Non 3-Choosable Bipartite Graphs and The
Fano Planc

Shannon L. Fitzpatrick
University of Prince Edward Island
Charlottetown, Prince Edward Island

Gary MacGillivray *
University of Victoria
Victoria, British Columbia, Canada VW 3P4

Abstract

1t is known that. the smallest complete bipartite graph which is not
3-choosable has 14 vertices. We show that the extremal configuration
is unique.

1 Introduction

A list colouring of a graph G is a proper vertex colouring of G in which every
vertex v is assigned a colour from a set (or list) L(v) of colours. The graph
G is k-choosable, or k-list colourable, if the condition that every list has size
at least k is sufficient to guarantee the existence of a list colouring of G.
The choice number, or list chromatic number, of G is the smallest positive
integer k such that G is k-choosable. A recent survey on list colowrings is
{6].

Both Erdis, Rubin and Taylor {2] and Vizing [5] observed that the choice
number of a complete bipartite graph can be arbitrarily large. Erdos, Rubin
and Taylor demonstrated that the choice number of K77 is at least four.
Their example consisted of assigning the seven lines in the Fano plane to
the seven vertices in each set in the bipartition. It is proved in [4] that the
choice number of any bipartite graph with at most thirteen vertices is less
than or equal to three.

In this article we indicate how it may be shown that the fourteen vertex
example of Erdés, Rubin and Taylor is unique up to renaming the colours.

*Research of both authors supported by NSERC.

ARS COMBINATORIA 76(2005), pp. 113-127



The proof is a detailed case analysis. The cases to be considered are de-
termined in Lemma 2.8. Qur initial goal was to undertake a combinatorial
computing project and examine all possibilities, up to isomorphism. In
order to be able to limit the size of the search, results were established
regarding the structure of the lists in an example where a list colouring
docs not exist. Eventually there were enough such results for a proof. In
the interest of brevity of this article some of the proofs are ounly sketched,
though a detailed example of each type of argument is given. jomplete
details of all proofs can be found in [3].

For a discussion of the many other contexts in which the Fano confign-
ration arises, sce [1).

2 Preparatory Results

We assume thronghout this article that I, . is a complete bipartite grapl,
where a < e, in which lists of size three are assigned to the vertices. We
usc A = {A}, Aa,..., A} to denote the collection of lists assigned to the
vertices in one set of the bipartition, and C = {C|,(,,..., C.} to denote
the collection of lists assigued to the vertices in other set of the bipartition.
(It follows from Lenuna 2.6 below that, in an extremal configuration, no
two vertices belonging to the same side of the bipartition are assigned the
same list. Thus, set notation is appropriate.) Define N = |4, U A, U-.. U
A UC UG, U---UC,|. For integers a < b we use [, 0] to denote the set
{a,a+1,...,b}. We will use the following results from [4].

Theorem 2.1 ([4]) Ewvery bipartite graph on at most thirtcen vertices is
3-choosable.

Let X = {X/, X2,...,X.} be a collection of scts. A transversal of X is
aset TC X, UXoU - UX, suchthat TNX; #@fori=1,2,...,n.

Lemma 2.2 ([4]) Suppose the complcte bipartite graph Ko ¢ has the collec-
tions A and C as the lists assigned to vertices in the scts in the bipartition.
The following are equivalent:

1. K, is not list colourable from the lists in A and C.
2. Every transversal of A has a subset that is a list in C.
3. Buery transversal of C has a subscl that is a list in A.

4. Each subsct of (L, N] is either disjoint from some list in A or has a
subset that is a list in C.

Lemma 2.3 ([4]) If K, is not §-choosable, then N > 5.
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Theorem 2.4 ([4]) If K, . is not 3-choosable, then a- (N7) +c-( Y
(V) for all0 <1 < N where (N7*) =0 forl> N -3 and (Y7)) =0 for
<3

N
Corollary 2.5 ([4]) If Ko, is not 3-choosable, then a + ¢ > 4 :2)( +’ L)
for all0 <1 < N where (N,'k) =0forl>N-3and (’;l_".?) =0 forl <3.

We will make repeated, often implicit, use of the following fact.

Proposition 2.6 ([4]) Suppose G is a bipartite graph on fourtcen vertices
and there is an assignment of lists for which there is no list colouring of G.
Then. cvery colour appears in lists on both sides of the bipartition, and no
list is assigned to two vertices on the same side of the bipartition.

We will say that the pair (2.y) is in the set. X when {2y} C X.

Lemma 2.7 ([4]) Let G be a bipartile greph in which lists have been as-
signed to the vertices of G. Let N = |U, ey L(v)|. Suppose there is no list
colouring of G and some pair of colours does not appear together in a list.
Then there is a collection of lists L'(v),v € V, such that |L'(v)| = |L(v)|
for cvery v € V, |U, e L'(v)| = N — 1, and G is not list colourable from
the lists L'(v),» € V.

