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(i) if G and H are of type 1, then G x H is of type 1;
(i) if e(G) < v(G) + 3A(G) — 4, then G is of type 1.

1 Introduction

We consider finite simple graphs with at least two vertices.
Any undefined notation follows that of Bondy and Murty [3].
The number of vertices, the number of edges, the maximum
degree, the minimum degree, the edge chromatic number, and
the chromatic number of a graph G are denoted by v(G), €(G),
A(G), 6(G), X'(G), and x(G) respectively. A total colouring
of a graph G is a function assigning colours to the elements of
VE(G) = V(G)UE(G) in such a way that no two adjacent or in-
cident elements of V E(G) are assigned the same colour. A graph
is totally k-colourable if it has a total colouring of k£ colours.
The total chromatic number x7(G) is the minimum number k
for which G is totally k-colourable. The Cartesian product of
G and H is the graph G x H with vertex set V(G) x V(H), in
which (u, v) is adjacent to (u',v') if and only if either v = u’ and
vv' € BE(H) or v =9 and vu' € E(G). For convenience, we use
the following notations for the Cartesian product G x H. Let
V(G) = {u1,u, ... ,um}, V(H) = {v1,v2, ... ,vn}, and

V(G x H) = {wijlwij = (wi,v;) 11 =1,2,..,m, j =
1,2,..,n}

E(G x H) = {wijjwg|i = s and v;u; € E(H),or j =t
and w;u; € E(G)}.

Behzad and Vizing (see page 86 in [13]) conjectured indepen-
dently in 1965 that any graph G is totally (A(G)+2)-colourable.
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Various colouring techniques have been introduced in order to
prove this conjecture for some special classes graphs(see survey
papers [11] and [16]). The simple graphs G satisfying the total
colouring conjecture (with x7 < A(G) + 2) fall into two classes.
A graph G is of type 1 if x7(G) = A(G) + 1, and is of type 2 if
x7(G) = A(G)+2. Sanchez-Arroyo [14] proved that for a graph
G it is NP-complete to decide if x7(G) = A(G) + 1. A neces-
sary (but not sufficient condition) for a graph G to be type 1
is given by Chetwynd and Hilton [4] in 1988. The classification
problem of whether the graph is of type 1 or type 2 was widely
studied (see [5], [6], [7], [8], [9],[10], and [12]). For example, the
following families of graphs are classified: the complete graphs,
the complete r-partite graphs, graphs with very large maximum
degree (A(G) = v(G) — 1,v(G) — 2 and some partial results
on A(G) = v(G) — 3) and graphs of regular degree ¥ where
k> ‘/T?v(G)( see [16]). In this paper we provide two sufficient
conditions for a graph to be type 1. First, we prove that if two
graphs are of type 1 then the Cartesian product graph of these
two graphs is also of type 1. Second, we prove that for any
graph with £(G) < v(G) + 2A(G) — 4, then G is of type 1.

2 Total colouring of G x H

In 1968, Behzad and Mahmoodian [2] first explored different
types of chromatic numbers for Cartesian product graphs. They
prove the following results for various chromatic numbers of
Cartesian product graphs.

Theorem 2.1. x(G x H) = maz {x(G), x(H)}.
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Theorem 2.2. If X'(G) = A(G) and x/(H) = A(H), then
X' (G x H) = A(G x H).

Theorem 2.3. If x(G) < xr(H),then A(G) + A(H) +1 <
xr(G x H) < xr(H) + X'(G).

For the edge chromatic number, Theorem 2.2 asserts that
if both factors in the Cartesian product are of class 1, then
the product is also of class 1. Anderson and Lipman [1] prove
a similar type of result on "lexicographic product" (sometimes
referred to as the "composition", denoted by G[H]). That is, if G
is of class 1, then G[H] is also of class 1. In the case of the total
chromatic number, we can prove that the Cartesian product is
a closed operation for type 1 graphs. Note that this is not true
for type 2 graphs. For example, type 2 x type 2 can be either
type 1 (C4 x K3) or type 2 (K x K3).

