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ABSTRACT. We consider compositions or ordered partitions of the
natural number n for which the largest (resp. smallest) summand
occurs in the first position of the composition.

1. INTRODUCTION

Let @) +ag+---+ax = n, with a; > 1 for ¢ > 1 be a composition of n. It is
well known that there are 2"~! compositions of n. Composition counting
problems become more interesting when constraints relating to the parts
a; or their relative order are introduced. For example, in [2] compositions
with no two adjacent equal parts are studied, and in [5] compositions with
all parts distinct are considered. Binary compositions (all parts powers of
two) are treated in [3]. Of course, the best known class of compositions are
those with nonincreasing parts, (better known as partitions of n)!

We consider here compositions of the natural number n for which the largest
(resp. smallest) summand occurs in the first position of the composition.
Thatisa; +as + - +ar =n, witha; > 1fori > 1and g; < a; fori > 2,
or a; > a; for ¢ > 2. As a variation we consider also the larger classes
of compositions for which a; < a; is replaced by a; < a;, and similarly
a; > a, is replaced by a; > a; for i > 2.

2. COMPOSITIONS WITH LARGEST PART IN THE FIRST POSITION

We consider first the case of strict inequality. That is a; +a2+---+ax = n,
with a; > 1 for ¢ > 1 and a; < a; for for i > 2. If the first part is the
number k > 2, then the ordinary generating function for such compositions
with leading part k is just
z* _ z* _ (1-2)7
1—z—22—...—2zk1 7 1_z£_).1—lz_'°z" T 1-2z42F

(1)
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Summing over all k¥ > 2 gives the generating function for compositions with
strictly greatest part in the first position,

flz (1-z)2* 9
)= ;1—2z+z" (2)

The term 2 from k£ = 1 above represents the unique composition of 1.

To estimate the coefficient f, of 2™ in f(z) we follow the approach of
Flajolet, Gourdon and Dumas (1}, who considered a similar generating
function relating to the longest run of 1's in a random binary string of
length n.
Theorem 1. Asn — oo,
2n~1
f n "~
nl
where §(z) is a continuous periodic function of period 1, mean zero, small
amplitude and Fourier ezpansion

8(z) = T(1+xx)e~™=. O
k#0

5 (1+d(logyn))

Proof. Let pi. be the smallest positive root of the denominator of (1) that
lies between 1/2 and 1. An application of the principle of the argument
shows such a root to exist with all other roots of larger modulus. By
dominant pole analysis,

k= [2"]

for large n but fixed k.

(1 - pe)pk
pk(2 — kpp™Y)’

(1—2)z* - .
Toos 4 oF ~CkPk With o=

The denominators of the terms in (2) behave like a perturbation of 1 — 2z
near z = 1/2, so one expects py to be approximated by % as k = o0. By
“bootstrapping” we find that

= %(1 +27F + O(k27F)) )

and hence ¢; = 527 (1 + O(k27*)). The use of this approximation can be
justified for a wide range of values of ¥ and n (see Knuth [4]). We thus
obtain the approximate formula

Tn i & 2n-—k—1(1 _ 2-k)n ~ 2n—k—le—n/2".

Then as in Knuth [4]

= [2")f(z) = 2 (Z e o(l)) :

k=2
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Let

ad 1 _x/2k
g9(z) == z oxe .

For z € R, the Mellin transform of the function g(z) is

g*(s) = /000 g(z)z* ldz = (Z 2(’-1)’°) I(s) = 2282_82 -T'(s), 0<Re(s) <1

k>2

Here we have used the fact that the Mellin transform of e~* is I'(s) =
Jo” e~z*~1dz, for Re(s) > 0. To estimate the sum g(n) and hence f, we
use the Mellin inversion formula,

1 1/2+ic0
o(o) = = / g*(s)z~*ds

1/2—ioo

We move the contour of integration to the right and must compute some
residues as a compensation.

Let xx = 2kni/log2. There are simple poles of the integrand at s = 1+ xx
for each k € Z, with residue
1

zlog2

__22)(&]:‘(1 +Xk)x—1—x:¢ - F(l + xk)e“zk"“"g?z.

log 2
Combining the contributions for all ¥ € Z, we find that
—2kwil
g(n ~ —l—-—ZI‘(l +Xk)e 0827

kEZ

The result follows after separating out the largest term of the above sum,
which comes from k = 0.

O

Computations show that |§(z)| < 1075, as a result of the fast decrease of the
gamma function with imaginary argument. Consequently, the proportion
of compositions of n with largest part first satisfies

Jn_ 1
0.99999 ——— l ) < a1 < 1.00001 niog?

for large n.

For numerical purposes |§(z)| is well approximated using the terms for
k=1land k= -1:

Now consider the variation where we allow parts equal in size to the first
part, that is @y +az + -+ +a =n, witha; > 1fori >1and a; < a for
i>2.
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FIGURE 1. Plot of 6(log, n) for 1 < n < 100.

If the first part is the number & > 1, then the ordinary generating function
for such compositions with leading part & is just
k z* (1-2)z*

“ = = @
1—z—22—...—zk 1—z§——211'_‘: T 12z 4 ZFH

Summing over all k > 1 gives the generating function for compositions with
all parts less than or equal to the part in the first position,

2 1-2)zF
f =¥ g e ®)

From this we see that z f(z) = f(z) — z and hence for n > 2 the coefficients
fn of f(z) satisfy f, = fn1. Consequently we have immediately
Theorem 2. Asn — oo,

-

2"1
fa=fap~ nlogd (1 + &(logz n))
where 6(z) is defined as in Theorem 1. O

Remark By symmetry, Theorems 1 and 2 hold also for counting the num-
ber of compositions of n with largest part in the last position.

