k) + 1. So the parameters are
n =3k +1 and |S| = 2k — 2. Now we employ the construction algorithm
of Section 3. Let ¢ denote the color function on V(Hp) = S such that
c(ui) = c(v;) =4; fori = 1,2,...,k—2, and c(v;) = 4; for i = k ~ 1 and k.
So

zi(Ho) =k +3, fori=1,2,...,k—2; and
xi(Ho) =k, fori=k— l,k.

The new vertices to be added are W = {ws, ..., wk43}. After k + 3 steps
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the capacity of color i, for i = 1,2,...,k — 2, is equal to 2; fori=k-1
is equal to 3; and for i = k is equal to 1. Here a 1 in the capacity of
color k — 1 is due to a vertex in W say wj, and the other capacities are
due to the isolated vertices of Ho. Now by adding the edges of a path
WjVk—2Vk—1V1 - . . Vk—3Vk, WE obtain a k-regular graph. By the algorithm it
is clear that ¢(w;) = k — 1, and w, is joined to all of the vertices of U and
to vk. Also c(ws) = k, and w, is joined to wy and to all of the vertices of
U. So we have a Kj on U U {w;, w2} and the constructed graph is one of
the desired form. ™

THEOREM 4.2 Foreachk=0 (mod 4), (k>8)andn=4 (mod 2(k—
1)), we have d(n, k, X =k) > f(n,k). Moreover for eachn = 2(k—1)l+4,
where | > k/4, we have d(n,k, X = k) = f(n, k) + 1.

PROOF The proof of the first part is exactly the same as the proof of
Theorem 4.1. To show the second part of the statement, again by Lemma B
it suffices to construct a graph with the conditions given in the statement,
and with the minimum possible n (i.e. for lo = k/4) which has a defining
set of size f(n,k) + 1. So the parameters are n = 2lo(k — 1) + 4 and
IS] = (k — 2)lo + k/2 + 1. Now we apply the construction algorithm of
Section 3. Let ¢ denote the color function on V(Hp) = S such that

c(u;) =1, fori=1,2,...,k—2; and
c(v3(i=1)+5) = J, for i = 1,2,...,0,and j=1,2,3.

Also there are (k — 3)(lo — 1) vertices left in V(Ho) = S. For each lp — 1
of these vertices we assign a color j (j =4,...,k). So the capacity of the
colors in the beginning of the algorithm are as follows;

o x;(Ho) =klp+3, fori=1,2,3;
o z;(Ho) = k(lo—1)+3, fori=4,5,...,k—2; and
o z;(Hp) =k(lp—1), fori=k— 1,k.
After applying the algorithm, capacities will be as in the following table.

colori |1 2 3 4 ... %k+2 543 ... k-2 k-1 k
112,'(Hn_|s|)|2lo 20 2 2 ... 2 0 0 1 1

Here a 1 in the capacity of color k/4 + 2 is due to a vertex of W, and the
other capacities are due to isolated vertices of Ho. Now, if & > 8, by adding
some edges to H,_s| we obtain a k-regular graph. These edges are a path
of length 2 on the vertices with colors k/4 +2,k/4+1, k/4 +2, a path of
length k/4—1 on the vertices with colors k—1,4,5,...,k/4,k, respectively,
and lo triangles (cycles of length 3) on the vertices with colors 1, 2, and 3.
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If k = 8, by adding the edges of 2 triangles (cycles of length 3) on the
vertices with colors 1, 2, and 3, joining two vertices with color 4 and 7,
and finally by joining two vertices with color 4 and 8 we obtain a k-regular
graph. As we have seen at the end of the proof for Theorem 4.1 this is the
desired graph. n

THEOREM 4.3 For each k =2 (mod 2(k—1)), (k >6), andn = 4
(mod 2(k — 1)), we have:

(i) d(n,k, X=k) > f(n,k) for n= 2(k—1)I4+4, where ! < (k+6)/4;
() d(n,k, X=k) = f(n,k) for n= 2(k—1)I+4, wherel > (k+6)/4.
If k =86, (i) holds only forl =1, and () holds forl > 2.