Lemma 2.8 Suppose a+c = 14. If there is a collection of lists of size three
Jor which there is no list colouring of Ko, then there is such a collection
in one of the following situations:

I. N=Tuanda =T
2. N=8anda= 5 6o0r17
3 N=9anda=25 6o0r?7

Proof  Suppose K, is not 3-choosable. The fourteen lists of size three
together contain 42 not necessarily distinet pairs. Since (lz") = 45, by
Lemima 2.7 it may be assumed that N < 9.

By Lemma 2.3, N > 5. By Proposition 2.6 no list is assigned to two
vertices on the same side of the bipartition. However, the inequality from
Corollary 2.5 is satisfied for neither the pair N =5 and I = 2, nor the pair
N =6 and ! = 3. Therefore, N > 7. Further, using N = 7 and I = 3 in the
inequality from Theorem 2.4 we obtain @ > 7. Using N =8 and | = 3, we
obtain a > 5, and using N = 9 and I = 4. we obtain a > 5. Finally, a < ¢
and a + ¢ = 14 implics that @ < 7 for any value of N. The result follows. O
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Lemma 2.9 Suppose a+ ¢ = 14. If any clement is in more than a — 3 lists
of A or c — 3 lists of C, then therc is a list colouring of K, ..

Proof: Suppose K, is not 3-choosable, and that A and C are collections
of lists from which there is no list colouring of K, .. By Lemma 2.8, we
have 5 <a<Tand 7T<c <.

Now suppose some clement is in a — 2 lists of A. Without loss of gener-
ality, assume 1 € A;NA2N---NA,_2. Then for any 22 € A,_; and y € Ag,
{1,2,y} is a transversal of A. By Lemma 2.2, every transversal of A has a
subset that is a list in C. Hence, for every choice of 22 and y the clements in
{L.2,y} are all distinct and {1, 2,9} is a list in C . Hence, ¢ = 9. However,
all nine lists in C contain 1. Therefore, {1} is a transversal of C, and,
by Lemma 2.2, K, . can he properly coloured, a contradiction. Thus no
element is in more than a — 3 lists of A.

Suppose some clement. is in ¢ — 2 lists of C. It can be similarly shown
that C has ninc transversals of size three. Since a < 7, this contradicts the
fact that every transversal of C has a subset that is a list in A. The result
follows, 0

Lemma 2.10 Suppose 7 < N < 9. If some clement is in. more than three
lists of A (or C), then there is a list colouring of K7.7.

Proof. Suppose A and C are collections of lists from which there is no list
colouring of K7 7. By Lemma 2.2, every transversal of A (respectively C)
has size at least threc, and every transversal of A (respectively C) of size
three is a list in C (respectively A).

Now suppose that some clement is in four lists of A. Without loss of
generality, asswme 1 G A; for alli € [1,4). By Lemma 2.9, 1 ¢ A;UAgU A7,
l'l(!ll(f(!, |A5 U A(; U A';'l S 8, and IA,", nA(‘,' + IA.'; n A7| + lA{; ﬂA7| 2 1. Also
note that. As N Ag N A7 = @, since A has no transversal of size two.

We claim that |A; N A;] < 1 for any 7,5 € [5,7] where i # j. To

sce this, assume that |As N Ag| = 2. Then, for any » € A5 N Ag and
any y € A7, {1,1,y} is a transversal of A. Since A has no transversal
of size two, there are six distinet transversals of this type. Since each of
these six transversals is a list in C, there are six lists in C that contain 1.
Lemma 2.9 then asserts that a list colouring exists, a contradiction. Hence,
1 <|As N Agl 4 |As N Az| + JAg N A7 < 3.
Case 1: Suppose |Ag N Ag| + |Ag N Az + |45 N A7] = 3. Then any two
of A5, Ag and A7 have exactly one clement in common. For any distinct
i j.k € {5,6.7}, the sct {1,2,y} where £ € A;NA;j and y € Ay — (4N Aj),
is a transversal of A. Each such transversal is a list in C. Henee, at least
six lists in C contain 1. Lemma 2.9 then asserts that a list colouring exists,
a contradiction.
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Case 2: Suppose |A N Ag| + |Ag N A7| + |45 N A7| = 2. Without loss of
generality, assume that [AsNAg| = 1 and [A5NA7] = 1. Since A5, Ag and A7
have no common clement, we may assume that As = {2, 3,4}, A = {2,5,6}
and A7 = {3,7,8}. Then {1,2,3}, {1,2,7}, {1,2,8}, {1.3,5} and {1, 3,6}
are all transversals of A. This gives five lists of C, each containing 1. Lemma
2.9 then asserts that a list colouring exists, a contradiction.