The intial terms of the f, sequence for n > 1 are
1,1,2,3,5,8,14,24, 43,77, 140, 256, 472, 874, 1628, 3045, 5719, 10780, 20388,

38674, 73562, - - - .

The sequence exhibits an interesting pattern modulo 2.
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Theorem 3. The coefficient fy, is odd if and only if n = m? orn =m?+1.

Proof. By taking the generating function (2) for f(z) modulo 2 we obtain

i foz" = Z (IT-*-_iz):—k (mod 2).

n=1 k>1

or equivalently,

ad P 2k+1
n —
E fa2 = E T + kE>1 T % (mod 2).

n=1 k>1
Now
o) k co oo
> =
= z
1-2z £
k=1 k=1 j=1

If we let 7 = kj and define the divisor function 7(r) = 34,1, we can
rewrite the double sum in the form

Z T _z_ = Z'r(r)z’.

It is easy to see that 7(r) =1 (mod 2) if and only if n = m?. Therefore we
have

o Lk o
Z T Zz‘ (mod 2),
i=1

k=1 2

and therefore

2k+1

0
> T

k=1 i=1

2+ (mod 2).

i
Ms

The conclusion now follows.
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To compute the exact values of the f, sequence we can employ a recursive
approach. Let

= i = 222 ©)

I =9, + Sk’
"o 1 224z

be the generating function for compositions with largest part & in the first
position. By equating coefficients of 2™ in the relation

(1-2z+2%) ka,nz (1-2)2*
n>0

we obtain the recurrence relation

femn = 2fkn—1 — fron—k + Okn — Opg1,n

where d,,,, = 1 if m = n and is zero otherwise, and with initial conditions
Jen =0, for n < k.

We may then compute f,, using
n
f n= Z f k,n-
k=2

3. COMPOSITIONS WITH SMALLEST PART IN THE FIRST POSITION

We consider first the case of strict inequality. That is a; +a2+---+ay = n,
with a; > 1 for ¢ > 1 and a; > a; for for ¢ > 2. If the first part is the
number k > 1, then the ordinary generating function for such compositions
with leading part k is just

z* _o2r (1 -2)2F
1—z’°+1—z’°+2—..._1_11"_+z‘_l—z_zk+1' ()

Summing over all k£ > 1 gives the generating function for compositions with
strictly smallest part in the first position,

-y ®

k>1
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Theorem 4. Asn — o0,

=i = 28 (‘/52“) +0(5™)

where py ~ 0.682328 is the smallest positive root of 1 —2—~2%=0. O

Proof. Let py be the smallest positive root of the denominator of (7) that
lies between 0 and 1. By dominant pole analysis,

- 2)z* - . (1 - pe)pf

n ~ " with ¢ = E__
=l ]1 —z - gk P ©T (L (k+ 1)p)

for large n but fixed %.

As py < p2 < p3..., the largest contribution g, comes from the case

k = 1, with the other terms bounded by the size of g, 2. Since p; = 3@

and ¢ = ﬁ_—ﬁ— = 24\/—55 and the smallest positive root of 1 —z — 23 =0 is

p2 ~ 0.682328, the result follows. O

We see that asymptotically almost all compositions counted by h, have
leading part 1 and subsequent parts greater than 1, with generating func-
tion
(1-2)z
1—-2z-2%

This case is equivalent to counting compositions of n — 1 with all parts > 2.
Now consider the variation where we allow parts equal in size to the first
part, that is a; +az +--- +ax =n, witha; > 1 fori > 1 and a; > a; for
fori > 2.

If the first part is the number k > 1, then the ordinary generating function
for such compositions with leading part & is now
Pl ¢ (1-2z)*

l—zk—z""‘l—...:1—%—1—z—z"' ©)

Hence the generating function for compositions with all parts greater than
or equal to the part in the first position is,

. - k
h(z) = % (10)
k>t

From this we see that

zh(z) =

2
-z
v + zh(z)
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and hence for n > 2 the coefficients Ay, of h(z) satisfy
iln = 271—2 + hn.—l-

Consequently
Theorem 5. Asn — oo,

n
Bn~2"-2+o(@) .o

The case k = 1 in (9) corresponds to counting unrestricted compositions of
n — 1, which explains the contribution 2*~2 above.

The initial terms of the h, sequence for n > 1 are
1,1,2,2,4,5,8,12,19, 28,45, 70, 110, 173, 275, 436, 695, 1107, 1769, 2831, 4537,
7276,11683,--- .

To compute the exact values of the h, sequence we employ an approach
akin to that for f,. Let

1-—2)z*
he(2) 1= Y b = 0 (1)
n>0

be the generating function for compositions with smallest part & in the first
position. Equating coefficients of 2™ in the relation

(1 -2 —2*1) Z hinz® = (1 - 2)2*
n>0

gives the recurrence relation

hin = hepn—1 + Rk p—k-1 + Ok,n — Okg1,n

where 0., . as before, and with initial conditions ht,, = 0, for n < k.
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Then

n
hn =Y hin
k=1

We remark finally that Theorems 4 and 5 hold also for counting the number
of compositions of n with smallest part in the last position.
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