PROOF By Corollary A we have d(n,k, X =k) > f(n,k).

() We show that equality is impossible. For n = 2(k—1)l+4, let G be
a k-regular k-chromatic graph with n vertices. Note that | > 1. Assume
that there is a defining set S of size f (n, k) for G. We show a contradiction.
By Lemma 4.1 and Lemma 2.5, the graph < S > consists of |S| — k + 2
isolated vertices and a K;_,. Suppose that the vertices of K k—2 are colored
by 1,2,...,k—=2. So for < S > we have z; = 3+km; for 1,2,...,k—2, and
z; = kmg; for i = k — 1 and k, where m; is the number of isolated vertices
of color ¢ in < § >. On the other hand by Corollary 2.1 the number of
nonessential edges is at most 1. Also by Lemma 2.6, z; < n — |S] + 1; for
L,2,...,k. Thus z; = 3+km; < kl—k/2+5, fori=1,2,...,k~2, results
that m; <1—1; and also z; = km; < kl—k/2+5, implies that for i = k—1
and k, m; <! — 1. Therefore

|sy=f(n,k)=(k—2)z+§ <(k—2)+2(—1)

which implies that { > "—'P. This is a contradiction to I < (k + 6)/4.

(i4) Again by Lemma B it is sufficient to construct a graph with the
conditions given in the statement, and with the minimum possible n, i.e. for
lo = (k + 6)/4, which has a defining set of size f (n,k). So the parameters
are n = 2lg(k — 1) + 4 and |S| = (k — 2)ly + k/2. Now we apply the
construction algorithm of Section 3. Let ¢ denote the color function on
V(Ho) = S such that c(u;) = i for i = 1,2,...,k—2 and to Iy — 2 of
the isolated vertices in S we assign color k. This will leave (lo—1)(k-1)
isolated vertices which we partition into (k — 1) classes of ly — 1 vertices
each. We assign colors i = 1,2,...,k — 1 to these classes. So capacities of
the colors in the beginning of the algorithm are as follows:

zi(Ho) = k(lo— 1) +3, fori=1,2,...,k—2;
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.'rk_l(Ho) = k(lo - 1); and
zx(Ho) = k(lo — 2).

After applying the algorithm, the capacity of color i (i=1,2,...,k—2) s
equal to 0, and for s = k — 1 and k is equal to 1. Here the capacity of color
k — 1 is due to a vertex in W, and the other capacity is due to an isolated
vertex of Hy. These two vertices are not adjacent. Now by joining them
together, we obtain a k-regular graph. This is the desired graph.

If in the proof of (i) we let k = 6, we see that only for | = 1 there is
a contradiction. For I > 2 the statement is shown in Theorem 5.1 (see
n = 24). [ |

THEOREM 4.4 For each odd number k (k >7), and n=k+3
(mod 2(k — 1)), we have:

() d(n,k, X = k) = f(n,k) +1 for n=2(k—-1)l+k+3, where
< (k—-3)/2;

(#) d(n,k, X = k)= f(n,k) for n=2(k=1)l+k+3, wherel > (k—3)/2.

PROOF (i) Proof of impossibility of d(n, k, X = k) = f(n, k) is similar
to the proof of Theorem 4.3. Here we have m; < I; fori = 1,2,...,k. So
each of the colors 1,2, ...,k — 2 appears at most  + 1 times, while each of
the colors k — 1 and k appears at most ! times on S. If each of the colors
k — 1 and k appears exactly | times on S, then at least k — (2/ + 1) colors
from 1,2,...,k — 2 appear | + 1 times each, and the remaining 2! — 1 of
them appear ! times each. So

k k
n—|S|—x;
i= i=1
k—(2l+1) k=2
n—|S|—z; n—|S]—=z;
L e e
i=1 2 i=k—(20+1)+1 2
k
n—|S|—z;
i P
i=k—1

We note that in the last expression, in the first summation each summand is
a non-integer, while in the second and the third summations all summands
are integers. Now by substituting we have

k—-2l+4+5

k

k+1
Sow2 (k- @+ )]+ @ - DT +2x 2=k T
i=1
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k
On the other hand ) " y; = n—|S| = ki+4. Therefore ki+4 > ki+ k=245
i=1
And this is in contradiction to ! < (k — 3)/2.

