ON MULTI-AVOIDANCE OF GENERALIZED PATTERNS

SERGEY KITAEV AND TOUFIK MANSOUR

ABSTRACT. In [Kit1] Kitaev discussed simultaneous avoidance of two
3-patterns with no internal dashes, that is, where the patterns corre-
spond to contiguous subwords in a permutation. In three essentially
different cases, the numbers of such n-permutations are 2n—1 the
number of involutions in Sn, and 2E,, where Ey is the n-th Euler
number. In this paper we give recurrence relations for the remaining
three essentially different cases.

To complete the descriptions in [Kit3] and [KitMans], we consider
avoidance of a pattern of the form z-y-z (a classical 3-pattern) and
beginning or ending with an increasing or decreasing pattern. More-
over, we generalize this problem: we demand that a permutation must
avoid a 3-pattern, begin with a certain pattern and end with a certain
pattern simultaneously. We find the number of such permutations in
case of avoiding an arbitrary generalized 3-pattern and beginning and
ending with increasing or decreasing patterns.

1. INTRODUCTION AND BACKGROUND

Permutation patterns: All permutations in this paper are written as
words 7 = @102 . . . Gn, Where the a; consist of all the integers 1,2,...,n. Let
a € S, and 7 € Sy, be two permutations. We say that a contains 7 if there
exists a subsequence 1 < 4; < g < +++ < i < n such that (a;,,...,q;,) is
order-isomorphic to 7; in such a context 7 is usually called a pattern. We
say that o avoids 7, or is T-avoiding, if such a subsequence does not exist.
The set of all T-avoiding permutations in S, is denoted by S, (7). For an
arbitrary finite collection of patterns T', we say that o avoids T if a avoids
any T € T'; the corresponding subset of S, is denoted by Sn(T').

While the case of permutations avoiding a single pattern has attracted
much attention, the case of multiple pattern avoidance remains less inves-
tigated. In particular, it is natural, as the next step, to consider permuta-
tions avoiding pairs of patterns 7y, 72. This problem was solved completely
for 7,72 € S3 (see [SchSim]), for 71 € S3 and 7 € Sy (see [W]), and
for 1,72 € Sy (see [B, K] and references therein). Several recent papers
[CW, MV1, Kr, MV3, MV2] deal with the case 7, € S3, 72 € Sy, for various
pairs 1y, T2.
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Generalized permutation patterns: In [BabStein] Babson and Ste-
ingrimsson introduced generalized permutation patterns (GPs) where two
adjacent letters in a pattern may be required to be adjacent in the permu-
tation. Such an adjacency requirement is indicated by the absence of a dash
between the corresponding letters in the pattern. For example, the permu-
tation m = 516423 has only one occurrence of the pattern 2-31, namely the
subword 564, but the pattern 2-3-1 occurs also in the subwords 562 and
563. Note that a classical pattern should, in our notation, have dashes at
the beginning and end. Since most of the patterns considered in this paper
satisfy this, we suppress these dashes from the notation. Thus, a pattern
with no dashes corresponds to a contiguous subword anywhere in a per-
mutation. The motivation for introducing these patterns was the study of
Mahonian statistics. A number of results on GPs were obtained by Claes-
son, Kitaev and Mansour. See for example [Claes], [Kit1, Kit2, Kit3] and
[Mans1, Mans2, Mans3).

As in [SchSim], dealing with the classical patterns, one can consider the
case when permutations have to avoid two or more generalized patterns si-
multaneously. A complete solution for the number of permutations avoiding
a pair of 3-patterns of type (1,2) or (2,1), that is the patterns having one
internal dash, is given in [ClaesMansl1]. In [Kit1] Kitaev discussed simulta-
neous avoidance of two 3-patterns with no internal dashes, that is, where
the patterns correspond to contiguous subwords in a permutation. In three
essentially different cases, the numbers of such n-permutations are 2”1, the
number of involutions in S, and 2E,,, where E,, is the n-th Euler number.
The remaining cases are avoidance of 123 and 231, 213 and 231, 132 and
213. In Section 3 we give recurrence relations for these cases.

In Section 4, we consider avoidance of a pattern z-y-z, and beginning
or ending with increasing or decreasing pattern. This completes the results
made in [KitMans], which concerns the number of permutations that avoid
a generalized 3-pattern and begin or end with an increasing or decreasing
pattern.

In Sections 5-8, we give enumeration for the number of permutations that
avoid a generalized 3-pattern, begin and end with increasing or decreasing
patterns. We record our results in terms of either generating functions, or
exponential generating functions, or formulas for the numbers which appear.

In Section 9, we discuss possible directions of generalization of the results
from Sections 5-8.

2. PRELIMINARIES

The reverse R(m) of a permutation 7 = 0103 ...0, is the permutation
@y - ..az2a;1. The complement C(x) is the permutation bibe ... b, where b; =
n+1—a;. Also, RoC is the composition of R and C. For example,
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R(13254) = 45231, C(13254) = 53412 and R o C(13254) = 21435. We call
these bijections of S, to itself ¢rivial, and it is easy to see that for any
pattern p the number Ap,(n) of permutations avoiding the pattern p is the
same as for the patterns R(p), C(p) and RoC(p). For example, the number
of permutations that avoid the pattern 132 is the same as the number of
permutations that avoid the pattern 231. This property holds for sets of
patterns as well. If we apply one of the trivial bijections to all patterns of a
set G, then we get a set G’ for which Ag(n) is equal to Ag(n). For example,
the number of permutations avoiding {123,132} equals the number of those
avoiding {321, 312} because the second set is obtained from the first one by
complementing each pattern.

In this paper we denote the nth Catalan number by Cy; the generating
function for these numbers by C(z); the nth Bell number by Bn.

Also, NJ(n) denotes the number of permutations that avoid the pattern
p and begin with the pattern ¢; G%(z) (respectively, Ef(z)) denotes the
ordinary (respectively, exponential) generating function for the number of
such permutations. Besides, NJ"(n) denotes the number of permutations
that avoid the pattern p, begin with the pattern g and end with the pat-
tern r; G (z) (respectively, E"(z)) denotes the ordinary (respectively,
exponential) generating function for the number of such permutations.

Recall the following properties of C(z):

1-vV1-4dz _ 1
2z T 1-zC(z)’

(1) Clz) =

3. SIMULTANEOUS AVOIDANCE OF TWO 3-PATTERNS WITH NO DASHES

3.1. Avoidance of patterns 123 and 231 simultaneously. We first
consider the avoidance of the patterns 123 and 231 simultaneously. Let
a(n;iy,42,...,im) denote the number of permutations 7 € S,(123,231)
such that myma ... T, = %192...4m and let a(n) = |S,(123,231)|. By the
definitions, we get that a(n) = Z;'l:x a(n;j) and a(n;n) = a(n — 1). Hence

(2) a(n) = a(n — 1) +a(n;1) +a(n;2) +--- + a(n;n — 1).
Also, by the definitions, for all 1 <1 < n —1, we get

i-1 n
(3) a(m;i) =Y a(mii, i) + Y a(nii,j).

=1 j=i+l

Suppose m € S,,(123,231) is such that m; =i and mp = j. If ¢ > j then there
is no occurrence of the pattern 123 or 231 that contains m, so a(n;,j) =
a(n—1;7). If i < j then since = avoids 123 and 231, we get that i < 73 < j,
and thus in this case a(n;1, j) = a(n—2;1)+a(n—2;i+1)+- - +a(n—2;j—-2).
Hence, using (2) and (3), we get the following theorem.
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Proposition 1. For alln > 3,

a(n) = a(n — 1) + a(n; 1) + a(n;2) + - - - + a(n;n — 1),

where for all1 < i< n,

and a(3;1) =1, a(3;2) = 1, a(3;3) = 2.
Using this theorem, we get quickly the first values of the sequence a(n)

i—1

i=1

forn=0,1,2,...,10:

n—2

a(m;i) =Y a(n-1L;5)+ > (n—1-ja(n - 2;3),

—3

n

0

1

2

3

4

5

6

7

8

9

10

a(n)

1

1

2

4

11

39

161

784

4368

27260

189540

3.2. Avoidance of patterns 132 and 213 simultaneously. We consider
avoidance of the patterns 132 and 213 simultaneously. Let b(n;4,, i, .. ., im)
denote the number of permutations 7 € S5n(132,213) such that w7y .
i192...1m and let b(n) = |S,(132,213)|. Suppose 7 € Sn(132,213) is such
that m; = i and mp = j. If i > j then, since 7 avoids 213, we get m3 <i-—1.

