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Abstract

In this paper we look at genetalizations of Stirling numbers which arise
for abitrary integer sequences and their k—th powers. This can be seen
as a ecomplementary strategy to the unified approach suggested in [9).
The investigations of [3} and [14) present a more algebraically oriented
approach to generalized Stirling numbers.

In the first and second section of the paper we give the corresponding
formuias for the generalized Stirling numbers of the second and and
the first kind respectively. In the third section we briefly discuss some
examples and special cases, and in the last section we apply the square
case to facilitate a counting approach for set partitions of even size.

1 Some Identities for Generalized Stirling Num-
bers of the Second Kind

Assume that a = (ag, a1, ..., an, ...) is a sequence of integers and that dsfl are
the associated Stirling numbers of the second kind. As an example we let
a=(0,1,2,3,....) be the natural sequence which gives the ordinary Stirling
numbers of the second kind.

The Stirling numbers of the second kind with respect to the sequence a

denocted by ds“fl = (':;l) are defined by the equation:

2 =3 d®)e — ao)(z — ) .. (x — ar), )

r=0

with the abbreviating notation that

B = (z - ao)@ - a1) .. (& — ar-1)
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+ Z akd(a l(:x: —af)(z* - ab)...(aF - ak )
i=0

=ia§:‘_-k,’,,._1(rr — ah)(a* ~ o). (2k — ok )

+Zafd$,“:’i’,x ~ af)(a* —af)...(zF — ok )
=0

and the result follows.

q.e.d.
In the remainder of this section we will abbreviate (a’l) as ds. This is no
loss of generality since we may replace any sequence (ao,al,az,a;;, J) by
the sequence of its k—th powers (af, a}, a5 ,af,...). We present the general-
ization of a formula for the dn,)- which has several applications.

Theorem 1 Foralln>r>1andk>1

@ = i (=1)(er5)"
~ J~0 Hr—J— (ar—j -a;)- H:,.=,._j+1 (am — a,._j)
ar_;
z n t—O (ar—j _a1)
i#tr—j

In the following we present one proof of this formula by direct calculation,
and one proof invoking the theory of symmetric functions, and then we
g0 on drawing some consequences of the formula involving partial fraction
expansion of the generating series.

Proof. Foralln>r>1land k> 1, let

r — n

S(n, r,'a) - Z ( 1)’“1‘—.1

o .

Then it follows from the definitions that
S(n,l;a) = a} ! = df:{ forall n > 1. (4)
Forn>r>2

Sr,ria) =3 C1yer,

S T3 (@rmj — @0) M — 1 (0m — @r—j)

67



ar

~ {ar —ao)(ar — a1)---(ar —ar—1)
. . (~1Yar;
j=1 H:':(J)—l(af—j = @) [Tn=r—j11(am — ar;)

n
r

= (e —ao)ar —a1)..- (ar —ar1)

a

r

(—1)a7 jar—;

+j=1 =37 (@5 — @) Tner—j1(am — @r—j)
ay
~ (er —a0)(@r — 1) (@ — ar1)
R (-1)a7=}(er + ar—j — 0r)
j=1 Hr_J_ (a"'—j - a;) “;1=r—j+l(am - ar—j)
ay
~ (ar —a0)(ar —a1)-. (ar —@r-1)
a ( I)J 1'—_1

+ar Y

j=1 n:‘;g—l (a'f—.‘i - a'i) Hm=r_]+1(a'm - ar—j)
+ $ ( 1) ar_; (ar—J ar)
j=1 ::;é_l(a""j - ai) nm:r—j+l(am - ar-j)
i (—l)jar:}
S T8 Nar—j — @) TTrpmr— g1 (0m — ar—5)
- (-1 "la:.'_'jl
ol | For T AR ) n;;.';,_,-ﬂ(am —ar_j)
- (~1)ia2}
J—O nrhJ l(ar—j - &) [Tm=r—jn1 (am — ar—j)
r—1 (__1)1'0,;_‘:11_1