If any of the colors appears less than ! times, then at least one of the
colors must appear ! + 1 times. Thus the summands on the right hand side
in the above will be increased, which clearly results in the failure of the
inequality.

Now we show that d(n,k, X = k) = f(n, k) + 1, for | < (k — 3)/2. For
each n = 2{(k — 1) + k + 3, where | < (k —3)/2 we construct a k-regular
k—chromatic graph on n vertices with a defining set of size f(n,k) + 1.
We apply the construction algorithm of Section 3. Let ¢ denote the color
function on V(Hp) = S such that

c(y;) =1, fori=1,2,...,k-2;
c(v1) =k -1, and

C(‘vg) =k.
There will remain I(k — 2) isolated vertices that we partition them into
(k —2) classes of I elements each, and assign the colors i = 1,2,...,k—2 to

these classes. So the capacity of the colors in the beginning of the algorithm
are as follows:

z;(Hg) =kl + 3, fori=1,2,...,k~-2: and
x,—(Ho) =k, for 1 =k-—1,k.

If I is even, after applying the algorithm, capacity of each vertex with color
i (¢=1,...,k) is equal to 2. Here one of the capacities of color k is due to
a vertex of W, and the other capacities are due to isolated vertices of Hy.
Now, by adding the edges of a path of length & on the vertices with colors
k,1,2,...,k — 1,k, respectively, we obtain a k-regular graph.

If I is odd, the capacity of color i for i = 1,...,k -2 is equal to 2; for
i =k~1is equal to 3, and for i = k is equal to 1. Here one of the capacities
of color k£ — 1 is due to a vertex of W and the other capacities are due to
the isolated vertices of Hy. Now by adding the edges of a path of length
k on the vertices with colors k, k — 1, 1,2,...,k =2,k — 1, respectively, we
obtain a k-regular graph.

(4) Again by Lemma B it is sufficient to construct a graph with the
conditions given in the statement, and with the minimum possible n (i.e. for
lo = (k — 3)/2) which has a defining set of size f (n,k). So the parameters
are n = 2lg(k —1) +k+3and [S| = (k- 2o+ k- 1. We apply the
construction algorithm of Section 3. Let ¢ denote the color function on
V(Ho) = S such that c(u;) = i; for i = 1,2,...,k — 2, and for each ly of
isolated vertices in S we assign a color i (i = 1,2,k — 1,k). There will be
(lo — 1)(k — 4) isolated vertices left over, which we partition into (k — 4)
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classes of lo — 1 vertices each, and assign the colors i = 3,4,..., k—2to
these classes. So the capacity of colors in the beginning of the algorithm
are as follows:

After applying the algorithm, capacity of color i for i = 3,...,k, isequal to
0, and for i = 1 and 2 is equal to 1. Here the capacity of one of the colors
is due to a vertex of W and the other capacity is due to an isolated vertex
of Ho, and they are not adjacent. Now by joining these two vertices, we
obtain a k-regular graph. This is the desired graph. n

5 Casesk=6and k=7

In [5] one of the small cases, i.e. d(10,5, X = 5), is left undetermined. By
a computer program we searched all 5-regular 5~chromatic graphs with 10
vertices and found out that there is no such a graph with defining set of size
5. But we can construct a graph G with d(G, X) = 6 as follows. Take two
disjoint copies of K5 with vertex set {ui,us,. ..,us} and {v1,v2,...,vs}
and add 5 more edges, u1v1,u2vz, ..., UsVs.

In the rest of this section we find d(n,k, X = k) for k = 6 and 7, leaving
only one single undetermined case.