Thus

(4)

i—-1
bmii, )= Y b(n—1;5,k).
k=1, k#j

If ¢ < j then, since 7 avoids 132, we get 73 < i — 1 or 3 2 7+ 1. Thus

i—-1
(5) b(nid,5) =Y b(n—1;5 - 1,k) +
* k=1

Using (4) and (5), we get the following theorem.
Proposition 2. We have b(n) = Yi=1 b(n4, 5) with

b(n;i,i) =0 for all n,i > 1;

i~1
b(n;i,5) = 3 b(n - 1;5,k) if i > j;
k=1

n-—1
> b(n-1;5 - 1,k).

k=j

i-1 n-1

b(n;i,j) = 3 b(n - 1,5~ Lk) + 3 b(n — 1;5 - 1,k) if i < j;
k=1 k=j

and b(2;1,2) = b(2;2,1) =1, b(2;1,1) = b(2;1,1) = 0.

Using this theorem, we get

n

0

1

2

3

4

10

b(n)

1

1

2

4

11

149

705

3814

23199

156940
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3.3. Avoidance of the patterns 213 and 231 simultaneously. We
now consider avoidance of the patterns 213 and 231 simultaneously. This
case is equivalent to avoidance of the patterns 132 and 312 by applying the
reverse operation. Let ¢(n;i1,%2,. .- ,im) denote the number of permuta-
tions 7 € Sn(132,312) such that mm2... Tm = hil2 .. .im and let c(n) =
|5,(132,312)|. We proceed as in the previous case. Forn > i > j 2 1, we
have

i-1 n—1
(6) c(n;iyj) = 3 c(n—1;4,k) + Y cln = 1;5,k).
k=1 k=i

For 1 <i< j < n, we have

i—1 n-1

(7) c(n;i,j)=Zc(n-—l;j—l,k)+Zc(n—1;j—1,k).

k=1 k=j
Using (6) and (7), we get the following theorem.
Proposition 3. We have c(n) = Y.} =, c(n;i,5) with
c(n;i,i) =0 for alln,i > 1;

j—1 n—1
e(n;i,j) = 3 eln— 1;5,k) + X c(n — 1;5,k) fi > j;
k=1 k=i
i—1 n—1
e(nyij) = S eln~1;5—L,k)+ X cln— 15 - L,k) i <j;
k=1 k=j

and c(2; 1,2)_= c(2;2,1) =1, ¢(2;1,1) = ¢(2;1,1) = 0.
Using this theorem, we get

n [0[1]2[3]4[5]| 6 7 8 9 10
c(n) |1[1]2]4]10]30] 108|454 | 2186 | 11840 | 71254

4. AVOIDING A PATTERN X-Y-Z AND BEGINNING OR ENDING WITH
CERTAIN PATTERNS

Recall that according to the definitions from Section 2, NJ'"(n) denotes
the number of permutations that avoid the pattern p, begin with the pattern
g and end with the pattern r; G4 (z) (respectively, E}'"(z)) denotes the
ordinary (respectively, exponential) generating function for the number of
such permutations. Besides, C, and C(z) denote the n-th Catalan number
and the ordinary generating function for the Catalan numbers.

Proposition 4. We have
Gi%k () = *C% ().

Proof. Suppose ® = w'nn" € Sp(1-3-2) is such that m < @3 < -+ < M
and 7; = n. It is easy to see that m avoids 1-3-2 if and only if =’ is a
1-3-2-avoiding permutation on the letters n —j + 1,n —j +2,...,n -1,
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and 7" € S,_;(1-3-2). If we now consider two cases, namely j = k and
J>2k+1, weget

Gi%:5(z) = 2¥C(2) + 2G1%:5 () O ().
Thus, G1%:5(z) = 2*C(z)/(1 — zC(z)) and, using (1), we get the desired
result. O

Proposition 5. We have
G152 () = 2 CH (a).

Proof. Suppose m = n'nn"” € Sp(1-3-2) is such that m; > 7o > --- > Th
and 7; = n. It is easy to see that m avoids 1-3-2 if and only if ' is a
1-3-2-avoiding permutation on the letters n — j +1,n ~ j + 2,...,n—1,and
7" € Sp—j(1-3-2). If we consider separately the cases j = 1 and Jj>2, we
get
G152 () = 26154 @) + 26143 (2) ().
Hence,
G152 (@) = 26¥ 4D @) (1 - 2C(2))

and, using (1), we get fog__zl)‘"l(z) = mC(m)Gg'f;lz)(k"z)"'l(z). By induc-
tion on k, using the fact that G}.;.,(z) = C(z) — 1 = zC?(z), we get the
desired result. O

Proposition 6. We have
Gk (z) = s*C*(g).
Proof. One can use the same considerations as we have in the proof of

Proposition 5, by considering a permutation 7 = 7'1n" € Sn(2-1-3) such
that7r1<v1r2<---<7rkand1r,-=1. 0

Proposition 7. We have
GEAN Y (2) = 2 C2 ().

Proof. One can use the same considerations as we have in the proof of
Proposition 4, by considering a permutation 7 = 7'17" € Sn(2-1-3) such
that1r1>1r2>--->7rkand7rj=1. a

Let s,(i1,...,im) denote the number of permutations 7 € Sn(1-2-3) such
that mme ... = d142...4,,. It is easy to see that

(8). 3n(n) = Sn(n - 1) = Cﬂ—l)
andfor1<t<n-2,

t—1 t—1
9) sn(t) = sn(t,n) + ) sa(t,3) = snoa(t) + Y sno1(h)-
i=1 i=1
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Now, (8) and (9) with induction on ¢ give
t oy
(10) sp(n—t) = Z(—l)’ ( i )Cn—j—-l
3=0

Let us prove the following proposition.
Proposition 8. We have

0, ifk>3,
Gi%:3(2) = 22C3(z), ifk=2,
zC?%(z), ifk=1.
Proof. For k > 3, the statement is obviously true. If k=1 then
Gl.p.5(z) = C(z) - 1 = 2C*(z).
Suppose now that k = 2. From the definitions, for all n > 2, we have

-2 3(n Z Z sn(%,5)-

i=1 j=i+1

In this formula, j can only be equal to n, since otherwise we have an oc-
currence of the pattern 1-2-3. Using this fact with (8) and (9), we get for
n> 2,

n-—1
N2 s(n) = an(z n Z Sn—1(%) = Cn-1.
i=1

Hence, G2, 3(z) = z(C(z) — 1) = #*C*(z). O
Proposition 9. We have
(el n+l—k n—t —t R
- .1 -
NG = Y ( ) > (- 1)3( ; ’)Cn_t_j_l.
t=1 j=0 J
Proof. From the definitions, we have

n+l—k
IO S (i PO

t=1

Using (10), we get

vz ="5 (22 e ()

t=1 j=0
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5. AVOIDING A PATTERN X-Y-Z, BEGINNING AND ENDING WITH CERTAIN
PATTERNS SIMULTANEOUSLY

Recall that according to the definitions from Section 2, NJ™(n) denotes
the number of permutations that avoid the pattern p, begin with the pattern
¢ and end with the pattern r; G§" () (respectively, E%"(z)) denotes the
ordinary (respectively, exponential) generating function for the number of
such permutations.

Proposition 10. Let k,£> 1 and m = maz(k,l). We have

(i) G155V (z) = gh+t-102(g),

. k2.8 - m _gh+e~1
(ll) Gi?:g.z 12 (x) — $k+t lCt'l‘l (17) + z lz;z s
(lll) Gf(k—l)...l.l(e"l)ml(z) = $k+t_lck+1(z) + 20—z

-3-2 1~z

(iv) the generating function Gy-3-2(2,y,z) = %0 G’ffg.}l)"'l’12"'[(x)ykz‘

»w=

for the sequence {Gfﬁgle)"'l’m”'l(x)}k,gzo (where k and £ go through all
natural numbers) is
1 (x( +z4yz)+ C(z)-1 )
1-azly+2) " T T T T @)1 < 220() ) -

Proof.

