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Abstract

Let m > 4 be a positive integer and let Z,, denote the cyclic
group of residues modulo m. For a system L of inequalities in m
variables, let R(L;2) (R{L; Zm)) denote the minimum integer N such
that every function A : {1,2,...,N} — {0,1} (& :{1,2,...,N} =
Z,,) admits a solution of L, say (1,...,Zm), such that A{z;) =
A(z2) = --- = A(zm) (such that )72 A(x:) = 0). Define the
system L;(m) to consist of the inequality x; —z; < Tm — 23, and the
system L2(m) to consist of the inequality 2m-2 — 21 < Tm — Tm-1,
where 71 < 2 < -+ < Z;m in both Li(m) and Lz(m). The main
result of this paper is that R(L1(m); 2) = R(Li(m); Z,n) = 2m, and
R(L2(m);2) = 6m — 15. Furthermore, we support the conjecture
that R(L2(m);2) = R(L2(m); Zm) by proving it for m = 5.
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1. Introduction

Denote by [a,b] the set of integers = such that a < x < b. For a set
S, an S-coloring of (1, N] is a function A : (1, N] — S. If § = {0,1} then
we call A a 2-coloring, and if S is the set of elements of the cyclic group
Zm, then we call A a Z,,-coloring. The following is a rephrasing of the
Erdés-Ginzburg-Ziv (EGZ) theorem, proved in [11].

Theorem 0: Let m > 2 be an integer. If A :[1,2m—1] — Zr,, then there
exist inlegers T < Ta < -+ < Tm € [1,2m — 1] such that 3 i, A(z;) = 0.

Moreover, 2m — 1 is the smallest number for which the above assertion
holds.

If the Z,,,-coloring in Theorem 0 is replaced by a 2-coloring, then its con-
clusion follows from the pigeonhole (PH) principle. Thus, the EGZ theorem
can be viewed as a PH generalization for 2 boxes and m pigeons. Following
the Erdés-Ginzburg-Ziv theorem, several theorems of Ramsey-type have
been generalized by considering Z,,-colorings and zero-sum configurations
rather than 2-colorings and monochromatic configurations. We call such
theorems generalizations in the sense of Erdés-Ginzburg-Ziv (EGZ). Gen-
eralizations dealing with colorings of graphs or the positive integers appear
in [5},(12], and [15], or [4], [7], [8], and [14], respectively.

For a system L of inequalities and equations in m variables, let R(L;2)
(R(L; Z,,)) denote the minimum integer N such that every 2-coloring (Z,,-
coloring) of (1, N] implies a solution of L which is monochromatic (zero-
sum); if such an integer does not exist, then set R(L;2) = oo (R(L; Zmm) =
00). It is clear that R(L;2) < R(L; Z,) for every system L of inequalities
and equations in m variables. When the reverse inequality holds, we say
that L admits a generalization in the sense of EGZ.

At present there is no general theory which addresses generalizations
of systems of inequalities and equations in the sense of EGZ. By computer
one can check that several classical systems of equations such as the van
der Waerden system for m = 3,4 (i.e. o —z1 = 23 — 22 and 22 — 1, =
I3 — Tz = T4 — Z3) do generalize in the sense of EGZ. On the other hand,
the generalized Schur equation Y ;' 2; = Zn, [2] does not generalize for
m = 3,4. Indeed, when m = 3 and L is the Schur equation z; + z2 = z3,
then R(L;2) = 5 while R(L; Z3) = 10. Investigating EGZ generalizations
for systems of equations seems very difficult. However, the study of systems
of inequalities is more manageable with the present tools.

This paper was motivated by the idea of ascending waves [1], [3], [10]
and a problem regarding nondecreasing diameter dealt with in (7] and [13].
For positive integers m and { satisfying 2 < i < m — 2, let L(m, ) denote
the following system of inequalities:

Ti—T1 S Tm— Tigl
1 <ITy < < Iy
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The system L(m,i) is a partition of an m-subset at position ¢ into two
disjoint sets with nondecreasing diameter. We conjecture the following
with regard to the systems L{m,1).

Conjecture: For a given m,i € N, where2<i<m -2,
R(L(m,i);2) = R(L(m,i); Zpm).