Jj=0 H‘_J_z(ar—l—.') a‘) m=r—J(am — Qr-1 —J)

= a,S(n —1,r;0) + S(n — 1,7 — 1;a).
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Since S(n,r;a) satisfies the usual triangular recurrence relation, and the
boundary conditions (4), this implies by known results (see e.g. [6], [3]) that
S(n,r;a) = dﬁf} for all n > r > 1 and any sequence

a = (ag,a1,-..,0k,...).

q.e.d.
In terms of generating series we use the expansion
n-1
H(l _ai-'l")_l = Z hﬂ+r.n$r ' )
i=0 r20
of the complete symmetric functions hnrn in the variables ag, a;, @z, . . . ,@n_1.
This is combined with the partial fraction expansion
Mo-on - 5 2
(1 -asu)” (6)
i 1 a;u

Expanding this and comparing the powers of u we get a system of linear
equations in the quantities §;.

Theorem 2 The (a) have the rational generating function

r

o = d(a) — u )
nz;r d (1= aou)(l —ayu)...(1—ayu)

Proof. This is a direct consequence of an identity for the expression

(a) _ ur

Py (1 _ aou)(l — alu) - (1 - ar—lu)

By expanding <p( ) into partial fractions we see that it is sufficient to deter-
mine the quantities p;, for j =0,1,2,...,r in the following equation:

T r—1

.
u’ =p0H (1—aiuw)u"+...+p; H (l—a,-u)u'+...+p,-H (1-asu)u’.
i=1 1=0,i#j i=0

We find 1

Pi = mr e
T Micons(1 - &)
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This is easily verified by letting u = ;‘; with j =0,1,2,...,7 in turn. Hence
we obtain that

P =Y (=1)e]_ju
j=0 n:;g— (ar—j - ai) Hm=r—j+l(am a"'—])(l - a""‘ju)

T (—-l)jar_ ur .
r—j—1 ) i rr . Z a:-.‘l u™"
,_o i (ar-j —ai) nm=r—j+l(am = @r_;) n>r
(-1ap;
= Z{Z r—]—l — }un

nor j=0 Ii=d~ (ar—; — i) [Tner—js1(@m — ar—j)

Z d(“)u {by Theorem 1).

n>r

q.e.d.
In the second part of [11] in § 8 , formulas 1) and 2) two expressions are
given which can be interpreted as being the right and the left hand side
of the formula in theorem 2. The author of [11] then proceeds with the
equivalent of a statement of theorem 2 and its proof in the special case
(a0 = 1,81 = 2,a3 = 2,...). We have not been able to find in [11] or in [§]
a formula that amounts to theorem 2 in the case of any general sequence
(a0, a1,a2,. ..), or any other sequence except (1,2,3,...).

We now give one explicit representation and one recursion formula for the
numbers d{?).

Proposition 2 For all n > v > 0 and any sequence a we have

ky  ke—1 k.
= 3 afr-a;y -...-ap - (7)
ko+ki+..+kp=n—r

Proof of (7).
By theorem 2,

u”

(1 —aou)(1 — a1u)...(1 - aru) =Y dun.

n>r

ol =

-_—}ggi— 1 —-Zd(“) n-r
u (1 —aou)fl —ayu)...(1 —aru) ot

n2r
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=(1-aow) (1 -a1n)'...(1 - eu)!

= (¥ (@)X @w)...(Y (aru))

c20 120 20
= Z (agaf' ... afr)yucotat-tor
€0,..-,Cr 20

=y > (agla ...af)u™" (8)

n>r cgtcy+...ter=n—r
€0,C1,.--4Cr 20

and the result follows by equating coefficients.
We remark that in the case ag = 0, which happens for instance in the case
of the usual Stirling numbers, the inner sum in (8) ¢an be rewritten as