(i) Beginning with 12...k and ending with £(¢ — 1)...1: Suppose
7 =n'nn" € S$,(1-3-2) is such that m; < My < KMy Ty K A < oo <
Tn—t41 and m; = n. It is easy to see that = avoids 1-3-2 if and only if 7’ is
a 1-3-2-avoiding permutation on the letters n — J+Ln—-j3+2,...,n-1,
and " € S,,_;(1-3-2). We now consider three cases, namely j =k, k+1 <
J<n-—{fand j=n-¢+1. In terms of generating functions, we have

12...k,6(£-1)...1
Gl-3-2 (=0 (z

e l(l=1) , . . '
= G305 (@) + 26k ()G (@) + 2t G1%k (x) + zhHeL,

where we observed that to avoid 1-3-2 and end with ££—1)...1 is the
same as to avoid 2-1-3 and begin with £(~1)...1 by applying the reverse
and complement operations. Also, we added the term 841 since when
J =k =n-£+1, we have one “good” (k + ¢ — 1)-permutation, which is
not counted by our three cases.

From Propositions 4 and 7, we have that

Gi%:4(z) = z*C?(z) and G’ggllfsl)"'l(:c) = z!C%(z).
Thus, using the fact that zC%(z) = C(z) — 1, we get

G;?g_’;'t(t_l)"'l(x) = mk+tcz (.'1:)(2 + (BC2(IL‘)) + xk+£—1
= 1O (2) — 1)(C(2) + 1) + k-1
= zk+e—102(x)_

328



(ii) Beginning with 12...k and ending with 12...¢: Suppose 7 =
n'nn" € Sp(1-3-2) is such that m < 72 < -+ < Tky Tn > Tpo1 > 00 >
Tnt41 and 7; = n. As above, 7 avoids 1-3-2 if and only if @' is a 1-3-2-
avoiding permutation on the letters n —j+1,n —j+2,...,n— 1, and
7" € Sp-j(1-3-2). We consider thecases j = k, k+1<j<n-{¢ and
j = n. In terms of generating functions, the first approximation for the
function G1%% 12-(z) is
G212 ) s S GR (@) + 2GR (DGR (@) +2G1 53TV ),
where we observed that to avoid 1-3-2 and end with 12...¢ is the same
as to avoid 2-1-3 and begin with 12...¢ by applying the reverse and com-
plement operations. We use the sign “x” because there are some “good”
permutations, which are not counted by our considerations. We discuss
them below.

From Propositions 4 and 6, we have that G2k (z) = zFC*(z) and
G%:4(z) = z!C**(z). Thus, using the fact that zC%*(z) = C(z) - 1

d Gi%8Y(z) = Gi%d(z) = z*C2(x) (Proposition 4), we get

Gl (@)
s gLt (z) + wk+e+10‘+3(:c) + mG}?g:;‘""’""“”(x)
= gFHCH2(z) + xGi?;;'.'g'm"'(l_l)(x)
= g+ CtH2(g) + ZhH O (z) + zzcigé._.;c,lz...(e-z) (z)

—_. = mk+¢c4($)(0t—2($) + C‘“"(:z:) R 1) + $k+t—1 02(:5)

= gh+-1(C(z) — 1)C@) 7 + 24+ O (a)

= ghti-1ot+l (:E)

To complete the proof of this case, we observe that in our considerations
above, we do not count increasing permutations of length m = maz(k, ),
m+1,...,k + € — 2, which satisfy all our restrictions. We did not count
them because the k-beginning and £-ending in these permutations overlap
in more than one letter. So, to get the desired result, we need to add the
term
g™ 4 g™ 4R = (@™ - 2R /(1 - )

to the approximate value of G}?g.'g ’12"'£(z). For example, expanding the
ordinary generating function G}?él_gs(z), we have, in particular, that there
are 2002 10-permutations that avoid 1-3-2, begin with the pattern 12 and
end with the pattern 123.
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(iii) Beginning with k(k — 1)...1 and ending with £(¢ — 1)...1:
If £ = 1 then, by Proposition 5, Gf_(g_—zl)"'l'l(x) = z*Ckt1(z). Suppose
£ 22 and 7 = n'ln" € S,(1-3-2) is such that 1 > w3 > -+ > =y,
n < p—1 < +++ < Wp_pq1 and 7; = 1. Obviously, 7" is the empty word,
since otherwise we have an occurrence of the pattern 1-3-2 starting from the
letter 1. Thus, the first approximation for the function G’ffg_;l) L1
is

k(k—1)...1,6(¢=1)...1
G132 (z .
s fo_(g_-zl)---l:(‘—1)(5-‘2)--' (z)=--= mk+l—lck+l(z)_

Like in the previous case, we did not count decreasing permutations of length
m, m+1,...,k+ € — 2, which satisfy all our restrictions. Thus, to get the
desired result, we add the term (z™ — g¥+¢-1) /(1 - z) to the approximate
value of Gf_(;;l)...l,l(t—l)...l(m).

(iv) Beginning with k(k—1)...1 and ending with 12...¢: Suppose
7 = n'nn" € $,(1-3-2). Any letter of 7' is greater than any letter of n",
since otherwise we have an occurrence of the pattern 1-3-2 in 7 containing
the letter n which is forbidden. Also, 7' and 7" avoid 1-3-2. If begins
with k(k —1)...1, ends with 12...¢ and 7’ and 7" are not empty, then 7'
must begin with k(k —1)...1 and 7" must end with 12...¢. If 7' is empty
then 7" must begin with (k — 1)(k —2)...1 and end with 12...¢. If 7" is
empty then n' must begin with k(k —1)...1 and end with 12... (£-1). In
terms of generating functions, the discussion above leads to the following:

k-1)...1,12...¢ t—1)...
Gr3 1 1) m 2GHEL D () G124 ()

k—1)...1,12... k(k—1)...1,12...(¢—
‘*‘"’G(l-s-z) ! (z) +$G1-(3-2 )1 ( 1)(17);

where we observed that to avoid 1-3-2 and end with 12...¢ is the same as
to avoid 2-1-3 and begin with 12...¢. However, to put the sign “=" instead
of “x”, we have to correct the right-hand side of the recurrence relation
by observing that when either ¥k = 1 and ¢ = O,ork=0and £ =1, or
k =1 and £ = 1, the formula does not count the permutation m = 1 which
satisfies all the conditions needed. Thus, if we make correction of the right-
hand side, then multiply both parts of the obtained equality by z*y¢ and
sum over all natural k and ¢ we get (recall the definition of Gi-3-2(z,y, 2)
in the statement of the theorem):

Grs2(z,,2) =z Y G143V (2)GRt(z)yk 2t
k>0
+z(y + 2)Gr-3-2(2,y, 2) + 2(y + 2 + y2).
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From Propositions 5 and 6, GHEZD-1(2)GY4 () = ghH{Ck++2(z), and
thus
Gh-3-2(, ¥, 2)

= =6 | s+ 2+ yz) + Z ghteoh+t+? (a:)y"z‘)
k£20

= =57 | s+ yz) + 2C%(2) Z(zyC(a:))k Z(xz(](z))‘)

k>0 £>0

C(z)-1
=Fm%ﬂ(ﬂy+z+wy*ﬁ%wu&huan0’
where we used that 2C?(z) = C(z) — 1. O
Proposition 11. Let k,£2>1 and m = maz(k,£). We have

(i) Gégl-’;'IZl(x) = zk+‘—lck+1(w) + ﬂ"_ﬂﬁ__l.

1-z
(ii) Glzc(_kl—_lg...l,lz...t(x) =xk+l—1c2(m)_
zk-{-t—l

(iii) Glzcgllc-—sl)...l,l(l—l)...l(x) — zk+[-1o[+1 (z) + x"‘.—l—z .