First we give general lower and upper bounds on the total

chromatic number for the Cartesian product of two graphs.
Theorem 2.4. A(GxH)+1 < x7(GxH) < x7(G)+xr(H)-1.

Proof. The lower bound on xr(G x H) is trivial. Let |[V(G)| =n
and |V(H)| = m, xr(G) = a and xp(H) = b. Without loss of
generality, we may assume thata > b > 1. Let o : VE(G) —
{0,1,2,---,a—1} be a total colouring of G, and 8 : VE(H) —
{0,a,a+1,--- ,a+b— 2} be a total colouring of H. Now we
give a total colouring v : VE(G x H) — {0,1,--- ,a+b—2} of
G x H as follows. |

First, we colour each edge in a copy of H the same colour
as in H, that is, y(wriwk;) = B(viv;) for viv; € E(H) and
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k=1,2,.--- ,m. Then we colour the vertices and the remaining
edges of G x H as follows. If S(vx) = 0 where v, € V(H), then
¥(wix) = a(u;) and y(wipw;r) = a(uu;); otherwise,

_f B(w), if a(w)+B(w)+1=0 mod a,
Y(wi) = (a(u;) + B(vg) +1) mod a, otherwise;

and

B(ve), if o(uu;)+B(v)+1=0 mod a,
Y(wikws) = { (a(usu;) + B(vk) +1) mod a, otherwise.

Here, and elsewhere, z mod a is taken to be the integer
2’ such that 2’ = £ mod @ and 0 < 2’ < a. In the follow-
ing, we verify that -y is a proper (a + b + 1)-total-colouring of
G. Clearly, B(vg) > (o) + B(vx) + 1) mod a and B(vi) >
(o(usuz)+B(vi)+1) mod a unless B(v;) = 0 since o : VE(G) —
{0,1,2,-- ,a — 1} is a total colouring of G, and 8 : VE(H) —
{0,a,a+1,--- ,a+b—2} is a total colouring of H. This means
that there cannot be a conflict when one element has a non-zero
B-value and the other has a value taken mod a.

Case 1. Any two adjacent edges are coloured properly.

Clearly, the edges in each copy of H are coloured properly.
Now consider the colouring of the edges in each copy of G. For
the copies of G corresponding to the vertex v, where 8(v;) = 0,
their edges are coloured properly by a. If there exist two inci-
dent edges w w;; and wj;ws; assigned the same colouring, say
B(vk), in Gx H, then ar(uu;)+B(ve)+1 = a(uju,)+B8(vi)+1 =0
mod a which implies that o(u;u;) = a(u;u,), a contradiction as
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a is an edge-colouring of G. Similarly, we can show that mod
a Y(wiw;r) = (e(uius) + Bve) +1) # (a(ujus) + Blve) +1) =
v(wjkwsk). Hence, the edges in each copy of G are coloured
properly. Finally, we have to check that two incident edges
(one from G and one from H) received different colours under
~. Suppose to the contrary, that y(wsjws) = ¥(wisws:) where
u;u, € E(G) and vjv; € E(H). If B(v;) = 0 then it follows that
B(vjve) = Y(wsjwe) = Y(wiswsr) = (uiu,), and this is only pos-
sible if B(vjv;) = 0. But then B(v;) = B(vjv:) = 0, contradicting
the fact that 3 is a total colouring of H. If B(v;) # 0 then simi-
larly B(vjur) = y(wiswse) = B(ve) if a(uiu;) + B(ve) +1 =0 mod
a, contradicting 8 being a total colouring of H, or B(vjv;) =
a(uiu;) + B(v:) + 1 mod a, which is impossible as B(vjv) > a.

Case 2.  Any two adjacent vertices are coloured properly.

Suppose 7(wix) = Y(wjx). If B(v) = 0 then a(u;) = y(wi) =
v(w;k) = a(u;), contradicting a being a total colouring of G.