Case 3: Suppose |As N Ag| + |As N A7] + |A5 N A7 = 1. Without loss of
generality, wo may assume As = {2,3,4}, Ag = {2,5,6} and A7 = {7,8,9}.
Then {1,2,7}, {1,2,8} and {1, 2,9} are transversals of A and thercfore lists
in C. Suppose these are Cy, Cz and Cy, respectively.

For any z € A5 —- {2}, y € Ag — (2} and = € A7, the sct {1,2,y, 2} is
a transversal of A. Let S be the set of these twelve distinct transversals.
Note that none of Cy, C'y or Cj is a subset of any set, in S, and no list in C
is a subset of more than three sets in . Furthermore, a list C; is a subset
of three sets in S only if it contains 1. Since every set in § has a subset
that is a list in C, cach of Cy, C5, Cg and C; must be a subset of exactly
three sets in S. Thercefore, 1 € C; for all i € [4,7]. However, this means
that {1} is a transversal of C which is a contraciction.

Hence, if come clement appears in more than three lists of A or more
than three lists of C, then G can bhe properly coloured. (]

3 Nine Colours

Lemma 3.1 Suppose N = 9. If some puair appears in more than onc list
in A, then there is a list colouring of Ky g.

Proof: We argue the contrapositive. Suppose that A and C are families
of lists for which there is no list colouring of K5 9. Then, by Lemma 2.2,
every transversal of A has size at least three, and every transversal of A of
size three is a list in C.

By Lemma 2.9, no element appears in more than two lists of A. Since
every element appears in at least one list of A, there are six elements in
exactly two lists each and three clements in exactly one list each. Say every
clement in (1, 6] is in exactly two lists of A.

Suppose some pair, say (1,2), is in two lists, say A; and A;. Then there
are two elements of [3, 6] cach of which is in neither A; nor As. Assumc
3e€ A3N Ay and 4 is in two of Az, Ay and Aj,.

Supposc 4 € A3N Ay Then for cach 22 € AN Ay and y € Az Ay, and
z € As, {2,y,2} is a transversal of A. There are twelve such transversals.
This contradicts the fact that every transversal of size three is a list in C.

Suppose 4 € A3 N As. Then {1,3,4} and {2,3,4} are transversals of
A. It is also the case that for each & € A — {4}, {1,3,2} and {2.3,z} are
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transversals of A. And, for each y € A, — {3}, both {1,4,y} and {2.4,y}
are transversals of A. This gives a total of ten transversals of A of size
three. This contradicts the fact that every transversal of A of size three is
a list in C. o

Lemma 3.2 Suppose N = 9. If some element appears in more than four
lists of C, then there is a list colouring of Ky g.

Proof Sketeh:  Again, we argue the contrapositive. Suppose that A and
C are families of lists for which there is no list colouring of K5g. Then,
by Lemma 2.2, every transversal of C has size at Jeast three, and every
transversal of C of size three is a list in A.

By Lemma 2.9, no element is in more than six lists in C and no element.
is in more than two lists of A.

If some element 2: is in exactly six lists of C then C has at least three
transversals of size three containing 2 (and none of size two). This implies
that there are three lists in A containing 2. contradicting Lemna 2.9.

Suppose some element is in exactly five lists of C, say » € CyNCa N
---NCs. Then, without loss of generality, there is an clement y € Cg N C5.
Consider the transversals of C of size three or four and containing the pair
(x,y). It follows from Lemmas 2.9 and 3.1 that one of these transversals of
C has no subset in A. g

Lemma 3.3 If N =9, then there is a list colouring of K5 9.

Proof Sketch: Suppose there is no list colouring of K5 9. By Lemma 2.9 and
Proposition 2.6 every clement is in exactly one list of A. It now follows from
Lemmas 2.2, 3.1 and 3.2 that the lists of A are completely deterinined up to
synmietry, and some four of these lists have the property that cach pair has
exactly one clement in common, while the fifth is disjoint from each of these
four. It then can be observed that A has nine distinet transversals of size
three, which completely determines C, and then that C has a transversal
of size three which is not a list in A. Hence K59 can be list coloured, a
contradiction. O

Lemma 3.4 Suppose N = 9. If some element is in more than four lists of
C. then there is a list colouring of Kg .

Proof: Similar to Lemma 3.2. ]

Lemma 3.5 Suppose N =9 and cach elciment appears in exactly two lists
of A. If some element appears in more than three lists of C then there is a
list colouring of Kg 5.
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Proof Sketch:  Suppose that every element appears in exactly two lists of
A, but there is no list colouring of K¢ s.