(iv) the generating function Go-1-3(z,9,2) = k% G;?;;’;"““""l (x)y*2*
20

for the sequence {G;?'l'_'g"(l_l)"'l(x)}k,zzo (where k and € go through all

natural numbers) is
1 C(z) -1
T-a(y +2) (“”(y FE V)t O - sz(z))) '

Proof. We apply the reverse and complement operations and then use the
results of Proposition 10. For example, to avoid 2-1-3, begin with 12...k
and end with 12...¢ is the same as to avoid 1-3-2, begin with 12...£ and
end with 12...k. ]

Let h%¢(t;s) denote the number of 1-2-3-avoiding n-permutations such
that 7 = ¢, Tp—t41 =8, M > T2 >+ > Tk, and Tp—g+1 > Tn—t+2 > " >
7n. Also, we define gn(i1,92,- .-, %m; b) to be the number of 1-2-3-avoiding
n-permutations such that mimy -+ 7m = i1%9...im and m, = b. We need
the following two lemmas to prove Proposition 14.

Lemma 12. For all n > 2, gn(a;b) is given by

(0, 2<a+1<b<n,
(@) l<a<n-1,b=a+l

ﬁ (rrecb=3) - (oY), 2<b<asn.

L ("33 - (M), 1<b<a<n.
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Proof. By definitions we have

(1) gn(a;0) =0forall2<a+1<b<n;

(@) gn(@ia+1) = gn(a,Lia+1) + ... + ga(a,a - L;a + 1) + gn(a,a +
2ja+1)+...+gn(a,n ~ ;0 + 1) + ga(a, n;a + 1). Using the fact that no
there exists a permutation 7 € Sn(1-2-3) such that 1y = a, m, < a — 2, and
Tn =a+ 1 we get
gn(a;a+1) =gn(a,a~1;a+1) + ga(a,a+2a+1) +... + gula,n;a + 1).
Using the fact that no there exists a permutation r € Sn(1-2-3) such that
m =aanda < m; < n—1weget go(a;a+1) = gn(a,a-1;a+1)+gn(a,n;a+
1). On the other hand, it is easy to see that g, (a, a—l;a+1) = g,_i(a-1;a)
and gn(a,n;a+1) = gn_1(a;a + 1). Hence,

gn(@;a+1) = gn_1(a - 1;8) + ga_1(a;a + 1).
Using induction we get that g,(a;a + 1) = (3=} foralln>2and1<a<
n—1.
(3) Using Equation (10) we get

n-—a

(@) = n(@i2) = sn-sla =1 = 3 (-1 ("¢ ) naaes
i=0

Similarly as (2) we have for all @ > b,
9n(@;0) = gn_1(b — 1;0) + gn_1(b+ 1;0) + gn_y (b + 26) + --- + gn-1(a; b).

Using the above equation together with induction on n,a,b, we get the
desired result. a

Lemma 13. The number h5{(t; s) is given by

(o) (CD)nta-n-e(t = (€= 1);s = (€-1)), fl<s<t<n
R4t + 1;), ifs=t+1;
byt s = 1) + BT 155 — 1), f2<t+1<s<n.

Proof. (1) Letn>1t>s>1;s0 by definitions we get
3 n—t\/s—-1
#69) = (32 1) (52 1) tmotemmceente = €= D50 - 0 1)

(2) Let s =t + 1; so it is easy to see hk(t; ¢ + 1) = BEL(t + 1;¢);

(8)Let 2<t+1< s<n. Let 7 be any permutations in Sy, (1-2-3) such
that m, = ¢ and m,41_¢ = s where My > > 7 and Tpgy_g > -+ > 7y S0
there two possibilities either Tnt2—¢ =8—1lormj =s—1wherej <k-—1.

. In this first case we get that there exist hﬁ'ﬁl(t; s — 1) permutations, and

in the second case we have that there exist hﬁ:i;e(t; s — 1) permutations.
(We extend the number h%!(q; b) as 0 for any £ < 0 or k < 0). o
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We recall that the Kronecker delta &n k is defined to be

P 1, ifn=k,
k=1 0, else

Proposition 14. We have
n i2k12.6,8 _ ) 0 ifk>30rl2>3
() Gi2 (z) = { zC%(z), fk=1landl=1"

Wiz ={ O FI=Y and M) = M) = Com
(ii) The number Nf_(f.gl)"'l‘m“'t(n) is given by
0’ sz 2 3:
n—k n—t-1 ) - ’
S (i) g, (DT Ot (f = D, EZ
n:-I—k et nJ—t n—t—j .
tzl (:21) _Zo(’l)’( ) Cn—t—j-1 ife=1.
= =l

(iii) The number Nllfz“_':f HE=D--1(n) 45 given by

0, ifk >3,
n—¢ n—t-1 . . '
X () y C ("5 Cmtmjmt + (€~ Dinesr, Fh=2,
n:—l—l et nJ—_t R )

& (221) JZ:O('I)’( j )Cr—t—j-1, ifk=1.

(1v) NG00 gy = 330 0 byt s), where hif(ts) is
given in Lemma 13.

Proof.

(i) Beginning with 12...k and ending with 12...¢: Ifk > 3or £ > 3,
the statement is obvious, since in this case 12...kor 12... ¢ does not avoid
the pattern 1-2-3. If k = 1or £ =1, we get the statement from Proposition 8
(in the first of these cases we apply the reverse and complement operations).
Suppose now that k =2, £ = 2, and an n-permutation 7 avoids 1-2-3, begins
with the pattern 12 and ends with the pattern 12. The letter n must be next
to the leftmost letter, since otherwise two leftmost letters and n form the
pattern 1-2-3. Also, the letter 1 must be next to the rightmost letter, since
otherwise 1 and the two rightmost letters form the pattern 1-2-3. It is easy
to see now that there are Cp—2 possibilities to choose , since we can take
any 1-2-3-avoiding permutation on the letters {2,3,...,n — 1} (there are
Cn—2 such permutations), then let the letters n and 1 be in the second and
(n — 1)-st positions respectively. These considerations only fail when n =3,
since in this case the second and (n — 1)-st positions coincide. However, in
this case we obviously have no permutations with the good properties.
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(ii) Beginning with k(k — 1)...1 and ending with 12...¢: The
statement is true for £ > 3, since in this case 12...¢ does not avoid 1-2-3.
For the case £ = 1 we use Proposition 9. Suppose now that ¢ = 2, and
an n-permutation 7 avoids 1-2-3, begins with the pattern k(k—1)...1 and
ends with the pattern 12. The letter 1 must be next to the rightmost letter,
since otherwise 1 and two rightmost letters form the pattern 1-2-3. So, to
form 7 we can take any (n — 1)-permutation on the letters {2,3,...,n} that
avoids 1-2-3 and begins with the pattern k(k ~1)...1 (the number of such
permutations is given by Proposition 9), and then let the letter 1 be in the
(n — 1)-st position. Also, we observe that in the case n = k + 1 we have
k—1 extra permutations, which are obtained from the (n —1)-permutations
having the k — 1 leftmost letters in decreasing order and two rightmost
letters in increasing order. '

(i) Beginning with 12...%k and ending with (¢~ 1)...1: By the
reverse and complement operations, to avoid 1-2-3, begin with the pattern
12...k and end with the pattern ¢(£~1)...1is the same as to avoid 1-2-3,
begin with the pattern ¢(¢ - 1)...1 and end with the pattern 12. . .k, so we
can apply the results of the previous case.

(iv) Beginning with k(k—1)...1 and ending with £(£—1)...1: The
statement is immediate from the definitions of Nf_(ﬁgl)"‘l"("l)"'l(n) and
hEL(t, 5). O

6. AVOIDING A PATTERN XYZ, BEGINNING AND ENDING WITH CERTAIN
PATTERNS SIMULTANEOUSLY

Recall that according to Section 2, EZ"(z) denotes the exponential gen-
erating function for the number of permutations that avoid the pattern D,
begin with the pattern ¢q and end with the pattern r.

