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Abstract

In this paper, we find necessary and sufficient conditions for the
existence of a 6-cycle system of K, — E(R) for every 2-regular not

necessarily spanning subgraph R of K,,.

1 Introduction

An H — decomposition. of the graph G is a partition of E(G) such that each
olement. of the partition induces a subgraph isomorphic to A. In the case
where H is an m-cycle, such a decomposition is referred to as an m-cycle
system of G. An m-cycle system will be formally described as an ordered

pair (V.B) where V is the vertex set and B is the set of m-cycles.
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Results in this area date back to the previous century, but have received
a lot of attention over the past 40 years. There have been many results
found on H-decompositions of G for various graphs H and G, but mainly
on H-decompositions of K,,. The graphs [ that have been of most interest
are paths [14]. m-stars [13], m-cycles (10, 6, 8], m-wheels (3] and m-nestings
{3. 9] (which are two decompositions of K,,. one into m-stars and the other
into m-cycles, so that each m-cycle can be paired with an m-star to form a
wheel). Recently a paper by Alspach and Gavlas [1] and another by Sajuer
[11] settled the problem of finding the values of n for which there exists
an m-cycle system of K, and of K,, — I. where I is a one-factor. This
can alternatively be viewed as a partiel m-cycle system in which the set
of edges not in any mn-cycle is either @ or induces a one-factor respectively.
These edges not in any m-cycle (or the subgraph they induce) are called
the leave R.

Continming with the theme of finding graph decompositions of graphs
which are close to complete, one way to extend these results is to assumne
R. the leave. induces a 2-regular graph. and find the necessary and suf-
ficient conditions for the existence of an m-cycle system of K, — E(R).
This naturally generalizes the previously stated results where the leave was
empty. In 1986. Colbourn and Rosa [4] used difference methods to find
necessary and sufficient conditions for the existence of a 3-cycle system of

K, — E(R) for any 2-regular graph R. In 1996. Buchanan [2] solved this

problem for = u. that is. for Hamilton decompositions of i, — E(R).
by using amalgamations. Fu and Rodger [5]. using yet a third approach to
this problem. namely induction, settled the existence problean for 4-cycle
systems of K,, — E(R). for any 2-regnlar subgraph of K,. Recently. Leach
and Rodger {7] have found necessary and sufficient conditions for the ex-
istence of a Hamilton decomposition of the complete bipartite graph Kqp

with a 2-regular leave.
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In this paper, we extend these results by finding necessary and sufficient
conditions for the existence of a 6-cycle system of K, — E(R). for every 2-
regular not necessarily spanning subgraph R of K,,: see Theorem 4.1. The
proof is a recursive construction which requiﬁas that we first solve cases
where n < 17. At first sight this would seem to require constructing many
partial 6-cycle systems since the munber of possibilities for R is already
large when n = 17. However. one of the appeals of this paper is that. when
n= 17 for example. all possible leaves can be obtained from a single. very
carefully constructed m-cycle system; see Lemma 2.6. This is achieved by
using what we call the switching process, and is shown in Figure 1.

Let G[S] denote the subgraph of G induced by S.

2 The Small Cases

A tool that we will need is from a theorem by Sottean [12). Sottean proved

a generalization of the following result. It is stated here for 6-cycles only.

Lemma 2.1 There exists a 6-cycle system of Koy, if and only if:
1) a and b are even,
2) 6 divides a or b, and

3) min {a.b} > 4.

Next we can find necessary conditions limiting the munber of edges in
R. These can be seen in Lemma 2.2 and Table 1. Alternatively. since R
is 2-regular, these conditions can be described in terms of the number of
vertices in &, that occur in no eycle in R: snch vertices are called isolated
vertices of R. The set of isolated vertices of R is denoted by Z(R). This

is also shown in Lemina 2.2 and Table 1.

Lemma 2.2 Let R be a 2-reqular subgraph of the complete graph K. If
there exists a 6-cycle system of K,, — E(R), then n is odd and the number of
cdges in Iy — E(R) is divisible by 6. and these hold if and only if n. |E(R)|.
and |Z(R)| are related as in Table 1.
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n 12541 | 12k+3 | 12545 | 12k+7 | 12849 | 12k+11

JE(R)] (mod 6) 0 3 4 3 0 1
|Z(R)| (nod 6) 1 0 1 4 3 4

Table 1: The number of edges in R and the number of isolated vertices of

R required in order that 6 divides | E(K,, — E(R))| when n is odd.