THEOREM 5.1 We have

v [ [f(n,8)] forn#9 (mod 10) and n > 15;
d(n,6, X =6) = { [f(n,6)] +1 otherwise.

PROOF To show the first part, by Lemma B it suffices to construct 6-
regular 6-chromatic graphs with n vertices, for some small values of n, say
n =  15,16,17,18,20,
21,22,23, and 24, each with a defining set of size f(n,6). In each case we
apply the algorithm of Section 3. Here H, consists of a K4 and f(n,6) —4
isolated vertices. The color of vertices of K4 is taken to be 1, 2, 3, and
4. The color of isolated vertices are taken such a way that the capacity of
each color, in each case, is as in the following table.

n=1516 xi(lI-Io) 3 g 3 3 3 5
n=1718 6
n=20,21 x,.(iHo) ; 3 g 3 2 g
n=22 — bt
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i |1 2345 6
zi(Ho) |9 9 9 9 6 12
For the second part of the statement, note that by Theorem 4.1 we have
d(n,6, X = 6) = f(n,6)+1, forn=9 (mod 10), n > 19. The cases
n =11,12,13, and 14 are discussed in the appendix. n

n =24

THEOREM 5.2 We have

[f(n, )] for n even and n # 14, 16,22, 26;
dn,7, X="7)=¢ [f(n,7)]+1 for n= 16,22
[f(n,7)]+2 for n=14.

PROOF To show the first part, by Lemma B and Theorem 4.4, it suf-
fices to construct 7-regular 7-chromatic graphs with n vertices for n =
18,20,24,28, and 38, each with a defining set of size f(n, 7). In each case
we apply the algorithm of Section 3. Here Hy consists of a K5 and f(n,7)—-5
isolated vertices. The vertices of K are taken to be colored 1, 2, 3, 4, and
5. The isolated vertices are colored such a way that the capacity of each
color, in each case, is as shown in the following table.

18 i 1 2 3 456 7
= zi(Ho) [10 10 10 3 3 7 7
n = 20 i 1 2 3 4 5 6 7
= zi(Ho) |10 10 10 10 3 7 7
o4 i 1 2 3 4 5 6 7
= z;(Ho) |10 10 10 10 10 7 7
n = 28 i 1 2 3 4 5 6 7
= z(Ho) [17 17 10 10 10 7 7
n =38 i 1 2 3 4 5 6 7
= zi(Ho) | 17 17 17 17 10 14 14

For the second part of the statement, note that by Theorem 4.4 (i) we
have

d(22,7, X = 7) = £(22,7) + 1. The cases n = 14 and 16 are discussed
in the appendix. ]
Appendix

Case k = 6.

First we show that it is impossible to have d(11,6, X =
6) = 6. On the contrary assume that G is a 6-regular 6-chromatic graph
with 11 vertices and S is a defining set of size 6 for G. Then < S > is a
graph on 6 vertices with maximum degree 6 and chromatic number greater
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than or equal to 4. By Lemma 2.2 the graph < S > has at most 7 edges.
Thus by Lemma 2.4 it contains a K4. By Corollary 2.1 the number of
nonessential edges is at most 2. Thus by Lemma 2.6 we have z; < 7, for
1 < i < 6. Assume that vertices of K4 are colored 1, 2, 3, and 4. Therefore
the colors of other two vertices must be 5 and 6. Let H be a spanning
subgraph of < S > which consists of a K4 and two isolated vertices. Thus
T, = To = 13 = T4 = 3, and z5 = z¢ = 6. Therefore by Lemma 2.6, y; > 1
for i = 1,2,3, and 4. This implies that if we extend the coloring of S to
the vertices of G, then the colors 1, 2, 3, and 4 must appear at least once
on the vertices of V(G) — S. There are two cases to be considered.
Case 1 One of the colors 5 or 6, say 5, has appeared in V(G) — S. Then
we have y; = y» = y3 = y4 = y5 = 1, and yg = 0. This implies that the
capacities of the colors in graph H’, which is the union of H and the set of
all edges which are necessary to determine the color of vertices in V(G) - S,
are as follows: ; = 23 = 23 = 24 = 0, z5 = 3, and zg = 1. So the induced
subgraph on the nonessential edges has 3 capacities on the color 5 and one
capacity of color 6, which is impossible.
Case 2 None of the colors 5 and 6 appear on the vertices of V(G) — S
(ys = y¢ = 0). Then without loss of generality we have y; = 2 and
Y2 = y3 = ya = 1. This implies that the capacities of the colors in graph
H’, which is the union of H and the set of all edges which are necessary to
determine the color of vertices in V(G) — S, are as follows z; = 2, x2 =
23 = 4 = 0, and 25 = z¢ = 1. So the induced subgraph on the nonessential
edges has color 1 with capacity 2 and color 5 and 6, with capacity 1 each.
Then the unique vertices with color 5 and 6 in G can not be adjacent. But
then G can be recolored by using only 5 colors. This is a contradiction.
The graph of Example 1.1 shows that d(11,6, X = 6)="17.