Proposition 15. We have
0]
12.k02..¢, v [ EBl54z), ifk=1
B3 (z) = { ElZ%k(g), fl=1 "

where E\35(z) and E}?;+*(z) are given in Table 1(K1-K3) and Table 1(K5)
respectively. For k,¢ > 2, E;fg'k'u'"‘(a:) satisfies

2...k12...¢
D%Eéla 12 (z)
12...k,12...(6—1 ok, k-1
= B @) + (B o) + g5) Bl ().
(ii)

k(=1 El(l—l)...l . —
B0 = { B ™ TEZ1
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where Efg‘z—l)' 1(z) and E};*(z) are given in Table 1(K4) and (K5) re-

spectively. For k,€2> 2, E12 k=11 () satisfies

E22 k,((e-1).. l(x) u__TYv'Ezls (x) B
£(¢—-1)...1 k4+€—-2\ gkt
+ (E;fs 12 (z) + Tk—_l)") oS ey + (4 ) =

(ii)
E12(z) k=1
Ek(k_l)...l A28y — { e e ; ’
( ) Eg](.g 1) 1(13), zfﬂ =1
{ Formula =
El(®) = preorm -
e=2212
Bih(o) = s ! N

E11§2 k(x) 132( )

7 fer (—t’/2 —r‘*i—l)) dty - - dty_2dt: K3

T
By U (2) = %“.‘i)iu)/o tk=1e~t"/2 gy, K4
Sh—2,T()=T()
EYs*(z) = fo fo o= 2),(1 f‘ —=T72dm )dsdt K5
where

T(z) = —2*/2+ Jy W‘-—lw_a‘ d

ﬁsulm——f;
+Z / / - / # Cion(®) + dnk=a gy K6
=0 1- [y e=m/2dm
where
Ck(z) = eT(2).
e s . [1 =T (TT'-:_':’Z/T _1) didty - dbe—s

with T(:v) whlch is given in K3.
Table 1. [Kit3, Equation 12, Theorem 6(i), 6(ii),7,10,11).
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where Ei2y4(z) and EFE~12(2) are given in Table 1(K1-K3) and (K6)
respectively. For k,¢ > 2, Egl(g_l)"‘l’”"'e(x) satisfies
(k—1)...1,12...0 k=1)...1,12...¢
S E:&) ?)E;éig ) (=) k(k—1)...1,12...(¢~1)
+Ey3 (@) By t(e) + By R (g,

(iv)
" _ Ee(e—1)...1(x) k=1
Ek(}. 1)...1,¢(¢-1)..1 = 132_ ’ ,
213 (2) Eé‘l‘é‘ 1)'“1(:1:), ifl=1

where Ef:(,f;l)‘”l(z) and Efl(g_l)"'l(:v) are giwen in Table 1(K4) and (K6)
respectively. For k,€ > 2, Egl(g—l)"'l"(l_l)"'l (z) satisfies

5 pk(k=1)..1,6¢-1)...1
B 1,0(¢ 1($)1 £(t-1)...1 =1\ pk(k-1)...1,12
= By b1 () 4 (Emz )+ (ﬁﬁ) Eng 7 (2).

Proof.

(ii) Beginning with 12...% and ending with £(¢—~1)...1: The state-
ment is obviously true when ¥ = 1 and ¢ = 1. Suppose now that k£ > 2,
¢ > 2 and an (n + 1)-permutation 7 avoids 213, begins with the pattern
12...k and ends with the pattern 12...¢. The letter (n+ 1) can only be in
the position &, or in the position 7, where (k+1)<i<n~£+1,orin the
position n — £+ 2. In the first case, we choose the (k= 1) leftmost letters in
( 1) ways, rearrange them into the increasing order, and observe, that the
letters of 7 to the right of (n + 1) must form an (n — k + 1)-permutation,
that avoids 213 and ends with the pattern £(£—1)...1 (the number of such
permutations, using the reverse and complement operation, is equal to the
number of (n — k + 1)-permutations that avoid 132 and begin with the pat-
tern £(£~1)...1). In the third case, we choose the (€— 1) rightmost letters
in (,",) ways, rearrange them into the decreasing order, and observe, that
the letters of 7 to the left of (n + 1) must form an (n— ¢ + 1)-permutation,
that avoids 213, begins with the pattern 12...k%, and ends with the pat-
tern 12 (if it ends with the pattern 21, the letter (n + 1) and two letters
immediately to the left of it form the pattern 213). In the second case, we
choose the letters of 7 to the left of (n + 1) in (,”,) ways and observe, that
these letters must form a (i — 1)-permutation that avoids 213, begins with
the pattern 12...% and ends with the pattern 12. At the same time, the
letters to the right of (n + 1) must form an (n — % + 2)-permutation that
avoids 213 and ends with the pattern £(¢—1)...1. Besides, we observe that
ifn =k+¢—2,thatis [v| = k+€—1, and first k-letters of 7 are rearranged
into the increasing order, whereas the last ¢ letters are rearranged in the
decreasing order, we have a number of extra “good” permutations. The
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number of such permutations is the number of ways of choosing the first

(k — 1) letters, that is (¥7%7?). This discussion leads to the following:

N21123...k,¢(z—1)...1(n +,1l) l
= (kzl)NlZ(n-l)m (m—k+1)+ (2 )NE*n—-€+1)

T2 (1Y 12, k12 0y art(E=1)-1 . k+€-2
+§ (i)NZIZi "#(8)N1az (n—1)+ < E—1 )5n,k+t—2’
where 8, k+¢—2 is the Kronecker delta. We get the desired result by multi-
plying both sides of the last equality by z" /n! and summing over n.

(i) Beginning with 12...k and ending with 12.. .£: The statement
is obviously true when k = 1 and £ = 1. Suppose now that k > 2, £>2and
an (n + 1)-permutation 7 avoids 213, begins with the pattern 12...k and
ends with the pattern 12...¢. The letter (n +1) can only be in the position
k, or in the position i, where (k +1) < i < n —¢, or in the (n + 1)-th
position. In the last case, the number of such permutations is obviously
NZA12-8"1(n)  In the first case, we choose the (k — 1) leftmost letters
in (kfl) ways, rearrange them into increasing order, and observe, that the
letters of m to the right of (n + 1) must form an (n — k + 1)-permutation,
that avoids 213 and ends with the pattern 12...¢ (the number of such
permutations, using the reverse and complement operation, is equal to the
number of (n — k + 1)-permutations that avoid 132 and begin with the
pattern 12...£). In the second case, we choose the letters-of 7 to the left
of (n+1) in (;",) ways and observe, that these letters must form a (i-1)-
permutation that avoids 213, begins with the pattern 12. ..k and ends with
the pattern 12 (if it ends with the pattern 21, the letter (n + 1) and two
letters immediately to the left of it form the pattern 213). At the same
time, the letters to the right of (n+ 1) must form an (n —i+ 2)-permutation
that avoids 213 and ends with the pattern 12...¢. This discussion leads to
the following:

12..k,12...¢ 12..k,12...6—1
Nois (n+1) = Nyoj3 (n)

n
3 ()Mt -a+ (" )Mt - ke,
i=0
We get the desired result by multiplying both sides of the last equality by
2" /n! and summing over n.