If B(vi) # 0 then y(wix) = B(vk) or a(w;) + B(vx) + 1 mod
a and similarly y(w;x) = B(vi) or (a(y;) + B(v;) + 1) mod a. If
B(v) = v(wix) = v(wjx) = B(vk) then (afu) + Bve) +1) =0
(mod a) = (a(u;) + B(ve) + 1) (mod a), so a(w;) = afy;),
contradicting o being a total colouring of G. If 8(vx) = y(wix) =
a(wjr) = (e(u;) + B(vx) + 1) mod a, we have an impossibility
as B(ve) > a. If (a(us) +B(ve) +1) mod a = y(wix) = v(wjx) =
(a(u;) +B(vi) +1) mod a then o(u;) = a(u;), contradicting the
fact that o is a total colouring of G.

Now suppose that a(wy;) = y(wk;). Then vv; € E(H), so it
is not possible that 8(v;) = B(v;) = 0. If B(v;) = 0 then a(uz) =
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Y(wrs) = ¥(wis) = B(v;) or (a(ux) +B(v;) + 1) mod a. But it is
impossible that a(ux) = B(v;) since B(v;) > a > a(ui). There-
fore a(ux) = (a(ux)+B(v;)+1) mod a, so B(v;)+1 = 0 (mod a).
But this is impossible as we are assuming that b > a. A similar
argument applies if B(v;) = 0. If B(v;) # 0 and B(v;) # 0 then
B(vi) or (a(uk) +B(vi) + 1) mod a = y(wy;) = v(wis) = B(v;)
or (a(ux) + B(v;) +1) mod a. Since  is a total colouring of H,
B(w;) # B(v;). Since B(v;) > a > (o(ug)+B(v;)+1) mod a, it is
not possible for 8(v;) = (a(ur)+B(v;)+1) mod a, and similarly
B(vs) # (a(we) + B(v;) +1) mod a. If (a(uz) + B(v;) + 1) mod

a = (a(ut) + B(v;) + 1) mod a, then B(v;) = B(v;), which is an
| impossibility.

Case 3.  Any incident vertex and edge are coloured properly.
Let w,, be any vertex of G x H. Suppose first that v(w,;) =
¥(wsjwye) for some j. Then v;v, € E(H), and so B(v;), B(v:) and
B(vjve) are distinct and y(w,jws) = B(vjv;). If B(v;) = 0 then
o(us) = Y(wa) = V(W) = Bloy), 50 () = 0 = Blusuy).
But then a(u,) = B(v;) = 0 so a(u,) + B(v;) +1 Z 0 (mod
a) 50 y(wst) = (a(us) + B(ve) + 1) mod a = 1, a contradiction
against y(wy) = 0. If B(v;) # 0, then B(viv,) = Y(wsjwse) =
Y(wst) = B(ve) or (a(u;) + B(ve) + 1) mod a. Since g is a total
colouring of H it is impossible that 8(v;v;) = B(v;), so we have
B(vjur) = (a(u;) + B(v) + 1) mod a, which is impossible as
B(vjve) > a > (o(u;) + B(vs) + 1) mod a.
Now suppoSe that y(ws) = y(wiws:). Then uiu, €
E(G). If B(vr) = 0 then ous) = v(wix) = Y(wisws:) = a(usu,),
which contradicts a being a total colouring of G. If B(v,) # 0
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then one of B(v;), (e(w;) + B(v) + 1) mod a equals a(wix) =
y(wisw,) which equals one of B(v;) and (a(uguj) + B(v:) + 1)
mod a. If B(v;) = y(wir) = Y(wiewse), then (a(w;) +B(ve) +1) =
0 (mod a) and a(uu;) + B(vk) + 1 = 0(mod a) so afu;)
a(usu;), a contradiction against o being a total colouring of G.
Therefore we must have (a(u;) + B(ve) + 1) mod a = y(wi) =
Y(wigwss) = ((ueu;) + B(ve) + 1) mod a, and we get the same

contradiction. 0

From the above theorem and the fact that A(G x H) =
A(G) + A(H), we can obtain the following sufficient condition
for a graph to be a type 1.