Proof: Clearly once the edges in R are removed each vertex must have
even degree in order for K, — E(R) to have a 6-cycle decomposition. so n.
is odd. and clearly 6 must divide |E(K, — E(R))|.

Suppose. n is odd and |E(K,, — E(R))| is divisible by 6. Then |E(R)| =
(3) (mod 6). thus giving the second line of Table 1. Also, since |Z(R)| +
[V(R)] = naud |V(R)| = |E(R). [Z(R)] = n—|E(R)]. thus giving the third
line of Table 1. A proof of the converse statement follows similarly. 0

In view of Lemnas 2.1 and 2.2, throughout the rest of this paper we

can assine that « is odd. and that

IZ(R)] € {0.1.3.4}. *)

This is possible since by Table 1 we kuow that |Z(R)| = 0.1.3. or 4 (inod 6).
so if |Z(R)| > 6 then we can add 6-cycles to R until the resulting 2-regular
graph R’ satisfies |Z(R')] = |Z(R)| (mod 6) and |Z(R')| < 4. Once a set
of 6-cveles B with leave R’ is found. the required partial 6-cycle system is

simply formed by BU (R’ \ R).

Lemma 2.3 Let n € {1.3.7.9.11} and let R be 2-regular in K,. Ifn is
odd and |E(K, — E(R))| is divisible by 6, then. there exists a G-cycle system,
of K,, — E(R).

Proof: We cousider each value of » in turn. In each case. we construct a
6-cycle system (Z,,. B). Using Table 1, it is easy to check that the given

conditions require that:
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We denote this switch by:

£(0.6.7).(2,4.5)}

(1.8.6.5.0.2) | (1.8.6.0.5.2)

{(0.2.4.5.6.7)}

Figwre 1: Combining and separating leaves.

if n = 1. then E(R) = ¢; if n = 3. then R is a 3-cycle; if n = 7. then Ris a
3-cycle; if .= 9. then R is two 3-cycles or R is one 6-cycle; and if » = 11,
then R is either one 3-cycle and one 4-cycle or is one 7-cycle.

If n € {1.3}, the result is trivial; and for n > 7, in each case. we define
the G-cycle system (Z,,, B) as follows.
n="T B={(0,2.4.5.1,0), (0,4.3,2.6,5), (1.2,5,3.6.4)} is the required
G-cycle system with leave R = {(0.1,3)}.
n = 9: If Ris two 3-cycles then B, = {(1,8.6,5.0.2), (0,3,2,6.4,8).
(1.6.3.8.2,7). (1.4,3,7.8.5), (0.1,3,5.7.4)} is the required 6-cycle sys-
tem with leave R = {{0.6.7). (2.4.5)}.
If R = ¢ then let B, = {(1.8.6.0.5,2), (0,3.2,6,4.8). (1.6.3.8.2.7).
(1.4.3.7.8.5). (0,1.3.5.7.4). (0.2.4.5,6.7)} be the 6-cycle system of Ky
and if R is one 6-cycle then let By be formed from B, by removing one
6-cycle.
n = 11: If R is one 3-cvele and one 4-cvele then By = {(8.7.0.6.2.3),
(0.4.7.2.9.5). (0.8.4.1.6.9). (0.3.9.7.5.10). (1.8.6.4.9.10). (1.7.6.
10.8.9). (1.3.10.4.2.5), (7.3.5.8.2.10)} is the required 6-cycle system
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{(1.5.9).(2.6.10),(3.7.11).(1.8.12) } ((1.1,7.10),(2.5,8.11).(3.6.9.12) }