Suppose that some clement is in four lists of C. Withont loss of gener-
ality, assume 1 € C;NC; N C3 N Cy. By Lenuna 3.4, 1 is not in any other
list of C. Since C has no transversal of size two, CsNCeNC7 N Cg = 0.
Furthermore, for any distinct , 5,k € [5,8], C; N C; N C), = 0. Otherwise,
{C5,C6,C7,Cs} would have three transversals of size two, resulting in three
transversals of C of size three all containing 1. Since every clement is in
exactly two lists of A, this contradicts the fact that every transversal of C
of size three is a list in A.

Since C5 U Cs UC7 U Cy C [2,9], some pair of Cy through Cs must
have a common clement. Without loss of generality, assume 2 € Cy N Cg.
Therefore, 2 € C; U Ck.

Examining the possible transversals of C containing the pair (1, 2) yields
the contradiction that there is a transversal of C without a subsct in A,
contrary to Lemma 2.2. O

Lemma 3.6 If N =Y. then for any collcction of lists A and C. there is a
list colouring of Kgg.

DProof Sketeh:  Assume that A and C are collections of lists for which there
is no list colouring of Kgg. Since N = 9, either some clement appears in
three lists of A, or every clement appears in exactly two lists of A.

Case 1: Suppose there is an element that appears in three lists of A.
Without loss of generality, assmne 1 € A, N A2 N Az, By Lemma 2.9,
AjUA; U Ag C [2,9]. Then two of Ay, As and Ag have an element in
common. Without loss of generality, assume 2 € Ay N A, If 2 € Ag, then
A has a transversal of size two, a contradiction. Hence, we may assume
that Ag = {3,4,5}. Then {1,2,3}, {1,2,4} and {1,2.5} are transversals of
A. We may assume these are lists Cy, C2 and Cs, respectively.

Suppose 3 € Ay. Then for any & € As — {2}, {1,3,2} is a transversal
of A. Since there are no transversals of size two, 3 € As, so there are two
such transversals. If both of these lists are in C, there arce five lists in C
containing 1, contrary to Lemma 3.4. Hence, 3 € A,. It can be similarly
shown that 4,5 € Ay and 3,4,5 ¢ As.

Suppose there is some © € (A4 N As) — {2}. Then {1,2,3}, {1,2,4}
and {1,z,5} are transversals of A and therefore lists in C. These three lists
together with ). Cy and Cj give six lists in C all containing 1, contrary
to Lemma 3.4. Hence, A4 N 45 = {2}.

Now, for any = € A, — {2} and y € A5 — {2}, {1,3, 2,9} is a transversal
of A. Let S be the set of these four distinct transversals. Note that none
of C;, Cy or Cy is a subset of any set in S.
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If none of €, through Cg contains the pair (1,3), then for cach choice
of 2 and y, either {1, 2, y} or {3, 2, y} is a list in C. This means C4 through
Cy contain two lists with 1 or three lists with 3. Thus there are five lists
of C containing 1 or five lists of C containing 3, contrary to Lemma 3.4.
Therefore, at least one of Cy through Cg contains the pair (1,3). Without
loss of generality, assume (1, 3) is in Cy.

Now, let S be set. of elements of S that have no subset in {C),Ca, Cs,Cy}.
Since Cy is a subset of at most two scts in S, |S’| > 2. By Lemina 3.4,
none of Cy through Cy contains 1. Siuce each set in 8’ has a subset that
is a list in ¢ = {Cs.Cs,C7,Cy}, at least two lists in C’ contain 3. Say
3€CsNCq. Henee, 2€ C1NCaNCqyand 3 € CyNC5 N Cq. Hence, for
any 22 € C7 and y € Gy, {2,3,2,y} is a transversal of C. Let T be the set
of these trausversals. Since 1 ¢ C7 U Cy, none of 4;, A, or Ay is a subset
of any transversal of the form {2, 3,2, y}. Since the pair (2,3) is in no list
of A, there is no choice of 2 and y such that = y. Hence, |T| = 9, and
a list of A is a subset of at most one set in T. Hence, for each choice of =
and y, either {2,2,y} or {3,2,y} is a list in A. This contradicts the fact
that A contains six lists.

Case 2: (sketch) Suppose every element appears in exactly two lists of A.
Without loss of generality, assume 1 € AjNA2, 2 € A|UAz and 2 € A3NA,.
Then for any x € A; and y € Ag, {1,2,2,y} is a transversal of A. Lot C) o
be the number of lists in C containing the pair (1,2).

We claim that C, o = 3. Suppose to the contrary that Cy » < 2.

Suppose |As N Ag| = 2. Then, without loss of generality, As = {3.4,5}
and Ag = {3.4,6}. By considering transversals of A, the conclusion that 3
belongs to four subsets in C is reached, contary to Lemma 3.5.