m First we show that d(12,6, X = 6) > 7. In contrary assume
that G is a 6-regular 6-chromatic graph with 12 vertices and S is a defining
set of size 7 for G. Then < S > is a graph on 7 vertices with maximum
degree 6 and chromatic number greater than or equal to 4. By Lemma 2.2
the graph < S > has at most 10 edges. We consider two cases.

Case 1 The graph < S > contains a K;. By Corollary 2.1 the number
of nonessential edges is at most 5, and then by Lemma 2.6, z; < 10, for
1 < i < 6. Assume that the vertices of Ky are colored 1, 2, 3, and 4.
Therefore the colors 5 and 6 appear at most twice in three other vertices.
Let H be a spanning subgraph of < § > which consists of a K4 and three
isolated vertices. According to the colors of the isolated vertices we have
two cases to consider.

Case 1.1 One of the colors 5 or 6, say 5, has appeared once on the isolated
vertices. Then without loss of generality the capacities of colors in H are
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Ty =22 =9, 23 =24 =3, 25 =6, and z6 = 0. Therefore by Lemma 2.6,
y3 2 1,yq > 1, and yg > 3. This implies that if we extend the coloring of
S to the vertices of G, then the colors 3 and 4 must appear once and the
color 6, must appear three times on the vertices of V(G) - S. This implies
that the capacities of the colors in graph H’, which is the union of H and
the set of all edges which are necessary to determine the color of vertices
in V(G) — S, are as follows: ; =z, =4 and s =x¢6 = 1.

So the induced subgraph on the nonessential edges has 4 capacities on
the colors 1 and 2, and one capacity of color 5 and 6, each. Then the unique
vertex of color 5 in G can not be adjacent to one of the colors 1 or 2. But
then G can be recolored by using only 5 colors. This is a contradiction.
Case 1.2 The colors 5 and 6 have appeared once in isolated vertices, each.
Then without loss of generality we have z; = 9, 2 = 23 = 74 = 3, and
Zs = 26 = 6. Therefore by Lemma 2.6, y; > 1 for i = 2,3,4. This implies
that if we extend the coloring of S to the vertices of G, then the colors 2, 3,
and 4 must appear at least once on the vertices of V(G) — S. And two
other vertices of V(G) — S may be colored by some of the colors 1, 2, 3, 4,
5, or 6. But in each case by a computer program we see that the 6-regular
graphs obtained in this way are not 6-chromatic.

Case 1.3 One of the colors 5 or 6, say 5, has appeared twice in isolated
vertices. Then we have z5 = 12. If we extend the coloring of S to the
vertices of G, then the induced subgraph on the nonessential edges has
capacity at least 7 on the color 5 and at most three capacities on the other
colors, which is impossible.

Case 2 The graph < § > does not contain a K. Then it must be a union
of a wheel, Ws, and an isolated vertex. According to the colors of vertices
of < § > we have two cases to consider.