{10.9.6.5.2.1) (10.9.6,2.5.1) (1.2.3.4.5.6) (1,2.5.4.3.6)
{(1.2.10.6,5.9).{3.7,11).(4.8,12)} — {{1.4.7.10).(2.3.12.9.6.5.8.11)}
(11.12.3.4,7.8) (11,12.3,7.1.8) (R9.11,5.12,2) (8.9,12,5.11.2)
{(1.2.10.6.5.9).(3.4.12.8.7.11)} {(1.4,7.10).(2.3.12)(5.6,9.11.8) }
(2.3.6.7.10.11) (2.3,6.10.7.11) (8.6.12.10,2.7) (8.6.12.2,10.7)
{(1,2.10.11,3.4.12,8.7,6.,5.9) } {(1,4.7.2.3.12.10).(5.6.9.11,8)}

(2.3,6.7.10.11) (2.3.6,10.7.11)
{(1.2.10.11.3.7.6.5.9). (4.8.12)} <

Figure 2; All possible leaves when n = 13.

with leave R = {(0.1.2). (3.4.5.6)}.

If R is one 7-cycle then By = {(8.7,0,2,6.3), (0,4.7,2.9.5),(0.8.4.1.6.9),
(0.3,9.7.5.10), (1.8.6.4,9.10), (1.7.6.10.8.9). (1,3, 10,4.2.5). (7.3,5.8.
2.10)} is the required G-cyele system with leave R = {(0.1.2.3.4.5.6)} O

As is evidenced by Lemma 2.3, multiple leaves are possible. In fact,
that is usually the case. If the G-cycles are chosen carefully. the following
technique of combining and separating leaves can be used to exhaust many
possible 2-regular leaves starting with just one partial 6-cycle system. The
case n. = 9 will be used as an example. (This process can be represented
pictorially as in Figure 1; notation used to easily describe this switch is also
introduced in Figure 1.) In Lemma 2.3. (Zy. B1) has leave R = {(0.6.7).
(2.4.5)}. Since the G-cycle (1.8.6.5.0.2) is in By. the edges (0.2) and

(6.5) can be removed from this G-cycle and added to the leave. and edges
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(0.6) and (2.5) can be removed from the leave and added to this G-cycle.
The result is a new 6-cycle (1.8,6.0,5.2) and the new leave is the 6-cycle
(0.2.4,5.6,7). This technique will be used extensively to find all possible
leaves for 13 < n < 17 in the next three results. By carefully selecting
the 6-cycles in the initial partial 6-cycle system, all leaves can usually be

obtained in this way! We call this the switching process.

Lemma 2.4 If|E(K 3~ E(R))| is divisible by 6, then there exists a 6-cycle
system B of K14 — E(R).

Proof: We start with the G-cycle systems (Zy3, By) and (Z,3. Bo) defined
below. Then the other possible 2-regular leaves can be formed from By and
B> by using the switching process. as is shown in Figure 2.
B, ={(10,9.6.5.2.1), (2.3.6,7.10.11), (11.12,3,4.7.8), (0, 1, 11,6, 8.9).
(0.2,9.11.5.10). (0.3.8.1.4.11), (0.4.6.12.5.8). (0.5.4.2.7.12). (0.6.1.
3.5.7). (1.12.10.4.9.7). (2.12.9.3.10.8)}
with leave By = {(1.5.9). (2.6.10). (3.7.11). (4.8.12)}, and
Bs = {{1.2.3.4.5.6). (2.8.9.11,5.12). (8.6.12.10.2.7). (0,1.3.5.10.8),
0.2,6.11,4,12). (0,3,8.1.12.11).(0.4,2.9.7.5), (0.6, 7.1.9.10), (0. 7. 11,
1.5,9). (10.3.7.12.8.4). (10,6.4.9.3. 11)}
with leave R, = {(1.4.7.10), (2,5.8.11), (3.6.9.12)}.

B]

Lemma 2.5 If|E(K5—E(R))| is divisible by G. then there exists a G-cycle
system B of K15 — E(R).