Suppose |As N Ag| = 1. The sitnation where |[A; N Ag| = 2 or |43 N
A4| = 2, is covered by the argument above, so assume |A; N Ay| = [A3 N
Ayl = 1. Let Ay = {l,uy,u2}, A2 = {1,u,v2}, A3 = {2,w;, w2}, Ay =
{2,z1,22}, A5 = {3,y1.y2} and Ay = {3,z),22}. Then, for i,j € {1,2}
we have u; # vj, w; # 25, and y; # 2. The set {1.2,3} is a transver-
sal of A, hence it is a list in C. Let § = {{1,2,9i,2;}, {1.3,wi. x5},
{2,3,u,v;} : 1 < i,j <2} Then |S| = 12. Each clement of S is a
transversal of A, so cach has a subset that is a list in C. This gives suf-
ficient structural information about the lists in C to conclude that either
{1,2,3} or {1,2.3.p} is a transversal of C, for some p € [4,9]. No such
transversal has a subset that is a list in A, a contradiction.

Suppose |45 N Ag|] == 0. Then A has nine transversals of the form
{1.2,2,y}, where 22 € A and y € Ag. One of these has no subsct that is a
list in C, contrary to Lemma 2.2,

Thercfore, Cy 2 > 3. Without loss of gencrality, assume C) = {1,2,3},
Cy = {1,2,4} and Cs = {1,2,5}. By Lemma 3.5, 1,2¢ C4UC;U--- U Cs.
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This proves the claimn.

It. now follows that each pair from {1,2} x [6,9] must appear in some
list in A. Henee, A, UA, C {1}U]6,9] and A3UA, C {2}U(6,9]. Since cach
clement is in exactly two lists of A, this means Az U Ag C {3.4.5}. This
implies As = Ag which is a contradiction. Hence, there is a list colouring
of I\’(;‘g. O

Lemma 3.7 Suppose N = 9. If any pair appears in more than two lists of
A (or C), then there is a list colouring of K77.

Proof:  Suppose some pair, say (1.2), is in each of A;, A3 and Aj. Since
these three lists are all distinct, assume that Ay = {1.2,3}, A, = {1.2.4}
and Az = {1,2,5}. By Lemma 2,10, we may assume no clement. appears in
more than three lists of A. Then A; € [3,9] for i € [4,7]. Furthermore, by
Lemma 2.2, every transversal of A of size three is a list in C.

Let Z = [1,5] x [6,9]. None of the lists A, A2 and Az contains a pair
from Z, and every other list in A or C contains either no pairs or exactly
two pairs from Z. Therefore, C contains at. most fourteen pairs from Z.
By Lemma 2.7, we may assume that every pair in Z is in some list of A
or C. Since Z contains twenty pairs, A contains at least six pairs from Z.
Without loss of generality, we may assume that Ay, As and Ag each contain
two pairs from Z. Since each of these lists is a subset of {3,9], A;N[3.5] # 0
for i € [4,6].

Case 1: Suppose none of 3, 4 or 5 is in two of the lists Ay, As, Ag and
A;. Then |4; N[3,5]] = 1 for i € [4,6) and A7 C [6,9]. Without loss of
generality, assume Ay = {7,8,9}. Then exactly six pairs from Z are in A
and fourteen pairs are in C. Therefore, no pair from Z is in more than one
list of A or C. On the other hand, it follows from considering transversals
of A of size three that some pair from Z helongs to more than one list in
C. Thercfore, there is a list colouring of Iz 7.

Case 2 (sketch): Suppose one of 3, 4 or 5 is in two of the lists Ay, As, Ag
and A;. Without loss of generality, assume that 3 € A4N As. Since 3 is in
at most three lists in A, 3 € AgU A7. The remainder of the proof is similar
to that of Lemma 3.1, except transversals of size three and four are used.
O

Corollary 3.8 If the clements x and y cach appeor in three lists of A
(respectively C), but the pair (2,y) is in no list of A (respectively C), then
there is a list colouring of Kq.7.

Lemma 3.9 Suppose N = 9. If there is no list colouring of K77, then for
any collection of lists A and C there is a list A’ in A such that

1. |ANCi| £1 forallie [1,7]

121



2. A is disjoint from exactly three lists in A.

Proof Sketeh: By Lemma 2.7, we may assume that every pair of elements
appears in some list of A or C. Since cach list. contains three pairs, the
lists in C together contain at most twenty-one of these pairs. Henee, the
lists of A contaiu fifteen pairs that are not. found in C. This means some
list in A contains three pairs not found in C. Let A, he such a list.. Hence,
[ANCi| <1lforallie (1.7].
Without loss of generality, assume that A, = {1,2,3}.