Corollary 2.5. Let G and H be two graphs of type 1, then Gx H
is of type 1.

3 Another sufficient condition for graphs
to be type one

We will make use of the following well-known theorem (see
[13])by Kostochka.

Theorem 3.1. xr(G) < A(G)+2 if A(G) <5

Theorem 3.2 gives a sufficient condition for graphs to be
type 1. It also tells us a number of edges that can always be
added to a tree in any way such that the maximum degree is
not increased without producing a type 2 graph. This number
cannot be increased; for example, Py is of type 1 and Cjy is of
type 2.
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Theorem 3.2. Ife(G) < v(G)+2A(G)—4 and G is connected,
then G 1is of type 1.

Proof. If A(G) = 2, then ¢(G) < v(G) — 1 and G is a path.
Clearly, xr(G) = A(G) + 1. We may assume from now that
A(G) > 3. Let G be a counterexample to Theorem 3.2 such
that, for A(G) fixed, v(G) is as small as possible, and, given
that, £(G) is as small as possible. We first show the following
claims on the structural properties of G.

Claim 3.3. Let uv be any edge of G. If d(v) = 1, then d(u) =

A(G) and u is the unique vertez with the mazimum degree.

Proof. Suppose either d(u) < A(G) or u' is another vertex with
d(u') = A(G). Let G' = G —v. Then A(G') = A(G), ¢(G') =
e(G) -1, v(@) = v(G) — 1 and ¢(G') = ¢(G) — 1 < v(G) +
3A(G) -5 = v(G")+3A(G') - 4. Moreover, G’ is connected. By
the minimality of G, G' is totally (A(G') + 1)-colourable. Since
d(v) = 1 and A(G') = A(G), it is easy to extend this total
colouring with A(G) + 1 colours from G’ to G, a contradiction
to the fact that G is not totally (A(G) + 1)-colourable. O

Claim 3.4. G contains at most two vertices of mazrimum degree.

Proof. Suppose G has t (¢ > 3) vertices of maximum degree. By
Claim 3.3, §(G) > 2 and thus 2(v(G) + 3A(G) — 4) > 2¢(G) =
D vev(e) @(v) 2 tA(G) + 2(v(G) — t). It follows that t < 3 -

—A(é)_z < 3 <'t, a contradiction. 0
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D D

Figure 1

If A(G) =3 and 6(G) = 1, then G has a vertex u such that
d(u) =1 and in turn A(G — u) = 2 by Claim 3.3. By Theorem
3.1, xr(G —u) < 4 and any total colouring with < 4 colours can
be easily extended to G. If A(G) = 3 and §(G) = 2, then G has
at most two vertices of degree 3 by Claim 3.4. Thus if G has
exactly two vertices of degree 3 then G is either a graph consisted
of three paths starting at a vertex of degree 3 and terminating
at another vertex of degree 3 or two cycles connected by a path
(see Figure 1). It is not hard to see that xr(G) = 4. Since every
graph has an even number of vertices of odd degrees, we may
assume A(G) > 4.

Claim 3.5. Let uv be any edge of G. If d(v) < [ﬂf—)] and
d(u) + d(v) < A(G) + 1, then d(u) = A(G).

Proof. Suppose, to the contrary, that d(u) # A(G). We first
show that uv is a cut edge of G. Suppose G — uv is connected.
Let ' = G — wv. Then A(G') = A(G), v(G') = v(G) and
e(G") = £(G) -1 < (W(G)+2A(G)—-4)-1 = v(G")+3A(G") 5.
By the minimality of G, G’ is totally (A(G') + 1)-colourable.
We erase the colour of v. Since d(u) + d(v) < A(G) + 1, there
is at least one colour available to colour uv. Now we obtain
a total colouring with (A(G) + 1) colours for all edges and all
vertices except v of G. Since d(v) < [9129)-], there is also a colour
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available to colour v. Thus G is totally (A(G) + 1)-colourable,
a contradiction.