In this paper we prove the conjecture for ¢ = 2 and support the con-
jecture for ¢ = m — 2. In particular, the paper is organized as follows. In
Section 2 we show that R(L(m,2);2) = R(L(m,2); Z,) = 2m, thus con-
firming the conjecture for i = 2. In Section 3 we show that R(L(m,m —
2);2) = 6m — 15 and give support to the claim that R(L(m,m — 2);2) =
R(L(m,m — 2); Z,).

2. The System L(m,2)

For notational convenience, let L;(m) denote the system L(m,2). Fur-
ther, for the sake of expediency, define the distance function d; : N2 — Z
by

di(z1,%2) =22 — 33 — 1.

If 2; < x, then di(z1,z2) is the number of integers between z; and x».
Notice that an m-tuple (z1,z2,...,Zm) is a solution of L;(m) if and only
if di(z1,22) < di(z3,zm).

Theorem 2.1: For m > 4, R(L,(m);2) = 2m.

Proof. Let an integer m > 4 be given. The coloring given by
0101‘"—1 1m-——2

establishes the lower bound R(L;(m);2) > 2m. To prove the reverse in-
equality, let A : [1,2m] — {0,1} be an arbitrary coloring. We will assume
that m > 6, as the cases m = 4,5 can be verified separately. Define
the set S = [1,2m] \ {m + 3}. Then without loss of generality there ex-
ist z1,...,Tm € S such that z; < 22 < --- < T, and A(z;) = 1 for
i=1,2,...,m. If zo < 4, then d;(z1,22) <4—-1—-1=2, whence m > 6
and d;(23,Zm) = m — 4 imply that (zi1,...,%m) is a monochromatic so-
lution of L;(m). Therefore, we may assume that zo > 5. It follows that
Zm = m+3, and hence the definition of S implies that dy(z3, ) = m—3.
Therefore, we may assume that d(z1,z2) = m — 2. But then it follows
that z; € {1,2}, z2 € {m,m + 1}, and

zz3=m+2, ry=m+4, zg=m+5,..., Tym =2m.

Further, we deduce that A(m+3) = 0, as otherwise (z2, m+3,2Z3,...,Tm)
is a monochromatic solution of L;(m). Analogously, we may assume that
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every j € [3,m — 1] is such that A(j) = 0, as otherwise (J,z2,Z3,. .-, Tm)
is a monochromatic solution of Ly(m). Now, if there exists j € {1,2} such
that A(j) = 0, then (4,2,3,...,m — 1,m + 3) is a monochromatic solution
of Li(m). Therefore, we may assume that A(1) = A(2) = 1. But then
(1,2,22,%4,%s,- - ., Tm) is a monochromatic solution of Ly(m).

Thus, the proof of the theorem is complete.

In order to prove the next theorem, we need the following result.

Theorem 2.2: [6] Let m > 3 be an inleger, let S be a set such that
|S|=2m -2, and let & : S — Z,, be a coloring. If |A(S)| > 3, then there
ezist integers ry,...,Tm € S such that Y .., A(z;) = 0.

Theorem 2.3: For m >4, R(Li(m); Z,y) = R(L1(m);2) = 2m.

Proof. In view of Theorem 2.1, in order to prove the theorem it suffices to
prove the upper bound R{L,(m); Z,,) < 2m. Thus, let A : [1,2m] — Z,,
be an arbitrary coloring. We will assume that m > 6, as the cases m = 4,5
can be verified separately. Define S; = [1,2m]\ {m + 3,m + 4} and S, =
[1,2m] \ {m + 2,2m - 1}. We claim the following.

Claim 1: Any m distinct elements of S; form a solution of L;(m).

To prove the claim, let 2; < 22 < --- < z,, € Sy be arbitrary. As in the
proof of Theorem 2.1, we may assume that zo > 5. But then z,,, > m + 3,
whence the definition of S implies that dy(z3,2m) = m — 2. Therefore, we
may assume that d,(z,,z2) > m — 1. However, this implies that

di(z1,Tm) > di(z1,22) + dy (23, Zm) +2 2 2m — 1,

whence z,, > 2m + 1, a contradiction. Thus, the proof of the claim is
complete.

Claim 2: Any m distinct elements of S, form a solution of L;(m).

The proof of Claim 2 is analogous to that of Claim 1, and so we omit
it.