Case 1 (sketch): Suppose that A, is disjoint from at most two lists in A.
Then one of the five element transversals of A containing 1, 2, andl 3, has
no subset. that. is a list in C, a contradiction

Case 2: Suppose that four lists of A are disjoint from A,. These four lists
along with Ay do not contain any pair from the set X = [1.3] x [4,9]. The
rewaining two lists in A, say Ay and Ajs, each contain at most two pairs
from X. By Lemma 2.7 we may assume that every pair from X is in some
list of A or C. Since the lists of C collectively contain at most fourteen of
the pairs from X, then cach of Az and A3 contain exactly two pairs and C;
contains exactly two pairs for each 4 € {1, 7). Furthermore, no pair from X
is in two lists of A or C.

For each i € [1, 3], define X; to be the set {i} x [4,9]. Since each list in
C contains a pair from X, [C;NA| > 1 for all i € [1,7]. Hence |C;0A,| =1
for all i € [1,7). Therefore, each list in C contaius either no pairs or cxactly
two pairs from X,;. Hence, the lists of C collectively contain an even unmber
of pairs from X, Since X contains six pairs, the lists Ap and A together
coutain an even number of pairs from X;. Similar statements can be made
regarding Xy and X3.

The collection A contains cxactly four pairs from X. Suppose A con-
tains four pairs from X, say, and none from X, and X3. Then, C contains
two pairs from X; and six from each of X2 and X3. Without loss of gen-
crality, 1 € C1,2€ (oNC3NCy,3 € CsNCs N Cq, and 2,3 & C;. Thus,
there exist. two transversals of C of the form {z,2, 3}, where 2 € Cy — {1}.
But only onc list in A contains the pair (2, 3), so this is iinpossible. Thus,
A must contain exactly two pairs from each of two of the sets X, X, and
X4, Without. loss of generality, assume A contfains no pair from X, and
contains two pairs from cach of X, and X3.

If each of A, and A3 were to contain one pair from cach of X, and Xj,
then the pair (2,3) would be in both A; and Aj. Since this pair is also in
Ay, by Lemma 3.7 a list colouring wonld exist. Hence, we may assume that
As contains two pairs from X and A4y contains two pairs from Xa.

This means C contains six pairs from X, and four pairs from each of
X3 and X3. Since |C;N{1,2,3}] = 1 we may assume that 1 € C;NC,NC3,
2 € CyNCs and 3 € CgNCr. Since no two lists in C contain the same pair
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from X, Cs N C7 = {3}. Hence, there are four distinet transversals of C of
the form {1,2,2,y} where € Cs — {3} and y € C7 — {3}. By Lemma 2.2,
we may assuine that each of these transversals has a subset that is a list in
A. However, A, is not a subsct of any such transversal. Neither are any of
the four lists in A disjoint from Ay, nor is Az. This implies A, is a subset
of all four transversals which is impossible.

Hence, A4, is disjoint from exactly three lists in A. (]

Theorem 3.10 Suppose N = 9. Then for any collection of lists A and C,
K77 can be properly coloured.

Proof Sketch: By Lemma 2.7, we assune that every pair is in some list of
AUGC, and, by Lemma 2.2, that every transversal of A (respectively C) has
a subsct that is a list in C (respectively A). By Lemma 3.9, we can assume
that A; = {1,2,3}, A; N {1,2,3} #0 for all i € [2,4], 4;N{1,2,3} =0 for
all i € [5,7) and |C; N {1,2,3}] <1 for all i € [1,7]. This means that A
contains at least four and at most six pairs from the set X = [1,3] x [4,9]
and C contains at least twelve and at most fourteen pairs from X. Hence,
at least six lists in C contain an clement from {1,2,3}.
Define X;, X, and X3 as in the previous proof.

Case 1 (sketch): Suppose C; N {1.2,3} # @ for all i € [1,7]. By Lemma
2.10 and Corollary 3.8, we may assume that 1 € CyNCNC3,2€ C4NCy
and 3 € C41C;. Hence, C contains at most four pairs from each of X2 and
X3, which implics that A coutains at. least two pairs from each of X, and
X3. Now, consider the transversals of C of size three or four containing the
pair (1,2). One of these has no subset which is a list in A, a contradiction.

Case 2 (sketeh): Suppose exactly six lists in C contain an clement from
{1,2.3} and some clement in {1,2,3} is in only one list of C. By Lemma
2.10 and Corollary 3.8, we may assumec that 1 € C;NC2NC3, 2 € C4NCs,
3 € Cg and C7n {1,2,3} = 0. Therefore, at most four pairs from X, and at
most. two pairs from X3 are in C, which implies that A contains two pairs
from X, and four pairs from Xj3. Since 3 € A, and no clement appears in
A four times it can be assumed without loss that 3 € A3N Ay, In turn, this
implies that 2 € A, and Az € {2}U[4,9]. For any x € C4— {3} and y € C7,
the set {1,2,z,y} is a transversal of C. At Jeast two of these transversals
have no subset that is a list in A, a contradiction.