ST @

n>r e} +...+er=n—r
ClyeensCr 20

Proposition 3 For all n > r > 1 and any sequence a we have

d(a) Z dga—)l r—1 “ N (9)
Proof of (9).
@ = T g@yn = u’
or ’Z:rd o (1 - aou)(1 — a1u)...(1 — a,u)
_ ur! ) n
- ((1 —agu)(l —ayu)...(1—aryu)’1 —a,u
= %w@l =u(l - arw) ol = u 3 (aru)™pl?,
—art m>0
=u Z(a'“)m Z df':,)_lu' =u Z eru) Zdl(a)l ot ™!
1>r-1 m2>0
— Z (aru)m Z d;a)l r—lul — Z Zd(‘—l—)l r_lamul-}-m
>r m201>r
_szl(alr 1‘1('l Dt = szl(alr 1“(" D,
n>li>r n>ril=r

By equating coefficients,

=30 d, ot

l=r
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2 Some Identities for Generalized Stirling Num-
bers of the First Kind

Assume that a = (ag, a1,...,a;,...) is a sequence of integers and that cs.,) =
c$:,"’ are the associated Stlrlmg numbers of the first kind. We also let cn (“ k)

be the associated Stirling numbers of the first kind corresponding to the

k k k
sequence (ag,as;...,05,...).

More precisely, as noted previously, we make the convention that the empty
product is 1, i.e. c((,ag = c(ag =1, and the Stirling numbers of the first kind
( ) with respect to the sequence a are defined by the equation
n

(2= ao)(@ = a1)... (z — ang) = 3 o, (10)
r=0

The reversely signed Stirling numbers of the first kind c&"‘l are defined by
n
(z+ao)(z +a1)...(z +an1) =Y &%z

Clearly cf;a,); = (a) =1 forn > 0 and c(a) {(-1)" - agay ...an—1 and

S;())=‘10‘11 .ap-1forn>1. Also ¢ r = (}—Oforr>n>00rn r<0.

For any integer k > 1, similarly as above we make the convention that
the empty product is 1, i.e. c(()aok) (a k) 1, and we define the Stirling

numbers of the first kind associated to the kth power cs,a} ) with respect to
the sequence a by

n
(2% —af)(a* —ab)... (aF —ah ) = - eltblzt ay
r=0

and the reversely signed Stirling numbers of the first kind associated to the
kth pewer csa’rk) by

n
(=% + ab)(=F + a¥)... (=F + ok )= Zéﬁ,‘f‘,")zr’“
r=0
for n > r > 0 and cn (a’k) = ‘(a’k) =0forr>n>0o0rnr <0 Note
that cn (a kY — ésﬁ’k) =1forn > 0 and c(a'k) = (~1)"apay...an—1 as well as

fzabk) = ag6y...0p. forn > 1.
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It is known that the cg, 1) satisfy a number of recurrence relations. Listed

below is a recurrence relation between the cs.,} ) which contains k = 1 as a
special case. The next proposition gives this most fundamental relation.

Proposition 4 Foralln, k> 1 andr>1

8k = o) K fak)

n—-1r-1" an—lcn—l,'r'

Proof. From the definition of the ¢\ note that

Zoc‘“"" ot = (2% — ab)(a* - a)...(a* — )

n—1
K
=(z*—dk_,)- z C(a-x). ik
i=0

n—1

k) (i k

= Z CSIB— ):1'( +1)k _ Z (“» )
i=0

n
& k
= _Z,C(n—l),a—lz’k —ak n—1 Z :(fll)z

and the result follows.

q.ed.
By the same method we also get
S:l ) = cSza-:-k)r— + aﬁ—lc(a—ki)r

forn,k>1landr > 1.