From the above we know that uv is a cut edge of G. Let
No—u(v) = {v1,02,...,%} and G' = G — v + {uwy, uvy, ..., uvy }.
Clearly, we have da:(u) < A(G), €(G') = ¢(G) - 1, v(G') =
v(G) -1, A(G') = A(G) and e(G") =¢(G) — 1 < (v(G) — 1) +
SA(G) -4 =v(G")+ 2A(G") — 4. Also G is connected. By the
minimality of G, G’ is totally (A(G’) + 1)-colourable. Use the
colour of uv; to colour vv; in G for i = 1, ..., k and then colour
uv and v as above. Now we are able to totally colour G with
A(G) + 1 colours, a contradiction. 0O

Note that Claim 3.5 implies that for any edge uv, d(u) +
d(v) > A(G) + 2 if d(u) < é%,ﬂ or d(v) < é—@ and neither
u nor v is a vertex of maximum degree. By Claim 3.4, there
are at most two vertices of degree A(G). Now we turn to prove
Theorem 3.2 in two cases when G has two, and when G has one
vertex of degree A(G) .

Case 1. G contains two vertices of maximum degree.

Let d(z) = d(y) = A(G). First, there is at most one vertex
z € G — {z,y} such that )_%G—)J +1 < d(z) < A(G). Suppose
there are k > 2 vertices of degree at least [%QJ + 1. By Claim
3.3, 6(G) > 2. These imply that 2¢(G) —2(v(G) +3A(G) —4) >
2A(G) +k(| 22| +1) +6(G)(v(G) -k —2) — 2(v(G) + 3A(G) -
4) = k(|52 - 1) + (6(G) - 2)(v(G) — k- 2) — AG) + 4 >
(122 - 1)k - AG) +4 > 2([29| - 1) - AG) +4 > 0,
a contradiction to the fact that £(G) < v(G) — 3A(G) - 4.
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Secondly, there exists a vertex z € V(G) — {z,y} such that
d(z) > I_-A—%@J +1 > 3. If every vertex in V(G) — {z,y} is
of degree at most |22 |, then V(G) — {z,y} is an indepen-
dent set of vertices in G by Claim 3.5. Thus, d(w) = 2 for
w € G — {z,y}. Clearly, G is totally (A(G) + 1)-colourable,
a contradiction. Thus z exists. Since d(z) > 3, there exists a
vertex 2’ € N(z)—{z,y}. As we showed above that z is the only
vertex in V(G) — {z,y} of degree > L#lj + 1, it follows that
d(z') < |24 ]. By Claim 3.5, d(z)+d(2') > A(G)+2. It follows
that £(G) = X ev(q) 4(v) = 2A(G)+(A(G)+2)+2(v(G)—4) =
2(v(G)+2A(G)—4)+2 > 2(v(G) +2A(G)—4), a contradiction.
This proves Case 1.

Case 2. G contains exactly one vertex of degree A(G).

Let d(u) = A(G) and {uy, ua,...ux} be the vertices of degree
1 in the neighborhood of ». By Claim 3.5, there is no vertex
of degree 2 in G otherwise there are two vertices of maximum
degree in G. If V(G) = {u, uy, ..., u } then the theorem is clearly
true, so we can assume that V(G) # {u,us,...,ux}, so that
v(G) > k+2 and k # A(G). Let @ = min{d(z) | z € V(G) —
{u,u1,ug,...,ux}}. Then a > 3.

Suppose k = 0. Since G has only one vertex of maximum
degree and a > 3, 2(v(G) + 2A(G) — 4) — (A(G) + 3(v(G) -
1)) = 2A(G) — v(G) — 5 > 0 so A(G) > 6. We must also have
§(G) < 4, otherwise 2¢(G) — 2(v(G) + 3A(G) — 4) > A(G) +
§(G)(v(G)-1)—2(v(G)+3A(G)—4) > 2(v(G)—A(G)+2) > 0,
a contradiction. Thus 6(G) = 3. Let v be a vertex of degree 3.
By Claim 3.5, v has at least two neighbors of degree A(G) — 1.
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It follows that 2¢(G) —2(v(G) + 3A(G)—4) > A(G) +2(A(G) -
1) + 3(v(G) = 3) — 2(v(G) + 3A(G) — 4) > 0, a contradiction.
Hence, k > 1.

