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Abstract

Tutte’s 3-flow conjecture is equivalent to the assertion that there exists
an orientation of the edges of a 4-edge-connected, 5-regular graph G for
which the out-flow at each vertex is +3 or ~3. The existence of one such
orientation of the edges implies the existence of an equipartition of the
vertices of G that separates the two possible types of vertices. Such an
equipatition is called mod 3-orientable. We give necessary and sufficient
conditions for the existence of mod 3-orientable equipartitions in general
5-regular graphs, in terms of (i) a perfect matching of a bipartite graph
derived from the equipartition and (ji) the sizes of cuts in G. Also, we
give a polynomial time algorithm for testing whether an equipartition of
a 5-regular graph is mod 3-orientable.

1 Introduction

A (nowhere-zero) k-flow for an undirected graph G = (V, E) is an assignment
of directions and integer weights to the edges in E such that (i) the weights
are restricted to the values in the range 1,...,k — 1 and (ii) the sum of weights
over edges leaving any vertex v in V minus the sum over those entering v, the
out-flow at v, is equal to zero. A (nowhere-zero) mod k-flow is defined similarly,
differing from a k-flow only in the restriction on the out-flow, which is allowed
to be zero mod k at every vertex. Since any mod k-flow can be converted into
a k-flow (see [17] for a proof), a graph admits a k-flow if and only if it admits
a mod k-flow.

The theory of k-flows was introduced by Tutte as a generalization of face k-
colorings for planar graphs. In particular, Tutte has proposed three well known
conjectures, the 5-, 4- and 3-flow Conjectures, stated below, which generalize
three famous theorems related to face k-colorings for planar graphs: The Five
Color Theorem [8], the Four Color Theorem [10] and Grétzsch’s Theorem [7).
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5-Flow Conjecture Every 2-edge-connected graph admits a 5-flow.

4-Flow Conjecture Every 2-edge-connected graph without a Petersen mi-
nor admits a 4-flow.

3-Flow Conjecture Every 4-edge-connected graph admits a 3-flow.

These conjectures are still open. Next we mention some remarkable results
related to them. Jaeger proved the 8-Flow Theorem (9, 15], an approximation
for the 5-Flow Conjecture.

8-Flow Theorem FEvery 2-edge-connected graph admits an 8-flow.

Jaeger’s 8-Flow Theorem also showed that it was possible to establish an
upper bound on k such that every 2-edge-connected graph has a k-flow, an
open problem until then. A few years later, Seymour improved this bound,
proving the 6-Flow Theorem [15, 17].

6-Flow Theorem FEvery 2-edge-connected graph admits a 6-flow.

This result and the fact that the Petersen graph does not admit a 4-flow
imply that the best bound for k is either 6 or 5, depending on the validity of
the 5-Flow Conjecture.

The same technique used to prove the 8-Flow Theorem also allowed Jaeger
to prove the following approximation for the 3-Flow Conjecture [15].

Theorem FEuvery 4-edge-connected graph admits a 4-flow.
Still concerning 4-flows, Robertson, Sanders, Seymour and Thomas [11, 12,
13, 14] have recently proved the 4-flow Conjecture for cubic graphs.

4-Flow Theorem Every cubic 2-edge-connected graph without a Petersen
minor admits a 4-flow.

Other partial results on the conjectures can be found in [4, 15, 18]. In this
paper we are interested in the 3-flow Conjecture. The best partial result known
so far regarding this Conjecture is due to Dahab and Younger [3] who proved
that every 2-edge-connected planar or projective planar graph with at most
three 3-cuts admits a 3-flow. This is an extension of a proof due to Steinberg
and Younger [16] that every 2-edge-connected planar graph with at most three
3-cuts and every 2-edge-connected projective planar graph with at most one
3-cut admits a 3-flow.

A graph admits a 3-flow if and only if it admits a mod 3-orientation, i.e.,
an assignment of an orientation and weight 1 to every edge, such that at every
vertex the out-flow equals zero modulo 3. Observe that any mod 3-flow can be
converted into a mod 3-orientation by reversing the orientation of every edge
with weight 2 and complementing mod 3 its weight. If G = (V, E) is a 5-regular
graph, then a mod 3-orientation induces a natural equipartition (V*,V ™), i.e. a
partition in two sets of equal size, of V where V* contains the vertices with out-
flow equal to +3, the sources, and V'~ contains the vertices with out-flow equal
to —3, the sinks. Correspondingly, equipartitions of V which are thus induced
by some mod 3-orientation of G are called mod 3-orientable. Now, in [2, 4], it
is shown that any 4-edge-connected graph G can be converted into a 5-regular
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4-edge-connected graph G’ in such a way that if G’ admits a 3-flow, so does G.
Therefore Tutte’s 3-flow Conjecture is restated as:

3-Flow Conjecture FEvery 5-regular j-edge-connected graph has a mod
J-orientable equipartition of its vertexr set.