We express the product of polynomials

n-1

1—[(k—]+a:r'°2-i-a2 34+ . +a a:+0-zk 1
i=0

as the sum
n{k-1)

k—1
Z ’Yx(/ar'.—l g
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where 'y‘(lﬂn"_ D=0ifr<Oorv> n(k — 1), and where the numbers 7(0 k—1)

van—1
have the explicit form

(0 k— l) ‘lo in_)
71/ n—1 z ) a] <@y
igtiy+...Fig_y=n(k—1)=~r
0<io i1, yin—1<k—1

Thus the following equation is valid:
n{k—1)
H(zk—-l +a,~.’1:k'2+a,?zk_3 +. +a‘k 22’2+(11k l) - Z %(Iank_ll)xu

v=0

The coefficients 'y,(,a,;_ ! defined this way satisfy the following recursive re-
lation.

Proposition 5 '7,(, n_ll) hes the k-fold recursive relation

k=1 0 k—1 k-1 k=1
7l(zan— )= = an—l'ya(;a—k-pl)n_z + an-1'7|(/a_k+23n—2 +...+ a’n—17l(lan—2 )'

Proof. Note that

n(k-1)
T 7(akll)zu_ H(xk T T

v=0 =0
1= k=2, k-1
= (2* Man_12¥ 2+ Ak 2z4akT)) H(:z:"' +aiz* 2+, +af 2z taf ")
=0

(n-1)(k-1) (n—1)(k-1)

- k—1 —
_ Z 'Y‘(’a','k_ 1) k-1 4 an_1 Z ’Y.(,an- ) k-2 4
v=0 v=0
(n—1)(k-1) o) (n—-1)(k-1) (ak—1)
— a,
+a fz-—l Z 7|(/?n— u+l +an— Z 7u,n—2 z¥
v=0

n{k—1) n(k—1)-1

k-1 (ak-1)
)3 7.(,a—k+1fn—2-"’"+“n—l Y. Wikt t
v=k-1 v=k-2
(n—1)(k—1)+1 ,e1 (n-1)(k-1) (@)
R D e ot S S D
v=1 v=0
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and the result follows by equating coefficients.
q-e.d.

The next theorem relates the %" and the v, with the c{**). Here and in

the following we abbreviate
(12)

(t1 k)
Ta(k—1)-vn—1 = Tnlk=1)-v-

'I‘heorein 3 For0<t<kn,

nn—%

{c(“"‘) ift=0 (modk)
0 ift#£0 (modk)

(a,1)
Z cn n—“ '7n(k-— l)—l;
iy tic=t
0<ip<n
0<ic<n(k-1)

Proof. First note that
(@* - af)(=* —a})... («* —af_y)

n-1
={(z—a){(z—a1)...(z — an-1)" H (F 1+ aiz* 2+ .. +aF 2z 4+ af D)
i=0

= (Z %D 2T) (o + iz + -+ Yaeo1)1 2"V 4 gz D)

n, 'n—-r

r=0
& ( kn—
a,1) t
= Z Cnn—ip Tn(k-1)—icT
L= iptic=t

0<iy<n
0<ic<n(k-1)

Also, from the definition of the c&‘f’r"’
(* — b)(z* — ). (a* - o Z e

Note that when t = Ik we have z¥"~t = zk(n=0),
By equating coefficients
Z Ja) { cif;fl% ift=0 (mod k)
o, STk T TG E a0 (med k)
0<ip<n
0<ic<n({k-1)
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q.ed.
Assume w # 1 is a k** root of unity. By factoring all the expressions

k-1
(z* - af) = [[(z - au?), (13)

§=0

completely into a product of linear factors, the coefficients 4, may be deter-
mined explicitly. Accordingly we may factorize

n-1

H (:l:"'l + a,':tk_2 + .ot af_2:c + af"l)
t=0

into linear factors. Hence

n(k-1) k—1n-1
Z il = H H(:L‘— aiw’
v=0 j=1i=0

Note that

wi]+...+im — (_l)m’ for m = 1, V- ,k _ 1"
111 <...<im <k—1

Then by (10)

n(k—-1) n (@1) k-1 n (@1)
— a T n-r _ a iTj T
Z Yz’ H chn-r"’] H Z Cn n—r,“” ’
j=1r=0 i=1r;=0
" @) (el
_ a,l a,l ri1+2ro+. +(k—1)rp_y ., v
- 2 Z c'n,n—r, .t .c")n"rk—lw ! 2 ( ) * lx
v=0 ri4..4rg_y=n(k-1)-v
0<ry,ee s Tk—1S00
By equating coefficients,
(a.1) el r142rato b (k—1)rg_
Tn(k—1)-v = Z Canzry +Crnln W k=t