Case 3: Exactly six lists in C contain an element from {1,2,3} and every
clement in {1,2,3} is in exactly two lists of C. Without loss of generality,
assume 1 € C,NCe, 2€ C3nNCy, 3 € CsNC; and C;N{1,2,3} = 0.
Since C contains at least twelve pairs from X, C contains exactly four
pairs from cach of X, Xz and X3. Since A contains at most six pairs from
X, then A contains two pairs from each of X, X» and Xa. Thercfore,
{1. 2,3} C A UA3U Ay
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Suppose that the pair (1,2) appears in some list in A besides A;. With-
out loss of generality assume that 1,2 € 4,. Since there is only one pair
from each X; and Xy in Ay, 1,2 € A3U A4, Since the pair (1,2) is in both
Ay and Ay, by Lemma 3.7, we may assume that 1 € A; and 2 € 4,. Since
A; € [4,9] for i = 5,6,7 then for some i # j, i,j € (5.7, AivA; # 0
Assume that 4 € A5 N Ag. Then for auy y € A;, the set {1,2,4, y} is
a transversal of A. Since no list in C contains the pair (1,2) and cvery
transversal of A of size three is a list in C, 4 € A;. Hence, there are three
transversals of A of the form {1,2,4,y}. Since no list in C contains both 1
and 2 then for any y € Ay there is a list {a,4,y} in C for some a € {1.2}.
Heuee, either two lists of A contain the pair (1,4) or two lists contain the
pair (2,4). This contradicts the fact that no pair from X appears in more
than one list. Henee, the pair (1,2) is in no list of A besides A;.

We may similarly assume that cach of the pairs (1,3) and (2,3) appears
in no list of A bhesides 4. Hence, |A4; N {1,2,3} = 1 for all i = 2,3.4.
Since {1,2,3} € A2 U A3 U Ay, we may assume that 1 € Ay, 2 € Aj and
3€ A,

Recall that Cr C [4,9]. Without loss of generality, assume C; =
{7.8,9}. Now, for any a € {1,2,3}, at most two pairs from {a}x[7.9] are in
A. Hence, C contains at least one such pair. This means C7N(Ca;—y UCy;) #
# for all of i = 1,2 and 3. Assume C;NC; # 0 for i = 1,3, 5.

Let Cy = {1,y,z}. Then for any a € C) N C; the sets {2,3,a,y} and
{2.3,a, 2} are transversals of C. Since the only list in A containing both 2
and 3 is {1,2,3) there is no choice of a such that a = y or a = 2. Since Ay
and Ay are the only lists hesides {1,2, 3} containing 2 and 3 respectively,
assine Ay = {2,a,y} and Ay = {3.q,z}.

Let Cy = {2,w,2}. Then for any b € C3n (5, {1,3,b,w} and {1,3,b, )
are transversals of C. As hefore, we can conclude that Ay = {1.b,w} and
Ay = {3,b,2}. From the two representations of A4, we have {a, z} = {b,2}.
Since no pair in X is in both Az and Cy then {w, 2} N {a,y} = 0. Hence,
b = a. However, this means that A, and C| both contain the pair (1,a)
which contradicts the fact that no pair from X is in more than one list. O

4 Eight Colours

Lemma 4.1 Supposc a + c = 14 and N = 8. [f there is no list colouring
of Ky ¢ then one of the following holds.

1. Foranyi#j, |AinA;| <1
2 Foranyi#j. |CinCj <1.
3. For any i and j, |A;NCj| > 1.
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Proof Sketch: Tt follows from Lemma 2.2 that cvery 4-subset of [1,8] is
cither disjoint from exactly one list in A or has exactly one subset in C,
but not both. ]

Lemma 4.2 Supposc a + ¢ = 14 and N = 8. If some clement i3 in more
than a — 4 lists of A (respectively C) then there is a list colouring of Kq c.

Proof. Similar to Lemma 2.9. a

Theorem 4.3 Supposc a + ¢ =14, and N = 8. Then for any collection of
lists A and C, there is a list colouring of Kq .

Proof. Suppose a = 5. Since N = 8, some element appears in at least two
lists of A. Hence, therce is an element in more than a — 4 elements of A and,
by Lemma 4.2, a list colouring exists.

Suppose @ = 6. Since N = 8, some clement appears in three lists of A.
Therefore, by Lenuna 4.2, a list colonring exists.