This paper presents two characterizations of mod 3-orientable equipartitions
for 5-regular graphs. These characterizations lead us to a polynomial time
algorithm for testing whether an equipartition of a 5-regular graph is mod 3-
orientable. Both characterizations and the algorithm are shown in Section 3. In
Section 2 we give the definitions and terminology used in the subsequent proofs.

2 Definitions and Terminology

In this paper we take G to be an undirected graph with vertices V(G) and edges
E(G), or simply V and E when the context permits. Some basic definitions in
graph theory are not presented here, but they can be found in [1].

Given X C V, G[X] denotes the subgraph of G induced by X. For sets
X,Y C V,8(X,Y) denotes the subset of edges in E having one end in X and
the other in Y. When Y = V'\ X, we say that §(X,Y) is a cut, denoted by 6 X.
Given disjoint subsets X and Y of V, G[X] and G[Y] are adjacent subgraphs
if G[X] and G[Y] are connected and §(X,Y) # @. The set of all connected
components of G is denoted by K(G). For X C V and H C K(G[X)), the
set of neighbor components of H, denoted Ny, is the subset of components in
K(G[V \ X]) which are adjacent to some component of H.

A tree T is a connected graph having |E(T)| = |[V(T)| - 1. A croun C
is a connected graph having |E(C)| = |V(C)|, i.e, it is a tree plus one edge,
thus containing exactly one cycle. We denote by ¢(G) the number of connected
components of graph G which are trees.

Let G be a 5-regular graph and (V*,V =) an equipartition of its vertices.
Then (V+, V™) is mod 3-promising if for every component S in K(G[V*]) and
K(G[V~]) we have |[E(S)| < |[V(S)|, i.e. S is a tree or a crown. Figure 1(a)
shows an example of a mod 3-promising equipartition. Given a mod 3-promising
equipartition (V+,V~) of G, we define the shrink operation with respect to
(V*+,V~) as the deletion of the crowns of K(G[V*]) and K(G[V ")) followed
by the contraction of the trees in K(G[V*]) and K(G[V ")) into single vertices.
We also remove multiple edges possibly generated by these contractions. The
bipartite graph H resulting from G after this shrink operation has bipartition
(V*(H),V~(H)) corresponding to the trees in K(G[V*]) and K(G[V™)), re-
spectively. Figure 1 illustrates the shrink operation.

3 Characterizations
As we have mentioned in Section 1, the 5-regular graphs which admit a 3-

flow are those which admit a mod 3-orientable equipartition. In the case of a
bipartite 5-regular graph G with bipartition (V+,V ), there is always such an
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equipartition, namely the bipartition (V*, V™) itself. To see it, remember that
G admits a perfect matching, by Hall’s Theorem (see [1]). Thus, given a perfect
matching M of G, we obtain a mod 3-orientation D for G directing the edges
of M with tail in V~ and head in V* and all other edges with tail in V+ and
head in V~, as shown in Figure 2.

This technique for the bipartite case inspired, for general 5-regular graphs,
two characterizations of mod 3-orientable equipartitions, stated as Theorems 1
and 2:

Theorem 1 Let G = (V, E) be a 5-regular graph and (V+,V ™) an equipartition
of V. Then (V*,V~) is mod 3-orientable if and only if it is mod $-promising
and the graph H obtained by shrinking G with respect to (V*, V=) has a perfect
matching.

Theorem 2 Let G = (V, E) be a 5-regular graph and (V*, V™) an equipartition
of V. Then (V*, V=) is mod 3-orientable if and only if for all Z C V with
Zt =ZnV*t and Z- = ZNV~, the following holds:

621 > 3112*) - 127|). (1)

The necessity of the condition in Theorem 2 can be easily understood. We
define the out-flow at a vertex set Z as the sum of the weights of the edges
of §Z directed with tail in a vertex of Z and head in a vertex of Z minus the
sum of the weights of the edges of §Z directed with head in a vertex of Z and
tail in a vertex of Z. It is not hard to see that the out-flow at a vertex set
Z equals the sum of the out-flow at every vertex in Z. Now, let D be a mod
3-orientation for which every vertex in V* is a source and every vertex in V-
is a sink. For every Z C V, the out-flow at Z equals 3(]Z*| — |Z~|). Then,
since every edge has weight one, §Z must have at least 3||Z*| — |Z~|]| edges.
In particular, this relation must hold for the subsets X of V+ or V~, which
implies, by Lemma 1 below, that a mod 3-orientable equipartition must be mod
3-promising, as required by Theorem 1.