Ty +"’+"'k—-l="
0<ry,.eyTk—1<0

We now determine the coefficients v, (k—1), for the cases k = 2 and 3. If
k=2,

’Yn—v—c&a;xlluw = (tt;nl-)-u( -1)". (14)
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Ifk=3and v=0 (mod 2), then

—_ (a 1) (asl) T +2l‘
Ten—-v = Z Can—r Cnnr,W e
ry+ro=v
0<ry,r2<n

= Z clal) (01) Witz g Z cal)  (a)) (WH22 4 T2t

n,n—11Cnn—roW Cnn—r Cnn—rs

rn=r2 1 <ro
rytro=u rytrp=v
0<ry,rosn 0<ry,rp<n
= N (a1} 2 37 o) fal) ¢ oms 2r2)2
- z (cn,n-rl) w + Z n =71 n,n—rz( ! h + ( m¥ 7'2) )
rlzﬁv ri<ry
057'1 <n ryt+ro=v
= 0<ryrpSn
(a'rl) 2 (a,1) (a,1) (a,1) (a,1)
( "4 ) +2 z cn,n—rlcn,n—rz - Z Cn,n—rl n,n--72"°
ry<rz rp<r2
r1tra=v,ry+2rp=0(3) r1+rg=v,r+2rp20(3)
0<ry,mp<n 0<r;,resn
Ifk=3and v=1 (mod 2), then
= (a1) (a)1) (a]) (a])
TPn—v = 2 z Cnn—r, cn,;l—rz - Z Cn n—flcn n—r2*
r<ry r<ry
r1+ra=v,r1+2rp=0(3) rytra=v,r+2r20(3)
0<ry,rp<n 0<r; ,rp<n

The correspondimg expressions for £ = 4 have been computed in the first
chapter of ([12]).

3 Applications for Particular Sequences

The above results can be applied to the various standard sequences of inte-
gers, generalizing the standard sequence a¢ = (0,1,2,3,...,n,...) which led
to the usual Stirling numbers. In [12] the case of the k—th power sequence
a = (0F,1%,2F .. nk ...) was investigated, and the corresponding formulas
were stated in detail. More over certain extension not shown were obtained,
e.g. several representations of these generalized Stirling numbers as. deter--
minants of Vandermonde like matrices, as well as some further formulas:
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The case of the natural square sequence (0, 1,4,9, 16,...,7n2,...) which cor-
responds to the above case k = 2 was discussed with a somewhat different
approach in [13] in the last chapter, where the corresponding generalized
Stirling numbers of the first and second kind were called central factorial
numbers. As shown in (14) in this case the coefficients y,_, are just the
unsigned (that is the absolute values of the) ordinary Stirling numbers for
the sequence (0,1,2,3,...).

Of course there is-a variety of other examples available, by using some other
standard sequences like the sequence of binomial coefficients

BTN (2

This may be generalized further using multinomial coefficients. Other pos-
sibilities include the sequence of k—gonal numbers 1 + J__Z (n—1)2 for
any fixed value of k > 3, the sequences of Fibonacci and Lucas numbers, the
sequence of prime numbers (2,3,5,7,11,...) and many other sequences.

4 An Application to Counting Partitions of Even
Size

Let a = (0,1,2,3,...) be the standard sequence of all natural numbers. In

this section we look at the connection between the numbers (“'2) and the
partitions of sets which have an even number of elements.