To prove the theorem, suppose first that |A(S;)] = 3. Then since
|S)| = 2m — 2, it follows from Theorem 2.2 that there exist z; < z2 <
-+ < Ty € Sy such that Z:’_’__l A(z;) = 0. But then Claim 1 implies that
(z1,%2, ... ,Zm) is a zero-sum solution of L) (m). Therefore, we may suppose
that |A(S1)] € 2. Analogously, applying Claim 2 yields that IA(S2)] <
2. Thus, since [1,2m] = S; U Sz and since $; NSz # @, it follows that
|A([1,2m])| < 2. Thus, by Theorem 2.1, A admits a solution of Ly(m)
which is monochromatic. Since a monochromatic m-tuple is zero-sum in
Zm, the proof of the theorem is complete. (]

3. The System L(m,m — 2)
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For notational convenience, let Lo(m) denote the system L(m,m — 2).
Further, for the sake of expediency, define the distance function d : N2 —Z
by

dg(xl,xg) =2 — T1.
Notice that an m-tuple (z1,Z2,...,%m) is a solution of La(m) if and only

if do(x1,Zm—2) < do(Tm-1,Tm)-
Theorem 3.1: For m > 4, R(La(m);2) = 6m — 15.

Proof. 1t is easy to check that the coloring given by

0m—3 1m—302m-5 12m—5

admits no monochromatic solution of Ly(m), and thus we conclude R(La(m);2) >
6m — 15. To prove the reverse inequality, let A : [1,6m — 15] — {0,1} be
an arbitrary coloring. We begin with the following easy observation.

In a monochromatic interval of 2m — 4 elements

there is a monochromatic solution of Ly(m). (1)
Now, without loss of generality we may assume that
|a~t()yn,2m -3 2m-1.

Consider the set S of all (m — 1)-tuples x = (z;,%2,...,ZTm-1) such that
z; € [1,2m - 3], z; < zi41 and Az) = lfor 1 <21 <m -1 Define the
function f : § — N by f(X) = Zm-1 + Tm-2 — 1, and let

z= r:?el.rsl f(x).

It is clear that z < (2m — 3) + (2m — 4) — 1 = 4m — 8. We consider three
cases.
Case 1: z < 4m — 10.

It follows that A(i) = 0 for i > 4m — 10, whence [4m — 10,6m — 15) is
a monochromatic interval of 2m — 4 elements. The case is complete by (D).
Case 2: z=4m - 9.

There are two possibilities.

Case 2a: Ty—1 =2m — 3, Tm—2 =2m —4, and z; = 2.

If A1) = A(2), then define y1 = 1, and yip1 =z for 1 i <m—2.
Set y = (y1,%2,---Ym-1). Theny € S and f(y) < z, a contradiction by
the definition of z. Therefore, we may assume that A(1) = 0. Furthermore,
if |A=1(1) N[2,2m — 3]| > m, then it is easy to see that there existsy € S
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such that f(y) < z, a contradiction. Therefore, we may assume
[ATH ) N[2,2m -3l < m -1,

whence there exist (m — 3) integers y2,¥s, ..., Ym-2 € [2,2m — 3] such that
Y2<ys < <ym-zand A(y;) =0 for 2<i<m-—2. Next,sety, = 1.
Finally, since z = 4m — 9, it follows that A(¢) = 0 for i > 4m — 9, and
so we define ym_1 = 4m — 9 and yp, = 6m + 15. Then dy(Ym, Ym_1) =
(6m +15) — (4m — 9) = 2m — 6, while d2(y1,Ym—2) <2m—5-1=2m -6,
whence (y1,...,ym) is a monochromatic solution of La(m).

Case 2b: 2y, =2m ~3, 2,y0 = 2m — 5, z; =1.

If|a-1(1)N[1,2m - 6]| = m—2, then it is easy to see that there exists
Y € S such that f(y) < z. Thus, we may assumne

a1 (1)N[1,2m - 6]| < m -3,

whence there exist (m — 3) integers 41, ¥2,...,Ym_3 € [1,2m - 6] such that
Y1 <y2 <:- <ym-3and A(y;) =0 for 1 < i < m— 3. Furthermore, if
A(2m—4) = 1, then setting 7; = z; for 1 <i < m—2, and Tm-1 = 2m —4,
we find that r = (r1,...,7m_1) € S and f(r) < 2z, a contradiction. Thus,
we may assume A(2m —4) = 0. Set ym—2 = 2m — 4. As in Case 2a, we
may assume A(é) = 0 for ¢ > 4m — 9. Thus, setting ym_, = 4m — 9 and
Ym = 6m — 15, we obtain a monochromatic solution (y1, .. .,ym) of La(m).
This completes Case 2b, and thus Case 2.