Recall that u, is a vertex of degree 1. By Theorem 3.1, G—u;4
is totally (A(G — u;) + 2)-colourable when A(G — u;) < 5. It
follows that G is totally (A(G) + 1)-colourable for A(G) < 6.
Hence, we may assume that A(G) > 7.

Subcase 2.1. a = 3.

Let w be a vertex of degree 3. There are at least two ver-
tices in N(w), say w; and ws, of degree A(G) — 1 b& Claim
3.5. Since d(w;) = A(G) — 1, v(G) > A(G) + k. Suppose
for the moment that all the vertices in V(G) — {u, wq, w2} are
of degree less than |_é_(2€l_| + 1, then by Claim 3.5, they are
independent. It follows that the vertices of G have only four
possible degrees, namely 1,3, A(G) — 1, A(G). This implies
that 2(v(G) + 3A(G) — 4) > 26(G) > k + A(G) + 2(A(G) -
1) + 3(v(G) — k — 3), s0 2k + 3 > v(G) > A(G) + k, and so
k+3 > A(G) > 7,s0 k > 4. Now we can totally colour G in
A(G) +1 colours. First, colour u,w;, w, and the possible edges
between them. Secondly, we colour the edges zw;. For each such
vertex z of degree 3, there are at least two colours available for
zw, since d(w;) < A(G) — 1 and one colour available for zw,
since d(w;) < A(G)—1. There are at least four colours available
u}(®) < A(G) — 4. Edges joining two
vertices of degree three can now be coloured since A(G) > 7.

for zu since dg_(u;,u,

.....

After all the edges incident with the vertices of degree 3 are
coloured, we can colour the vertices of degree 3 since A(G) > 7.
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Then we can colour the edges incident to the vertices of degree
1 and the vertices of degree 1. This contradicts the fact that G
is a counterexample and implies that G must contain a vertex
z € V(G) — {u,w;, w;} such that d(z) > [5(2@] + 1. Since
A(G) > 17, d(z) > [égﬂj +1 > 4 and in turn there exists an-
other vertex y € N(X) such that y € V(G) — {u, w;, w2}. By
Claim 3.5, y # w. Applying claim 3.5 to the edge zy, it fol-
lows that either (a) d(y) < |_A—(2sz and d(z) + d(y) > A(G) + 2,
or (b) d(y) > |2 +1 and d(z) + d(y) < A(G) + 1. Re-
call that A(G) > k +1 and A(G) > 7. In case (a) we have
2¢(G) > k+A(G)+2(A(G)-1)+(A(G)+2)+3(v(G)—k—5) =
2(v(G)+2A(G)—4)+(v(G)+A(G)—2k—T7) > 2(v(G)+3A(G) -
4)+(A(G)+k+A(G)—2k—T) > 2(v(G)+2A(G)—4), a contra-
diction. In case (b), it follows that A(G) is odd and d(z)+d(y) =
A(G)+1. The the condition £(G) < v(G)+3A(G)—4 can be re-
expressed in the form of £(G) < v(G)+3A(G) - $. Similarly we
have 2¢(G) > k+A(G)+2(A(G)-1)+(A(G)+1)+3(v(G) —k—
5) = 2(v(G) + A(G) - 2) + (v(G) + A(G) — 2k —7) > 2(v(G) +
SAG)-)+(A(G)+k+A(G)—2k—7) > 2(v(G)+3A(G) - ),

a contradiction.

Subcase 2.2. a > 4.