Proposition 6 Let Sy, k(2) denote the number of partitions of a set con-
taining 2m elements into k even parts. Then Sy, k(2) satisfies the recursive
relation:

Somk(2) = k2Som—2(2) + (2k — 1)Sam—2-1(2)-

Proof. Let the partitioned set be

S={1,2,...,2m - 3,2m - 2,2m — 1,2m}
and remove the last two elements. After removing the elements from the
k parts of the partition of S there are two possibilities, a partition of T =
{1,2,...,2m — 2} where either
1. all the parts again have an even number of elements, or
2. two of the parts have an odd number of elements and the rest have an
even number of elements.
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For the first case, 2m — 1 and 2m are together in the same part, and either
they form an entire part by themselves or they form a part together with
other elements. If {2m — 1,2m} is one of the parts there are Sgpm—2x-1(2)
possible partitions and if {2m — 1,2m} is a proper subset of one of the parts
then there are kSon,_2x(2) possible partitions.

For the second case, we first show that the number of partitions of the
(2m — 2)—set T into k parts where k — 2 parts have an even number of

elements and the other two parts have an odd number of elements is equal
to N where

N = (:) Som—2,4(2) + (kK — 1)Sam—2x-1(2).

Let these partitions be referred to as almost even partitions of T of length
k. The term (’._ﬁ) Som—2k(2) corresponds to all those almost even parti-
tions where both odd parts contain 3 or more elements and the term (k —
1)Som—2 k—1(2) corresponds to all those almost even partitions where at least
one odd part has just a single element. Next we construct a bijection.

This bijection goes from the set of the almost even partitions of T of length
k to the union of two sets. The first set is the set of all triples (II, P, P,)
where II is a partition of T into k even parts and P; and P, are two of those
k parts, and the number of such triples is (';) S2m—2,k(2). The second set is
the set of all pairs (X, P;) where X is a partition of T into ¥ — 1 even parts
and P, is one of those k — 1 parts, and there are (k — 1)S2m—2x-1(2) such
pairs.

The bijection is defined as follows. Take any almost even partition of T
where A; and As are the two odd parts and select the minimal element
a of A;j U Az. Then remove @ from A; where i = 1 or ¢ = 2 and place
a into the other part A; where j = 2 or j = 1. If | A; |> 3 then define
Py = Ai\{e},P, = AjU {a} and P, = A for I = 3,...,k. Letting this
partition of length k be I it is clear that ¥ together with P; and P, form a
triple (X, Py, P,) in the first of the two sets described above.

However, if | A; |= 1then define P; = AjUa and P, = Aj4  forl =2,... k-1
Denoting this partition again by X, it is also clear that ¥ and P; form a
pair (X, P;) in the second of the two sets described above.

The number of partitions for the second case is 2N because the two elements
2m — 1 and 2m can be removed from two of the k parts in two ways.
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Taking into account the various cases,

Soma(2) =2 (l;) Sam-2,£(2) +2(k — 1)Som—_2,6-1(2)

+kSem-2,k(2) + Som-2.4-1(2)
= k2 Som—2.6(2) + (2k — 1)Som-2,4-1(2)-
q.ed.

Theorem 4 Foralln>r>1
S20,(2)= (I}3)... (2r — 1)d{%.

Proof. By Proposition 1, d&? = d®? __ +r24©?  Also,

T T Yn—1r-1 n—1,r°
Sonr(2) = rSan—2,+(2) + (2r — 1)S2n—2,_1(2) from Proposition 6.

Therefore

(1)@)-.- @2r-1)dE? = 1)3)... 2r-0dl),_, HHE)... @r—1)2d®D,

= (2r - 1)(()E)... 2r - 3)a®?, )
+r2(1)(3) ... (2r - 1)d>?

n—1,r°
= SZn,r(2) =1-3-... (2?‘— 1)d$:}2)-
q.ed.

Remark: We have become aware of some attempts [5] [15] to generalize
Bernoulli numbers in a similar way that we have generalized Stirling numbers
in the first two sections of the present paper. It remains to be investigated
whether there is a relationship between these two developments.

Acknowledgement: We should like to thank the referee for pointing out
several classical references including (8], [11] and [2].
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