Case 3: z = 4m - 8.

It follows that z; = 1, T2 = 2m — 4, and 2y = 2m — 3. It is
easy to see that if [A=1(1) N [1,2m — 3]| > m ~ 1, then there exists y € §
such that f(y) < =, a contradiction. Thus, we may assume that there exist
(m — 2) integers y1,...,Ym—2 € [1,2m — 3] such that ¥; < y2 < --- < Y
and A(y;) = 0 for 1 < 4 < m ~ 2. Furthermore, we may assume that
A(i) = 0 for i > 4m — 8. Thus, define Y-, = 4m ~ 8, and yp, = 6m — 15.
Then d2(ym,ym-1) = (6m — 15) — (4m — 8) = 2m — 7, while da(v1,32) <
(2m—5)—2 = 2m 7. Therefore, (y1,...,Ym) is a monochromatic solution
of Ly(m). Hence, Case 3 is complete.

Thus, the proof of the theorem is complete.

a

Finally, we will support the conjecture for i = m — 2 by proving that
R(L3(5);2) = R(L2(5); Zs). In fact, it was confirmed that R(L,(7);2) =
R(L3(7); Z7). However, we do not include the proof since the number of
branches in the case analysis for m = 7 is significantly larger than that for
m = 5. In order to confirm the conjecture for i = m — 2, where m is a
larger prime, one should find a more sophisticated method of case analysis.
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We first introduce some terminology. Let S; be a set, and let & : S —
Zs be a coloring. If S C Sy, then an n-transversal of S is a collection of
n>2sets Ty,...,Tn C Ssuch that [T}| =2fori=1,2...,n, TinT; =0
for 1 <i< j<n,and if a;,8; € T; are distinct, then Nog) # D(Bs) for
i=12,...,n.

The basic method behind the proof of Theorem 3.2 is the construction of
a 4-transversal followed by application of the Cauchy-Davenport theorem.
For the sake of expediency, let h : N® — NS5 denote the function that
reorders the components of its input so that the components of the resulting
5-tuple are in increasing order.

Theorem 3.2: R(L(5);2) = R(L2(5); Zs) = 15.

Proof. The lower bound R(L2(5);2) > 14 is established by Theorem 3.1.
To prove the upper bound R(L2(5);Z5) < 15, let A : (1,15 — Zs be
an arbitrary coloring. Consider the set S = [1,8]. If |[A(S)| = 1, then
(1,2,3,4,6) is a zero-sum solution of L2(5). Therefore, we may suppose
that |A(S)| > 1. However, we claim that |A(S)| < 4. Indeed, suppose
|A(S)| = 5. Take Biy1 € {A™}(E)NS} for i = 0,...,5, and let T; =
[1,5]\ {i} fori=1,2,...,5. Then

> a6

r€T;
for i = 1,2,...,5, form five distinct residues of Zs. It follows that there
exists i € {1,2,...,5} such that

3 a@B) =-003).

reT;
Letting 1 < z2 < %3 < T4 represent the elements of T;, and defining
z5 = 15, it follows that (z1,%2,...,Ts) is a zero-sum solution of La(5)
because

T+ T3 +T4—T5 < -1+7+8-15<0.

Therefore, we may assume that |A(S)| € {2,3,4}. We consider each case
separately.
Case 1: A(S) = {m, 72, 73,74}

We consider two subcases.

Case 1a: |A~!(5:) N S| > 2 and [A7}(n;) N S| > 2 for some integers
ij € [1,4].

It is easy to see that we may construct a 4-transversal T1,...,T4 C S.

From the Cauchy-Davenport theorem it follows that there exist integers
z; € T; for i = 1,2,3,4 such that Ef____, A(z;) = —A(15). Setting z5 = 15,
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we obtain the zero sum solution h(zy,...,z5) = (¥1,...,ys) of La(5), as
“NntYs+vu-ys<-14+74+8-15<0.