If A(G) =7, then ¢(G) < v(G) + 37— 4 = v(G) + 6.5 and
v(G) > k +a+ 1. Since ¢(G) is an integer, we have £(G) <
v(G) + 6. It follows that 2(v(G) + 6) > 2¢(G) > k + A(G) +
a(v(G) —k —1). Therefore, when a > 5, 0 < 2(v(G) +6) — (k+
A(G)+aw(G)—k—1))=(a=1)k+ (5+a) - (a—-2)v(G) <
(a—1)k+(5+a)—(a—2)(k+a+1) = k+7—a(a—2) < k—8. But
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clearly, k — 8 < 0 since A(G) = 7, a contradiction. If A(G) =7
and o = 4, 2(v(G)+6) > 2¢(G) > k+7+4(v(G)—k—1). That
is, k> [20(G)] -3 > [2(A(G)+1)] -3=[2x8]-3=3. K
G contains no vertex of degree 6 then we can delete two vertices
of degree 1 and the result graph G’ has maximum degree 5. By
Theorem 3.1, it is totally 7-colourable and this total colouring
can be extended to a total colouring of G, a contradiction. Thus,
G contains a vertex of degree 6 and v(G) > k+7. It follows that
2¢(G) > k+7+6+4(v(G)—k-2) = 2(v(G)+6)+(2v(G)—3k—T).
Note that 2v(G) -3k —7 > 2(k+7) -3k —7=7—k > 0 since
A(G) = 7. It follows that 2¢(G) > 2(v(G) + 6) + (2v(G) —
3k —T7) > 2(v(G) +6) > 2¢(G), a contradiction. Hence, we may
assume that A(G) > 8 in the following.

First we show that G — {u, u1u, ..., ux} contains three inde-
pendent edges. Since a = min{d(z) | z € V(G) — {u, u1, us,
- Ur}} > 4, we can easily find that there are two indepen-
dent edges {ziy1,22y2} in G — {u,uuy,...,ux}. By Theorem
3.1, G' = G — {uy,uz...,ux} is totally 7-colourable if A(G —
{1, ug...,ux}) < 5 and it follows that G can be totally coloured
with A(G) + 1 colours where A(G) > 8. Hence, we may assume
that A(G — {uy,uy,...,ux}) > 6. This implies that there exist
two vertices z; and z; in V(G) — {z1, Z2, Y1, Y2, U, Uz, U, ..., U }-
If 2122 € E(G) or if {u,z1,%2,%1,¥2} € N(z1) UN(z2), we
have the three independent edges as desired. So we assume
21z, ¢ E(G) and N(z) U N(22) C {u,z1,%2,¥1,%2}. Since
d(z1) > 4 and d(z,) > 4, we may assume that {z,,71} C
N(z) and y; € N(2;). Now we obtain three independent edges

{z121, 2292, Y122} in G — {u, uy, uz, ..., ui}. Let {z1y1, T2y2, T3ys}
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be the three independent edges. By Claim 3.5, d(z;) + d(y;) >
A(G)+2fori = 1,2, 3, which implies 2¢(G) > (A(G)+3(A(G)+
2)+a((G)—k—-T)+k) > 4A(G)+k+6+4(v(G)-k-T7) =
4v(G) +4A(G) — 3k — 22. Since e(G) < v(G) + 2A(G) — 4, we
have the following inequality:

3k > 20(G) + A(G) — 14 (+).

From (*) along with v(G) > A(G) + 1 we obtain 3k >
2A(G)+1)+A(G)—14 = 3(A(G) —4), i.e. k > A(G)—4. This
implies that there are at least 2 vertices from {z,, z2, Z3, Y1, ¥2, Y3}
that are not in N(u) so that v(G) > A(G) + 3. Again from (x)
along with v(G) > A(G) + 3, we have 3k > 2(A(G) +3) +
A(G) — 14 = 3(A(G) — 3) + 1 so that £ > A(G) — 2. Thus,
v(G) > A(G) + 5. Similarly, we can prove that k > A(G) — 1,
which then implies that k = A(G) — 1 since k # A(G), and
v(G) > A(G) + 6. Finally, by (%), we have that 3k > 2(A(G) +
6) + A(G) — 14 = 3(A(G) — 1) +1 > 3k + 1, a contradiction.
This completes the proof of the theorem. O
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