Lemma 1 Let G = (V, E) be a 5-regular graph and (Vt,V ™) an equipartition
of V. Then (V*,V~) is mod 3-promising if and only if for all X C V* and for
all X C V™ the following holds:

16X] > 31X].

Proof. (Necessity) Take X C V*. By hypothesis, every connected compo-
nent in K(G[V7]) is a tree or a crown. In particular, the connected components
of K(G[X]) are only trees or crowns. Hence, we have |E(G[X])| < |X|, with
equality holding only when every component in K(G[X]) is a crown. By the
5-regularity of G, we have:
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Figure 3: A mod 3-promising equipartition which is not mod 3-orientable

16X| = 5|X| —2|E(G[X])] 2 5| X| - 2|X]| = 3| X].

The same argument can be used to prove the result for X C V.

(Sufficiency) Take G; € K(G[V*]). By hypothesis |6V(a.-)| > 3|V(Gi)|. By
the 5-regularity of G, we have:

2|E(Gy)| =5|V(Gi)l - |8V (Gi)l < 8|V(Gi)| - 3IV(Gi)| = 2|V (Gi)l-

Thus, |[E(G;)] < |V(GY)).

On the other hand, since G; is connected, we have |E(G;)] > |V(Gi)| — 1.
Hence, either G; is a tree and |E(G;)| = |V(Gi)| — 1 or G; is a crown and
|E(G:)| = {V(G;)|. The proof for G; € K(G[V~]) is analogous. ]

Nevertheless, there are mod 3-promising equipartitions such as that shown
“in Figure 3 which are not mod 3-orientable. The set Z = {1,7,8,9,10,11}

violates the necessary condition (1) since |6Z| = 10 and ||1Z*| - |Z~|| = 4; so
it certifies that this equipartition actually cannot be mod 3-orientable.

A mod 3-promising equipartition (V+, V") has other interesting properties
which follow from the 5-regularity of the graph. The first, which results from a
simple counting argument, is that for every tree T and crown C in K(G[V*])U
K(G[V~)), we have |6V (T)| = 3]V (T)|+2 and |6V (C)| = 3|V(C)|, respectively.
Furthermore, as shown by Lemma 2, the number of trees in K(G[V?]) equals
the number of trees in K(G[V*]).

Lemma 2 Let G be a 5-regular graph with a mod 3-promising equipartition

(V*,V=). Then the number of trees in K(G[V*]) and in K(G[V~]) is the
same. That is,

(GIV*]) = «G[V7)).

Proof. First,

IEGV* D= Y.  IEG)I

Gi€K(G[V*))
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By hypothesis, any component G; € K(G[V1]) is a tree or a crown. Méreover,

Y. IEG) Y [V(Gi)l, and

GieK(GIV*)) Gi€K(G[VH)
Gi crown G crown
> lEG) = Y. V(G -GV
GieK(GIVH) GiEK(GIVH)
Gi tree Gi tree
Hence,
|B(GIVY))| = |[V*| - ¢(G[V*]).

Analogously,

|E(GIVDI= V™I - ¢G[VT)).

By hypothesis, |[V*| = |V~| and as G is 5-regular, we have |E(G[V*])| =
|E(G[V~])|. Hence, we conclude that t{(G[V*]) = ¢(G[V ~)). 0

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. (Necessity) Let (V*,V~) be a mod 3-orientable
equipartition and D an associated mod 3-orientation of G. We already know
that (V*,V~) must be mod 3-promising. So, let 7+, C*, 7-, C~ be the
collections of trees and crowns in K(G[V*]) and K(G[V~]). For every tree
Tt € T, [6V(T*)| = 3|V(T)| + 2; thus D must direct exactly one edge e of
dV(T*) with head in V(Tt); this is called a minority edge. For every crown
C* € C*, no edges of 6V (C*) have heads in V(C*). Similar statements hold
for the trees and crowns of G[V~]. Thus a minority edge of a tree T+ € T is
also a minority edge of some tree T~ € 7~ and vice-versa (see Figure 4). The
set of all such minority edges form a perfect matching in H, the graph resulting
from shrinking G with respect to (V*,V ™).