Suppose a = 7, and A and C arc collections of lists for which K7 7 has
no list colouring. Then, by Lemma 4.2, no clement is in more than three
lists of A. Hence, at least five clements are in oxactly three lists of AL It
fullows that for some A;, every element in A; appears in cxactly three lists
of A. Assume that 4, == {1,2,3} and each element in Ay is in three lists
of A. Furthermore, by Lemma 4.1, A, is the only list in A containing any
of the pairs (1.2), (1,3) and (2,3). Hence, we may assume without loss of
generality that Ay = {1,4,5}, Az = {1,6,7},2€ AyN A5, 3 € AgN A7.

The sets {1,2.3}, {2,3,4,6}, {2.3.4,7}. {2,3,5,6} and {2,3,5,7} are
all transversals of A. Therefore, by Lemma 2.2, they have subscts that are
lists in C. Hence, we may assume that Cy = {1,2.3}. Since the pair (2,3)
is in at most one list of C, cither {2, 4,6} or {3,4,6} is a list in C. Without
loss of generality, assume Co = {2,4,6}. By Lemma 4.1, it follows that
{3,4,7}, {3,5,6} and {2.5, 7} are lists of C. We may assume these are lists
5 through Cj, respectively.

By Lemma 4.1, AyNC5 and A;NCy are both non-empty. Since 3 is not
in Ay, Ay N {4,7} #0 and A4 N {5,6} # 0. It can be similarly shown that
A5 N {4.7} # 0 and A5 N {5.6} # 0. Hence, Ay, A5 C {2,4,5,6, 7}. Since
A, and Ay are the only lists in A containing 2, the pair (2,8) is in no list
in A. However, the pair (2,8) is in none of Cj, Ca or Gs. Since these are
the only lists in C containing 2, the pair (2,8) is not in any list of C. By
Leamma 2.7, this implies a list colouring exists, a contradiction. (m]

5 Seven Colours

Lemma 5.1 Suppose N = 7. Either every clement appears in ezactly three
lists of A (respeetively C) or there is a list colouring of K7.7.
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Proof: By Lemma 2.10 no element is in more than three lists in A. Since
|A] = 7, cach clement. is iu exactly three lists in A. i

Lemma 5.2 Suppose N =7 and A and C are collections of lists for which
K37 is not list colourable. Then every pair of clements appears in evactly
onc list of A (respectively C).

Proof By Lemma 2.10, no element is in more than three lists of A or three
lists of C. Since a = ¢ = 7, cach element. must appear in exactly three lists
in each of A and C.

Now suppose the pair (1,2) is in no list of A. We may asswine, without
loss of generality, that 1 € A;NA2NA;3, 2 € AyNAsNAg and A7 = {3.4,5}.
Then the sets {1,2,3}, {1,2,4} and {1,2,5} are transversals of A, and, by
Lemma 2.2, lists in C.

Since 6 is in exactly three lists of A, it must either be in at least two of
Ay, Az and Az or at least two of Ay, As and Ag. Without loss of generality,
asstune 6 € A, N Ay. Consider any 2 € Az — {1,7}. Then 2 € [3,6]. If
a = 6 then the set {2,3,6} is a transversal of A, otherwise the set {2,6,z)
is a transversal of A. In either case, the transversal is not a list in C since
at most three lists of A contain 2. This contradicts Lemma 2.2.

Therefore, every pair of clements appears in some list in A. Since there
are twenty-one such pairs and each of the seven lists in A contain exactly
throe, cach pair appears in exactly one list in A, o

Lemma 5.3 Suppose N =7 and A and C arc collections of lists for which
K77 is not list. colowrable. Then A = C.

Proof. Without loss of generality, assume A = {1,2,3}. Then, by Lemnma
5.2. none of (1,2), (2,3) or (1,3) is in A; for any i € [2,7]. By Lemumna
2.10, each of 1, 2 and 3 is in exactly three lists. We may therefore assume,
without loss of generality, that 1 € As N A3.2€ AyN A and 3 € AgN A7,
Hence, the set {1,2,3} is a transversal of A. By Lemma 2.2, this set must
be a list in C. Therefore, every list in A is also in C and it follows that

A=C. o

Theorem 5.4 Suppose a + ¢ = 14. Then, for any assignment of lists of
size three to its vertices, there is a list colouring of Kq.., unless a = ¢ =
and the collections of lists A and C are the following, up to isomorphism:

A =C={1,2,3},{1,4,7}, {1,5,6}.{2.4,6}.{2,5, 7}, {3.4.5}. {3,6,7}

Proof. It has been shown that wnless N = 7 and @ = ¢ = T there is a
list colouring of K, .. Hence, assume that N =a=c¢=7. In A we are
requiring seven 3-subsets of [1,7] such that every pair appears in exactly
one subset. This is a Steiner Triple System on seven points, and it is well
known that there is only one of these up to isomorphism. ]
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Corollary 5.5 Let G be a bipartite graph on al most fourtecen vertices.
Then G is 3-choosable unless G = Kq.7.
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