(iii,iv) Beginning with k(k—1)...1 and ending with 12...¢ or with
€(¢ —1)...1: We proceed in the same way as we do under considering the
previous case. a

We observe that the number of permutations that avoid the pattern 132,
begin with the pattern p and end with the pattern r is equal to the number
of permutations that avoid the pattern 213, begin with the pattern 7' and
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end with the pattern p’, where p' and ' are obtained from p and r by
applying the composition of the reverse and complement operations. Thus,

C ,CoR
BTy (z) = Eg30oR0) (),

Proposition 16. We define Oy (z) to be

/Oz sec(Ta(t)) (sin(\ll3(t)) - ?e—t/z) (Qk(t) + ( ktk_;)v) dt,

where

/2 e—t/24t-1
®r(z) = (k o sec(‘Il(;(x))/ t*~1sin(¥3(2)) dt,
and ¥, (z) = £:z: + %. We have
() EiZy+12t() =
(0, ifk>3o0re>3,
z-4-4 tan (2o (z)-+
sec(\Ils(:c)) ( (/2 + e==/2) — sm(‘I'g(:c))) ,

— ifk=2andl=2,
@e‘/z sec(Tg(z0) — 1,

fk=1landfl=1,
P/ sec(¥s(2)) - § — 3 tan(¥s(a),

| otherwise;

0, ifk>3,
(i) By ™D @) = @e(a), k=1,
O(z), ifk=2;

0, ife>3,
(it) B3y~ a) = { ®u(z), ife=1,
Or(z), ift=2;
(iv) By~ 101 0y bo diven by

Ele-1)... L),

KR-)..a sE=1
Ek‘k (), ife=1,
1)...1 k(k—1)... .
BT (z) ~ EfED Y2(3), ife=2;

Fork>2and (> 3, Ek(k_l)"'l’t(e—l)"'l(:z:) satisfies

k(k—1)...1,¢(¢~1)...1
?EE( ).1,8(8~1).. (z)

=( 193 ( )+ T_Y) E{cz(g 1).. 121( )+Eglzc;l)...l,l(l—l)...l(x)

H
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where Efég_l) ~1(z) is given in [KitMans, Theorem 2]:

Ek(k—l)...l (3:) — e$/2 foz e—t/ztk"l Sin(mﬁ(t)) dt
123 (k — 1)! cos(Ts(z)) '

and Efg—l)'"l’m is given in this theorem above.

Proof.

(ili) Beginning with k(k —1)...1 and ending with 12...6 If £>3
then the pattern 12...¢ does not avoid 123, thus the statement is true.
If ¢ = 1, the statement is true according to [Kit3, Theorem 8] and the
observation that if & = 1 then this formula gives the expression

‘/gefﬂ sec(¥g(z)) — 1,

which is true according to [ElizNoy, Theorem 4.1] and the assumption that
the empty permutation does not begin or end with the pattern p = 1. So,
we need only to consider the case £ = 2.

Let P:(n) denote the number of n-permutations that avoid the pattern
123, begin with a decreasing subword of length k and end with the pattern
12. Also, let Ri(n) denote the number of n-permutations that avoid the
pattern 123 and begin with a decreasing subword of length k. Let 7 = m 17
be an (n + 1)-permutation that avoids the pattern 123, begins with the
pattern k(k — 1)...1 and ends with the pattern 12. We observe that m
avoids 123 and begins with k(k — 1)...1; 72 ends with the pattern 12 and
|ma| > 0 since otherwise m cannot end with the pattern 12; if |72| > 1 then
72 must begin with the pattern 21 since otherwise we have an occurrence
of the pattern 123 beginning from the letter 1. If |m;| = 4 then the letters
of 1 can be chosen in (7}) ways. So, there are at least

g (’:) Ri())P2(n — i) + nRi(n — 1)

(n + 1)-permutations with the good properties, where the first term cor-
responds to the case |m2] > 1 and the second term to the case |m2| = 1.
By this formula, we do not count the permutations having |m| = k — 1,
although in this case m begins with the pattern k(k — 1)...1. So, we can
choose the letters of m; in (,*,) ways, and according to whether 72| > 1 or
|w2| = 1, we have two terms:

n
(k - 1) Py(n—k+ 1)+ kb,
where &, x is the Kronecker delta. Thus,

Pi(n+1)
= 2):0 (MRi(i)Pae(n — i) + nRi(n — 1) + (")) Pa(n — k + 1) + kbn k.
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After multiplying both sides of the last equality with z" /n! and summing
over 1, we have

k-1
d _k(k=1)..1, 12 k(k—-1)...1 z
(1) B ") = (B (2) +2) (Eus <w>+—(k_1)!),

with the initial condition EF=)-112(0) = 0. Since
Efg-n...l(m) =E{:2(:l£—l)...1,1(z)
= iy sec(¥s () f et/ sin( 5 (1)) dt,

to solve (11), we only need to know EZ33'%(z). To find it, we set k = 2
into (11) and solve this equation. For an example how to solve such an
equation, we refer to Table 1(K1-K3). We get

x
E2%(z) = —g + sec(Ws(z))e=*/2 / e!/2 cos(Tg (1)) dt.
0
Now, we put the formula for Ef;;,m(a:) into (11) and solve this differential
equation to get the desired result.

(ii) Beginning with 12...k and ending with £(¢ —~ 1)...1: By the
reverse and complement operations, to avoid 123, begin with the pattern
12...k and end with the pattern £(£ — 1)...1 is the same as to avoid 123,
begin with the pattern £(£—1)...1 and end with the pattern 12...%, so we
can apply the results of the previous case.

(i) Beginning with 12...k and ending with 12...¢: The statement
is obvious if Kk > 3or £ > 3. If k = 1 and ¢ = 1 then the statement is
true according to [ElizNoy, Theorem 4.1] (but we need to subtract 1, since
by our assumption the empty permutation does not begin or end with the
pattern p = 1). If £ = 1 and k = 2, the statement is true according [Kit3,
Theorem 9]. If k£ = 1 and £ = 2, we apply the reverse and complement
operations, and use again [Kit3, Theorem 9]. So, we only need to consider
the case k = 2 and ¢ = 2. It is easy to see that

12,12 1,12 21,12
B9 (@) = Ey35°(z) — Bpyy (),
and from the previous cases

By () = -?ew sec(¥a(a)) ~ 3 - ? tan(%s(c)),

Efy *(2) = —z + sec(¥s(z)) (Si“(‘l’s(w)) - _\_/2_§e_x/2) :

(iv) Beginning with k(k —1)...1 and ending with £(¢—1)...1: If
¢ =1, the statement is trivial. If k = 1, we get the statement by using the
reverse and complement operations. For the case £ = 2, we observe that
the number of n-permutations that avoid the pattern 123, begin with the
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pattern k(k —1)...1 and end with the pattern 21 is equal to the number of
n-permutation that avoid 123 and begin with the pattern k(k—1)...1 minus
the number of n-permutations that avoid the pattern 123, begin with the
pattern k(k —1)...1 and end with the pattern 12. Suppose now that k > 2
and £ > 3 and an (n+1)-permutation 7 avoids 123, begins with k(k—1)...1
and ends with £(¢ — 1)...1. It is easy to see that the letter (n + 1) can be
either in the first position, or in the position i, where (k+1) <i < (n—¥),
or in the position (n — £ + 1). In the first of these cases, obviously we

have N{5; L4811 () permutations. In the second case, we choose the
letters of 7 to the left of (n + 1) in (,”,) ways. These letters must form a
permutation that avoids 123, begins with the pattern k(k—1)...1, and ends
with the pattern 21 (if the last condition does not hold, the letter (n + 1)
and two letters to the left of it form a 123-pattern. At the same time, the
letters to the right of (n + 1) form a permutation that avoids 123 and ends
with the pattern £(¢ — 1)...1. In the third case, we can choose the letters
to the right of (n + 1) in (,”,) ways, rearrange them into the decreasing
order, and form from the letters to the left of (n 4+ 1) a permutation that
avoids 123, begins with the pattern k(k —1)...1 and ends with the pattern

21 (by the same reasons as above) in Nfég_l)’"l’zl(n —~ ¢ + 1) ways. Thus,

N]’;(;c l)...l,l(l—l)..‘l(n_'_l)

n
- Nl(;cs—l)...l,l(t—l)...l (n) + Z (z)N{c‘z(;c 1)...1, 21( )Nfég 1)...1 (n _ Z)
=0

+(,")Nggs D (- 4 1),

where we observed, that to avoid 123 and end with £(€ — 1)...1 is the
same as to avoid 123 and begin with £(£ — 1)...1 using the reverse and
complement. Now, we multiply both sides of the equality by z"/n! and
sum over 7 to get the desired result. O

7. AVOIDING A PATTERN X-YZ, BEGINNING AND ENDING WITH CERTAIN
PATTERNS SIMULTANEOUSLY

Proposition 17. We have

n

= t t

e [3 e E —dt, ifk>2

(i) El?szk 1( )= -32 (a:) ° n2k—1 n! ’
et —l, if k=1

Fort>2, El?az" 12.. t(x) satisfies

o -2 i
az 1?32k 12.. l(z) ( Z - )E}?”k(:z:) _*_ezmmaz(l.k)—l'

i=0
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(ii) Ell?:;'z'k"(‘_l)”'l(w) satisfies

z T _pt tﬂ .
ot-! 12,k U(E-1) () e e Y Spah k22

A ) !
¢—1"1-32 . n>k-1
Oz e =1, ifk=1.
(iii) the generating functions Effg; 1)"'l'l(.'z:) and Effg{ 2 ~1(z) are given

by
{ (€ /(k - 1)) [T th=Teme'+t dt, ifk > 2

e 1, fk=1
For £ > 2, Effg;l)"‘l'm'“t(x) satisfies
k(k—1)...1,12...0
'%EISM ) (z)
= * k(k—1)...1 = ! k-1
= ez—zoﬁ E1-32 (iL')‘l' CI—EE rleﬁ.
1= 1=
(iv) Efff{l)'”l’e(e-l)"'l (z) satisfies

g1 (Ek(k—l)...l,l(t—l)...l(m) _ xmu(k.e)_xku—x)

Bzf-T \F1-32 iz
_ e fy e dt, ifk > 2,
e 1, ifk=1.