Case 2.1 One of the colors, say 6, does not appear in S. So g = 0. Now if
the isolated vertex u, has the same color as w, the vertex of degree 5, then
without loss of generality there are three colors, say 2, 3, and 4, such that
Tz = x3 = x4 = 3. Thus by Lemma 2.6, y; > 1 for i = 2,3,4, and yg > 3.
In other words V(G) — S has at least 6 vertices, which is impossible.

If u and w have different colors, then clearly z; = 1, where 1 is assumed to
be the color of vertex w. Also for one of the other colors, say 2, we have
z2 = 3. Therefore by Lemma 2.6, y; > 2, y5 > 1 and y¥s = 3. This implies
that there are at least 6 vertices in V(G) — S, which is impossible.

Case 2.2 All of the colors appear in S. Now if u and w have the same
color, then z; = 7, and z; = 3 for 2 < i < 6. Thus by Lemma 2.6, y; > 1 for
2 < i < 6. This implies that if we extend the coloring of S to the vertices
of G, then the colors 2,3,4,5, and 6 must appear once on the vertices of
V(G)—S. This implies that the capacities of the colors in graph H’, which
is the union of H and the set of all edges which are necessary to determine
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the color of vertices in V(G) — S, are as follows.
I =2, and:l:2=...=:r,6=0.

So the induced subgraph on the nonessential edges has 2 capacities on the
color 1, which is impossible.
If v and w have different colors, then without loss of generality we have
zy =1, 23 = T3 = x4 = x5 = 3, and £ = 9. Therefore by Lemma 2.6,
y1 > 2, and y; > 1 for i = 2,3,4,5. This implies that there are at least 6
vertices in V(G) — S, which is impossible.

The proof of d(12,6, X = 6) = 8 is similar to the case of d(10,5, X =
5) = 6, which was discussed in the beginning of this section.

m First we show that it is impossible to have d(13,6, X =
6) = 7. On the contrary assume that G is a 6-regular 6-chromatic graph
with 13 vertices and S is a defining set of size 7 for G. Then < § > is a
graph on 7 vertices with maximum degree 6 and chromatic number greater
than or equal to 4. By Lemma 2.2 the graph < S > has at most 8 edges.
Thus by Lemma 2.4 it contains a K4. By Corollary 2.1 of Lemma 2.1 the
number of nonessential edges is at most 3. Thus by Lemma 2.6 we have
z; €9, for 1 < i < 6. Assume that the vertices of K4 are colored 1, 2,
3, and 4. Therefore the colors 5 and 6 appear at most once in three other
vertices of S. Let H be a spanning subgraph of < S > which consists of a
K, and three isolated vertices. According to the colors of isolated vertices
we have two cases to consider.

Case 1 One of the colors 5 or 6, say 5, has appeared once on an isolated
vertex. Then without loss of generality we have 1 =z =9, T3 =4 =
3, 5 = 6, and g = 0. Therefore by Lemma 2.6, y3 > 2,y4 > 2, and
ye > 3. This means that there are at least 7 vertices in V(G) — S, which is
impossible.

Case 2 The colors 5 and 6 have each appeared once on an isolated vertex.
Then without loss of generality we have z; = 9, 3 = 73 = 24 = 3,
and 75 = g = 6. Therefore by Lemma 2.6, y; > 2 for i = 2,3,4. This
implies that if we extend the coloring of S to the vertices of G, then each
of the colors 2, 3, and 4 must appear exactly two times on the vertices of
V(G) — S. This implies that the capacities of the colors in graph A ’, which
is the union of H and the set of all edges which are necessary to determine
the color of vertices in V(G) — S, are as follows.

$1=3, x2=:z:3=:1:4=1, anda:5=ze=0.

So the induced subgraph on the nonessential edges has 3 capacities on the
color 1 and one capacity on colors 2, 3, and 4, each. Then the unique
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vertices of color 5 and 6 in G can not be adjacent. But then G may be
recolored by using only 5 colors. This is a contradiction.