(Sufficiency) Before proceeding we need a definition: A branching is a di-
rected tree B for which the indegree at every vertex is exactly one, except at
one vertex r, called the root of B, which has indegree zero.

Let (V+,V~) be a mod 3-promising equipartition such that the graph H
obtained after shrinking G with respect to (V*,V =) has a perfect matching M.
Direct the edges of 6V which are images of edges of M so that their tails are in
V= and their heads in V*. Direct the remaining edges of §V+ in the opposite
direction.

Now, extend this orientation to each tree T in 7+ directing the edges of
T so that the resulting (oriented) tree is a branching having as root the vertex
incident to the minority edge of §V(T+). This makes every vertex in T+ a
source. For a tree T~ in 7~ the procedure is analogous but with orientations
reversed; every vertex in the oriented T~ is thus a sink. For a crown Ct in
C*, contracting its unique cycle produces a tree L, which can be made into a
branching with root the contraction vertex of the cycle. Restoring the cycle
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(a) A mod 3-promising equipartition of G
V+H(H)
v-(H)
(b) Perfecf: matching of H
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(c) A mod 3-orientation of G

Figure 4: An illustration of the proof of Theorem 1

back to C* and directing its edges so as to form an oriented cycle, produces an
orientation for C* in which every vertex is a source. The procedure for a crown
C~ in C~ is analogous. This proves that (V+,V~) is mod 3-orientable. =~ D
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Proof of Theorem 2. (Sufficiency) We have already proved necessity
above. Let F be a subset of the trees in K(G[V*)]) and Np its corresponding
set of neighbor components. For each crown C in K(G[V*]), §(C) contributes
3|V(C)| edges to §V*; similarly, each tree T' contributes 3|V (T)| + 2 edges to
dV*. The same holds for the crowns and trees of K (G[V~]). Therefore we have
|6V (F)| = 3|V(F)| + 2t(F) and |§V(Nr)| = 3]V (NF)| + 2t(NF).

Let Z = V(F)UV(NF). By the definition of N we have 6V (F) C 6V (NF);
so 6Z = §V(Nf) \ 6V (F). Thus

82| = 16V(NF)| = 6V (F)| = 3([V(NF)| - [V(F)|) + 2((NF) — t(F)).
Rewriting this equation, we have
2(U(NF) —t(F)) = [62] - 3(IV(NF)| = [V(F))).
By hypothesis, [6Z] > 3| |V(NF)| — [V(F)||, so
2(t(NF) = 1(F)) 2 3| [V(NF)| = [V(F)| = 3(IV(NF)| = [V(F)]) > 0.

Therefore, t(Np) > t(F). Consider now the bipartite graph H obtained by
shrinking G with respect to (V*,V~). Let Fy C V+(H) be the vertices rep-
resenting the trees in F; clearly {(F) = |Fy|. For every tree in Np there is
a tree in N, representing it; thus {(NF) = |[NF,|. Hence |Nf,| > |Fg| and
by Hall’s Theorem there is a matching M in H which covers V*+(H). Since
{[V¥(H)| = |V~ (H)| by Lemma 2, M is a perfect matching. By Theorem 1,
V+,V~) is mod 3-orientable. (]

Actually, Theorem 2 can be deduced from a much more general theorem
concerning orientations of graphs presented in [5) as Theorem 2.1. The inter-
esting aspect of the proof presented here is that it provides, together with our
proof of Theorem 1, an algorithm for testing whether an equipartition is mod
3-orientable: the algorithm either finds a mod 3-orientation for which the sets
specified in the equipartition separate sources from sinks or exhibits a certificate
that it does not exist.

3.1 Testing the mod 3-orientability of an Equipartition in
Polynomial Time

Theorem 1 suggests a simple algorithm for testing whether a given equipartition
(V+,V~) of a 5-regular graph G is mod 3-orientable: we test if (V+, V=) is mod
3-promising and, in the affirmative case, generate the shrunken graph H and
test whether H has a perfect matching. Furthermore, the proof of Theorem 1
produces a mod 3-orientation when (V*+,V~) is mod 3-orientable.