Proof.

(ii) Beginning with 12...k and ending with £(¢—1)...1: If ¢ =1
then the result follows from [KitMans, Proposition 5], since to avoid 1-32 and
begin with 12...k is the same as to avoid 3-12 and begin with k(k—1)...1.
Suppose now that ¢ > 2 and a permutation m avoids the pattern 1-32, begins
with the pattern 12. ..k and ends with the pattern £(£—1)...1. Since £ > 2,
we have that the letter 1 must be in the rightmost position since otherwise,

this letter and two rightmost letters of m form the pattern 1-32, which is
forbidden. Thus,

Multiplying both sides of the equality
Nll?é.z.k,l(l—l)...l(n) = N:-Zszk,l (n _ e + 1)
by "~ /(n — £ + 1)! and summing over n, we get

O ikt
st B T (@) = Bl @),

where E}2%;*(z) is given in [KitMans, Proposition 5], since to avoid 1-32 and
begin with 12...k is the same as to avoid 3-12 and begin with k(k—1)...1.
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(iv) Beginning with k(k—1)...1 and ending with 2(£-1)...1: We
use the same arguments as those given under consideration of the previous
case, but instead of [KitMans, Proposition 5] we use [KitMans, Proposition
4]. However, we observe, that when we use the argument

NEE=D L= 1
1-32
_ Nk-(;c2—l)...l,(l—l)(l—2)...l(n —) == lk—(;c2—1)...1,1(n —t+1)

for k, £ > 2, we do not count the decreasing permutations of length maz(k, ),
maz(k,€)+1,...,k+€—2,since in this case, the patterns k(k—1)...1and
£(¢ —1)...1 overlap in more than one letter, which causes the observation.
So, we need to consider additionally the term

zmaz(k,l) _ zk+t—1

mazx(k,t) + xmaz(k,t)-i—l 4ot xk+l—2 —

T )

l—2
which vanishesif k=1or {=1.

(i) Beginning with 12...k and ending with 12...¢: The only inter-
esting case here is the case k > 2 and £ > 2. Using the reverse and com-
plement, instead of considering avoiding 1-32, beginning with 12...k and
ending with 12...¢, we consider avoiding 21-3, beginning with 12...£ and
ending with 12... k. Suppose an n-permutation 7 satisfies all the conditions.
We observe, that the letter n can be in the position ¢, where £ <i <n — k.
Also, n can be in the rightmost position if » > maz(¢{, k). In any case,
the letters of 7 to the left of » must be in increasing order, since otherwise
we have an occurrence of the pattern 21-3. This means that in the second
case we have the only one permutation. In the first case, the letters of
to the right of n must avoid 21-3 and end with the pattern 12...k. The
number of such permutations, using the reverse and complement, is given
by N}%;%(n — ). Thus, for n > maz(¢, k),

n—k
n—1 : .
i=¢

This gives
12...£,12...k ~(n—1\ 12k L Am-1 12...k .
Noi’s (”)=Z -1 Ny'ss (n-—z)—z i—1 Ny (n—1i)+1,
i=1

i=1 ¢
which leads to the desired result after multiplying both sides of the last
equality by z™/n! and summing over n.

(iii) Beginning with k(k—1)...1 and ending with 12...¢: The only
interesting case here is the case k > 2 and £ > 2. Using the reverse and
complement, instead of considering avoiding 1-32, beginning with k(k —
1)...1 and ending with 12...¢, we consider avoiding 21-3, beginning with
12...¢ and ending with k(k—1)...1. Suppose an n-permutation 7 satisfies
all the conditions. We observe, that the letter n can only be in the position
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i, where £ < i < n —k, or in position (n — k+1) (in the case n > k+£—1).
In the first case, it is easy to see that the letters of m to the left of n
must be in the increasing order, and the letters of 7 to the right of n must
avoid 21-3 and end with the pattern k(k — 1)...1. Using the reverse and
complement, the total number of permutations counted in the first case is
Yl (e 1)le.(sk{l)"'l(n —1i). In the second case, the letters to the left of n
are in increasing order, whereas the letters to the right of n are in decreasing
order. The number of such permutations is (}_}), which is the number of
ways to choose the last k — 1 letters. Thus,

n—k

12...8,k{k—=1)...1 n—1\  kk-1)..1 . n-1

Noyi3™” (k=1 (n)‘—‘Z(i_l)Nl-(32) (n-'ﬁ)+(k_1).
i=¢

Multiplying both parts of the equality by z"~!/(n — 1)! and summing over
n, we get

a n—1) z*!
s @)= ) (k—l)(n—l)!+

)
> (S (107w mm0- 5 (17 )t -0 2
S\& i-1 e \i-1 (n-1)"
which leads to the desired result. O

Proposition 18. Let k,¢ > 1 and m = maz(k,£). We have

(i) Gé?ig"’”‘"‘(m) — xk+t—lck+1(m) - m_ghti-1

1-z
(i) G;“f;” 1,12.. ‘(:1:) = ghH-102(g),
(lll) GkgllcS 1)...1,6(¢-1).. 1( ) k+t lCl-H.(x)_*_ z _11.—k+t

(iv) the generating function G2.13(z,y, 2) E G’12 “(‘ - (z)yk 2t
for the sequence {G;%i’;;k"(t_l)"'l(x)}k,ezo where k' and ¢ go through all
natural numbers) is

1 C(z) -1
T2y +7) (””(y PRt T mcena —zzcov))) '

Proof. By [Claes, Lemma 2], to avoid the pattern 2-13 is the same as to
avoid the pattern 2-1-3. Thus we can apply the results of Proposition 11. 0O

Proposition 19. We have

0 ifk>3o0rf>3,
o p12..k12..8, \ -23 k(x), ifet=1,
() B\ 53 (z) = 2. {(z), ifk=1,

fo tE 5(t) dt+ %, ifk=2and =2
where E\3:3*(z) and E}%;*(z) are given by [KitMans, Proposition 10] and
[KitMans, Proposition 6] respectively:
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(o, ifk>3,

k
z? ifk=2,
E3:5*(z) =S Z’: 1- J ; 1'[8_0(1 - 5z)’
Z —_—, ifk=1;
L d>0 Hs:O(l — sz)’
0, if k>3,
El%gk(z) = EXDY2) = { e [T e (et =) dt, ifk=2,
e, ifk=1.
(i) Nll?z.gk,t(e—l)...l (n) =
(0, ifk >3,
0, ifk=2andn <,
N1_22§£—1)(l—2)...1(n ~1)
< n—2
+Z ( ) 12.n—j), fk=2andn>¢+1,
e j=t+1
—1)... ,
\ ng-a ) 1("’)1 sz = 1:
where the numbers Nf;t_a --1(n) are given in [KitMans, Proposition 9], and

the numbers N}%4(n) are given by ezpanding the ezponential generating
functions in [KitMans, Proposition 6].