Thus, Case la is complete. This leads to one final subcase of Case 1.
Case 1b: |A~%(p)N S| =5, and |A=Y(m)N S| =1 for j = 2,3,4.
Let i; € {A~Y(n;)N S} for j = 2,3,4,and let By < Bo < -+ < Os €

{87 (m) N S}. 1t is easy to see that if B # 1, then (61, 8,,...,8s) is

a zero-sum solution of Ly(5). Therefore, we may assume that B = 1.

Further, if A(9) = 7, then (82,83, ...,85,9) is a zero-sum solution of

L(5). Therefore, we may assume that A(9) # m1. Suppose without loss of
generality that i< i3 < 74, and define the sets

Ty = {B2,io} To={Ba,is3} Ts={Bs,ia}, Tyu={Bs,9)}.

The sets T; form a 4-transversal of §' = (1,9], and thus by the Cauchy-
Davenport theorem there exist integers z; € T} for i = 1,2, 3,4 such that
Z?=1 O(zi) = —A(15). Setting x5 = 15, we find that hzy,...,z5) =
(#1,-..,¥s) is a zero sum solution of L4(5), as

“N+Yy3+Y—ys < -24+84+9-15=0.

Thus, Case 1 is complete.
Case 2: |A(S)| = {m, 72,13}

We consider three subcases.

Case 2a: |A'1(17,~)r'1.5'| >2fori=1,2,3.

As in Case la, it is easy to see that we may construct a 4-transversal
Ti,...,Ty C S and form a solution of Ly(5).

Case 2b: There exists i,j € (1,3} such that |A~'(n;)N S| = 1 and
|A= @) N S| =2.

Argument analogous to that of Case 1b completes Case 2a. Thus, we
are left with one subcase of Case 2. ‘

Case 2¢: |A~Y(m)N S| =6, |A ()N S| =1, |A  p)NS| =1

Let 81 < B2 < --- < B € {A7Y(m)}. It is not difficult to see that if
Bs = 8, then (B2,...,08s) is a zero-sum solution of L,(5). Therefore, we
may assume that G < 7. Furthermore, if 81 # 1, then (82, 0s,...,0) is a
zero sum solution of Lz(5). Therefore, we may assume that 8; = 1. But

then if B3 < 3, it follows that (81, 82,083, 04, 06) is a zero-sum solution of
Ly(m). Therefore, we assume that 83 > 4, whence we find

=1, Pa=4, Ps=5 Bs5=6, Fsg=T.

Now, if there exists ¢ € [9,11) such that A(Z) = n,, then (Bs, B4, - .-, B6,1)
is a zero-sum solution of Lo(5). Hence we may suppose that A(f) # n, for
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i € [9, 11]. Define the sets
Ty = {611}, To= {6110}, T3=1{Bs9}, Ti={0s8}.

The sets T; form a 4-transversal of S’ = [1,11], and thus, by the Cauchy-
davenport theorem, there exist z; € T; such that Z:zl N(z;) = -L(15).
Setting x5 = 15, we find that h(zy,...,25) = (y1,...,¥s) is a zero-sum
solution of L4(5), since

- +ys+tya—ys <—4+9+10-15=0.

Thus, Case 2 is complete.
Case 3: A(S) = {m.m2}-
Case 3a: [A~Y(m)NS|=|AH )N S| =4.

Argument analogous to that of Case 1a shows that there exists zero-sum
solution of Ly(5).

Case 3b: |A~!(5) N S| =5, |A~Y(n;)| = 3 for some 4,5 € {1,2}.

Argument analogous to that of Case 1b shows that there exists a zero
sum solution of Ly(5).

Case 3c: |A~1(n:) N S| =6, |A~ (n;)| =2 for some i, € {1,2}.

Argument analogous to that of Case 2c show that there exists a zero-sum
solution of La(5).

Case 3d: |A~(m)| =7, |A™ ()| =1

Let Bi < B2 < --- < B7 € {&A Y (m)NS}. It is not difficult to see
that regardless of the values of the 8;, it follows that (83, 84,...,07) is a
zero-sum solution of L2(5). Thus, Case 3 is complete.

Thus, the proof of the theorem is complete. O
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