Now we show that d(13,6, X = 6) = 8. It suffices to construct a 6-
regular 6-chromatic graph with 13 vertices with a defining set of size 8. We
apply the algorithm of Section 3. Here Hy consists of a K4 and 4 isolated
vertices. The colors of vertices of K, are taken to be 1, 2, 3, and 4. The
colors of isolated vertices are taken in such a way that the capacity of each
color is as shown in the following table.

i |12 345686

By Theorem 4.3 we have d(14,6, X = 6) > 7. It suffices to

construct a 6-regular 6-chromatic graph with 14 vertices with a defining
set of size 8. We apply the algorithm of Section 3. Here Hy consists of a
K4 and 4 isolated vertices. The vertices of K are taken to be colored 1, 2,
3, and 4. The isolated vertices are colored in such a way that the capacity
of each color is as shown in the following table.
i ]1 23 45686
ZB,(HQ)'Q 9 3 3 6 6

Case k =7.

n=14 First we show that there does not exist a 7-regular 7-
chromatic graph on 14 vertices which does not contain any K7 as a sub-
graph. For this, we prove that there exists only one unique 7-critical graph
with n = 14, maximum degree 7, which contains no K7 as a subgraph, but
this graph is not extendable to a 7-regular graph with n = 14.

To prove our claim, let G be a 7-critical graph with maximum degree 7
and with 14 vertices. Let u be a vertex of G. Then G — u is a 6- chromatic
graph with 13 vertices. We color G —u with 6 colors and add vertex u with
the assigned color 7 to it. Suppose S is a maximal independent set in G.
Let G’ = G — S. Since in each 6-coloring of G — u, there exists a color
which appears at least three times, we have |S| > 3.

Now there are two cases to be considered:

Case 1. G’ contains no Kg as a subgraph.

In this case by the main theorem of [2] we have |[V(G’)| > 11. On the
other hand |V(G’)| = |[V(G)| — [S| < 11. Therefore |[V(G")| = 11. Again
by Theorem 5.1 in [2], such a graph has at least 5 vertices of degree 6 and
the rest of vertices are of degree 5. To obtain a 7-regular graph from this
graph we can add at most 6 + 2.5 = 17 edges on these vertices. But for
extending G’ to G, we need to add at least 18 edges from the vertices of S
to the vertices of G’, for G is 7—critical, § > 6, so each vertex is of degree
6or7.
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Case 2. G’ contains a K as a subgraph.

By deleting the vertices of K¢ from G, there remains 8 vertices, which
at least three of them are independent vertices. Now consider the induced
subgraph on these 8 vertices. It can be checked that this graph must be the
graph K5V K3, where “v” means the join of two graphs. For, otherwise we
can find a 6-coloring for G. Since G is 7-critical, each vertex is of degree
6 or 7, so for extending Kg U (K5 V K;) to G, the only way is that, we
join each of three independent vertices to each distinct pair of vertices of
K. But then, this 7-critical graph which has maximum degree 7 and 14
vertices, can not be extended to a 7-regular 7-chromatic graph with 14
vertices which has no K as a subgraph.

These two cases result that there does not exist a 7-regular 7-chromatic
graph with 14 vertices which has no K7 as a subgraph. Therefore, up to
isomorphism each 7-regular 7-chromatic graph with 14 vertices consists of
two disjoint copies of K, and a 1-factor between them. It is easy to check
that the size of a smallest defining set of such graph is equal to 10.

The proof the impossibility of d(16,7, X = 7) = 9, is the
same as in the proof of case n = 11 in Theorem 5.1. Now we show that
d(16,7, X = 7) = 10. It suffices to construct a 7-regular 7-chromatic graph
with 16 vertices with a defining set of size 10. We apply the algorithm of
Section 3. Here Hj consists of a K5 and 5 isolated vertices. The vertices
of K5 are taken to be colored 1, 2, 3, 4, and 5. The isolated vertices are
colored in such a way that the capacity of each color is as shown in the
following table.
i |1 2 3 4 5 6 7
Z:(Ho) |10 10 10 10 3 7 O
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