(iil) the ezponential generating function Ef f;; 1)"'1’12"'6(:1:) is given by
0, ife>3
i Jo Jo tmhmlest e 4™ dmat + ks, ife=2,
(e /(k = 1)) [T th~Leme'+ dt, if =
where Ef 533_ Dby = BY 533_ D-1(n) is given by [KitMans, Proposition 4],
and N}:ﬁf'”""( )= Nf§€3 D-1(n) is given by [KitMans, Proposition 9];

(iv) Fork>2and £ > 2, Ekff;; 1)---LE(E=1).. 1(z) satisfies

_EIEQ;I)...IJ(! - gy .
E(k—1)...1,(¢~ — z' k(k—1)... ,
= By VDA (g) ¢ (ez - Zj) (EISZ3 D-l(z) + (Ti_lﬁ) )
=0
Proof.
(iii) Beginning with k(k —1)...1 and ending with 12...&: If £2>3
then Ef %"3 11,12 t(:c) = 0, since in this case the pattern 12...£ does not

avoid 1-23. If £ = 1 then we use [KitMans, Proposition 4], since in this case
the only restrictions to the permutations are avoiding 1-23 and beginning
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with the pattern k(k — 1)...1. Suppose now that £ = 2 and an (n + 1)-
permutation 7 avoids 1-23, begins with k(k — 1)...1 and ends with the
pattern 12. The letter 1 must be in next to the rightmost position, since
otherwise this letter and two rightmost letters form the pattern 1-23. We
can choose the rightmost letter of 7 in n ways, and the letters to the left
of 1 must form a 1-23-avoiding permutation that begins with k(k - 1)...1.
Besides, if n = k, and the k — 1 letters to the left of 1 are in the decreasing
order, we get n extra permutations that satisfy our restrictions. Thus,

NS D+ 1) = aGTY () + nd,

where dy, « is the Kronecker delta. Multiplying both sides of the equality by
z"/n! and summing over n we get

k+1
k(k—1)...1,12, \ _ k(k—1)...1 kx
El 5 (z) = /(; tE o3 (t) dt + FErDr
k(k—1)...1

Using the formula for E ;255 "’ (t) in [KitMans, Proposition 4], we get the
desired result.

(i) Beginning with 12...k and ending with 12...¢: The first three
cases are easy to prove in the same manner as we do in the proves of previous
propositions. The only interesting case is when k = 2 and ¢ = 2. Using the
reverse and complement operations, instead of considering avoiding 1-23,
beginning with 12 and ending with 12, we consider avoiding 12-3, beginning
with 12 and ending with 12, which we find to be more easy. Suppose an
(n + 1)-permutation w satisfies all the restrictions. It is easy to see that
|7| # 1 and |n| # 3, as well as if |7| = 2 (that is n = 1) then 7 must be 12.
Suppose |7| > 4. Since 7 begins with the pattern 12, it is impossible for the
letter (n + 1) to be somewhere to the right of the second letter of 7 or to be
the leftmost letter. Thus, (n + 1) must be in the second position. We can
choose the leftmost letter of = in n ways, since any choice of this letter will
not lead to an occurrence of the pattern 12 — 3 beginning with two leftmost
letters. If m = a(n + 1)7’ then 7' must avoid 12-3 and end with the pattern
12. The number of such permutations, using the reverse and complement,
is given by N}%;(n —1). Thus,

Niz5'(n+1) = nNids(n — 1).
Multiplying both sides of the equality by z/n! and summing over all n, we
get

(E13:5°(x)) = zE}%(2) + 1z,
where the term z corresponds to the permutation 12. We have the desired
result by integrating both sides of the last equality.

(ii) Beginning with 12...k and ending with (¢ —1)...1: All the
cases but £k = 2 and n > € + 1 are easy to prove. Let us consider this
case. Using the reverse and complement operations, instead of considering
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avoiding 1-23, beginning with 12 and ending with £(¢ —1)...1, we consider
avoiding 12-3, beginning with £(¢ — 1)...1 and ending with 12, which we
find to be easier. Let an n-permutation 7 satisfy all the conditions. We
observe, that the letter n is either in the first position, or in position j, where
k+1 < j < n—2, or in the last position. Obviously, in the first of these cases

the number of “good” permutations is given by Nl(é_":,”(‘_z)"'l'lz(n - 1),

which is equivalent to N:?ggt_l)(‘_”'"l(n — 1) by using the reverse and
complement. In the second case, we choose the letters to the left of n in
(;‘:11) ways, rearrange them to the decreasing order (we do it since otherwise
we have an occurrence of the pattern 12-3 having the letter n). After that,
the letters to the right of n must form a permutation that avoid 12-3 and
end with the pattern 12. Using the reverse and complement, there are
N}2,(n — j) such permutations. So, totally, in the second case there are
E;.‘;fH ('J?:ll)Nll_zza (n—j) permutations. Finally, if n is at the last position,
we have the only one such permutation, since the other letters must be in
the decreasing order.

(iv) Beginning with k(k—1)...1 and ending with {({—~1)...1: The
only interesting case here is the case £ > 2 and ¢ > 2. Using the reverse
and complement operations, instead of considering avoiding 1-23, beginning
with k(k —1)...1 and ending with £(€—1)...1, we consider avoiding 12-3,
beginning with £(¢ — 1)...1 and ending with k(k ~ 1)...1, which we find
to be more easy. Let an n-permutation 7 satisfy all the conditions. We
observe, that the letter n is either in the first position, or in position j,
where £+ 1 < j < n —k, or in the last position n — k + 1. We proceed as
in the previous case to get the following

£(€-1)...1,k(k-1)...1
NEE - Lkk=1)

n—k
ap(t=1) 1 k(k—1)...1 n—1\ k(k—-1)..1 . n-1
= Ny3-3 g Z (i_l)Nl-(za ) (n—l)'*‘(k_l),

i={+1

where three terms in the right-hand side correspond to the three cases de-
scribed above. We now multiply both sides of the equality by z"/n!, sum
over n and observe the following detail. We cannot write instead of ¢ = £+1
(in the sum above) ¢ = 1 as we did in most of the cases above, since, for
instance, the case i = 1 do not necessarily make the term of summation
equal 0 as it was before. Thus, instead of the factor e*, we have the factor
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8. AVOIDING A PATTERN XY-Z, BEGINNING AND ENDING WITH CERTAIN
PATTERNS SIMULTANEOUSLY

To obtain results for the number of permutations that avoid the pattern
zy — z, begin with the pattern p and end with the pattern r, one can apply
the results from Section 7 and subsequently together the composition of the
reverse and complement operations.

9. FURTHER RESULTS

In this section, we propose two directions of generalization of the results
from the previous sections. The first one is a consideration of avoiding more
than one pattern, beginning with some pattern and ending with another
pattern. For example, suppose that v = 12-3, w = 21-3, p = 12...k,
g =12...¢, and ED’] () denotes the exponential generating function for the
number of permutations that avoid the patterns v and w simultaneously,
begin with the pattern p and end with the pattern q. It is easy to see that
if k>3 or £> 3 then E}g_s’;}?s *(z) = 0. For the other k and ¢, one can
prove the following theorem:

Theorem 20. We have
(i) Eijigpnp(e) = e+=/2 1.
(i) B}y o15(@) = e=+=2 (1= f7 e tt/2dt) - 1
(iii) E12-3 21-3(2) = f e+ /2.
(iv) Ejarys1 () = b 2+ [y [e‘+‘2/2 (1 - fot e""z/zdr) - 1] dt.

The second direction is a consideration of permutations in S, containing
a pattern v exactly r times, beginning with some pattern and ending with
another pattern. For example, suppose that v = 12-3, r = 1, p = 1...k,
g = 1, and NP#(n) denotes the number of n-permutations that contain
the pattern v exactly r times, begin with the pattern p, and end with the
pattern g. It is easy to see that the only interesting case is 1 < k < 3, since

otherwise Ny2-55"! (n) = 0. Moreover, one can prove the following theorem:

Theorem 21. Let F,, denote the number of n-permutations containing 12-3
exactly once. Then, for alln > 3,
@%Am FolNiz3(n) = (n = 1)Fay + (n = 2)Bp_a,
Nygs3, 1(") (n - 2)Bp-3,
where B;, is the nth Bell number, and F, is gwen by [ClaesMQsZ Corol-
lary 13].
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