Observe that this test fails in two situations: when (V*,V~) is not mod
3-promising or when the shrunken graph H does not have a perfect matching.
In the former case, there must be a connected component § either in K(G[V*])
or in K(G[V~]) which is not a tree or crown, i. e. [6V(S)| < 3|V(S)|. Thus,
by Theorem 2, the set Z = V(S) is a certificate that (V*,V~) is not mod
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(2) 1621 < 3||\V(NF)| - IV(F)I|

Ny,
V) e ey

V=(H)

(b) IFu] > INFy |

Figure 5: Finding a certificate of non-mod 3-orientability for an equipartition

3-orientable. In the latter case, there must be a subset Fy either of V*(H)
or of V~(H), for which |[Fyg| > |NF,|. Let F be the set of trees represented
by Fy, with Np its corresponding set of neighbor components, and take Z =
V(F)UV(NF), as shown in Figure 5. Then, the sufficiency of Theorem 2 shows
that Z is a certificate of non-mod 3-orientability of (V*+,V ™), i. e.,

162] < 3| {V(Np)| - [V(F)] |-

Therefore, we have an algorithm for testing the mod 3-orientability of an
equipartition (V*,V ™) of a 5-regular graph which either finds a mod 3-orien-
tation in the affirmative case or exhibits a set Z that violates the condition of
Theorem 2 otherwise. A pseudo-code for the algorithm is shown in Figure 6.

We will now argue that the algorithm shown in Figure 6 takes polynomial
time with respect to the size of the graph G. To test if the equipartition is mod 3-
promising it is enough to find the connected components of G[V*+] and of G[V "]
and check whether all of them are trees and crowns. This step takes linear time.
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Input: A 5-regular graph G = (V, E) and an equipartition (V*,V~) of V.
Output: A mod 3-orientation for G or a subset Z C V such
that 67| < 3{|Z*| - |Z~||.

(1) if (V*+,V~) is mod 3-promising, then
/* obtain shrunken graph H */
(2) shrink G with respect to (V*, V=) obtaining H;
(3) if H has a perfect matching M then
(3.1) direct the edges of M with tail V— and head in V¥;
(3.2) direct the remaining edges of §V* in the opposite
direction;
(3.3) extend orientation to trees and crowns
in K(G[V¥))UK(G[V~))
(4) else
/* there is Fy for which |Fy| > |Npy,| */
(4.1) take F as the subset of the trees represented by Fp;
(4.2) return Z2 = V(F)UV(NF).’
(5) else
/* there is § € K(G[V*]) U K(G[V ")) such that |V(S)| < |E(S)| */
(5.1) return Z = V(5).

Figure 6: An algorithm for testing whether an equipartition is mod 3-orientable

Having identified all the trees in K(G[V*]) and K(G[V ™)), constructing the
shrunken graph H also takes linear time.

Now, to find a perfect matching M for H or a set Fy certifying that such
a matching does not exist, we can use an augmenting path algorithm such as
that described in Chapter 5 of [1]. This algorithm takes polynomial time with
respect to the size of H, and thus to the size of G. Hence, the algorithm is
actually polynomial.

4 Final Comments

In this paper, we give two necessary and sufficient conditions for the existence
of mod 3-orientable equipartitions in general 5-regular graphs. One of these,
Theorem 1, gives rise to a polynomial time algorithm for testing the mod 3-
orientability of an equipartition of a 5-regular graph. Although the algorithm
itself does not solve the computational problem of finding such an equipartition,
it makes one step of it quite simple. Also, we are lead to believe that finding
a mod 3-promising equipartition for a 5-regular graph is another simple step of
this computational problem, since we have no knowledge of a 5-regular graph
without a mod 3-promising equipartition and we do have examples of 5-regular
graphs with 3-cuts that do not have a mod 3-orientable equipartition but do
have a mod 3-promising one.
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Still concerning the complexity aspects of the problem, it is known (see
equivalent problem GT4 of [6]) that deciding whether an arbitrary graph admits
a 3-flow is an NP-complete problem. Moreover, it remains NP-complete when
restricted to the class of the 5-regular graphs (see [2]). However, we do not
know whether the problem remains NP-complete for 4-edge-connected 5-regular
graphs, the. class of graphs that Tutte’s conjecture is concerned with. Thus,
there is hope that our algorithm might be of help in finding mod 3-orientable
equipartitions for 4-edge-connected 5-regular graphs in polynomial time.

The other characterization, given by Theorem 2, establishes structural re-
strictions on the equipartition with respect to the sizes of edge-cuts of the graph.

This is more in line with the statement of Tutte’s 3-Flow Conjecture and might
be of help in proving it.
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