Proof: We start with the 6-cycle system B = {(3.8.0.4,1,7),(8.14.1.3. 2,
4). (14.2.5.9.3.10). (6.11,14.0,12,2). (0,13.7.4.6,5). (13.8.1.10.4.9).
(12.5.7.11.8.9). (1,6. 10.13.11.12). (0.3. 11.4.14.9), (0.6.3.13.5. 10).
(0.7.9.1,5.11), (1.11,2.9.6.13). (2.7.14.3.12.8), (2,10, 7. 12.4.13).
(5.8.10.12.6,14)} with leave R = {(0.1,2). (3.4.5). (6.7.8). (9.10.11).
(12.13.14)}. The other possible 2-regular leaves can be formed from B by

using the switching process, as is shown in Figure 3. o
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|Boﬂm with RI

{(0.1.2).(3.4.5).(6,7.8).(9. 10.11).(12,13.14) }

(8.14.1.8.2.4) (8,14.1,2,3,4)

{(0.4.3.5,4.2).(6,7,8).(9.10.11),(12,13.14) }

{0.13,7.4,6,5) (0.13.7,6,4.5)

{(0.1.3.5,6.8,7.4.2).(9.10.11).(12.13.14) }.

(12.5.7.11.8.9) (12,5.7.8.11.9)

{(0.L3.5.6.8.9.00.11.7..,2).(12.18.14) }

{1.6.10.13,11.12) (1.6.10.11.13,12)

{(0.1,3,5.6.8,9.10.13.14,12,11.7.4,2)}

£(0,1.3.5.4.2).(6.8.9, 20,1 1.7).(12.13. 1)}

)

(12.5.7.11.8.9)
(12.5.7.8.11.9)

(0,0.3,5,6.8.7,4,2).(9.11,12,14.13.10) }

(L.6.10.13.11,12)
(1.6.10,11,13.12)

(8,0,4.1,7.3) (8.0.4,7.1.3)

{(0.1.4.2),(3,5.6.8,7) (9.11.12.14.14,10)}

(6i.11.14.0.12,2) (6.11.14.12.0,2)

£09.11.12.2.4.1.0.14.13.10) .(3.5.6.8.7) }

{13.8.1,10.4.9) (13.8.1.4.10,9)

{(3.5.6,8,7).(1.0,14,13.10) (9.11,12,2,4)}

|

{00.1.1,2).(3.5.6,8.7).(9.00.11).(12.13.24) }__

(8,0.4.1.7.3)
(R0.4.7,1.3)

(12.5.7.11.8.9) (12.5.7.8.11.9)

(14.2.5.49.3,10)

'

1(0.1.4.2).(5.6.8.9).(10.11.7.3).(12.13.14) }

{(3.5.6.8,9.10,13.14.12.11.7).(0.1.4.2) }

(1.6.10.13.11,12)

(14.2.5.3.9.10)
$03.5.6.8.9.10.11,7).(0.1.4.2).(12.13. L) |

(6.11.24.0,12,2) (6.11.14.12.0,2)

{(3.5.6.8.9.10.11,7).(0.1.4.2.12,13.14) }

(1.6.10.11,13,12)

{(9.10.11)(3.5.6.8.7).(0.1.4,2.12,13.14) }

(14.2.5.9.3.10) (14.2.5.3.9.10)

{(5.6.8.0).(10,11.7.3).(0.1,4,2.12. 13.14) }

{6.11.14.0.12.2)

(6.11.19.12.0.2)

Figwre 3: All possible leaves when n = 15.
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Lemma 2.6 If|E(K 17— E(R))| is divisible by 6. then. there exisls a 6-cycle
system B of Ky7 — E(R).

Proof: Tlhroughout this lemma, we have . = 17. Rather than replacing n
with 17. we feel this will give the reader a good fecling for the flavor of the
proofs in the general cases. Let R[v] denote the subgraph of R induced by
the vertex set V.
First suppose R contains a 4-cycle, say ¢ = (n — 1L.n— 4.0 — 2.0 — 3).
Let V(R') = Zn-4 and R’ = R{Zy.-4]. Since Z,—q = Zy3. by Lemmas
2.2 and 2.4. there exists a 6-cycle system (Zy, 4.DBy) of K, 4 — E(R).
By Lemma 2.1, there exists a 6-cycle system (Z,, \ {0}. B2) of K24 with
bipartition {Z,. 13\ Z1.Zy7 \ Z13} of the vertex set; name these so that
¢=(n-1.1.n-3.2mn—4.4) € By. We still have left to place the edges
{n—1.n-2}. {n=3.n—4}. and {0.n—i} for 1 < i < 4intoa G-cycle. Then
(Zn. BYU(B\{c})U{(n—1.0,n—-3.2.n—4.4). (0.n—2.n—1.1.n=3.n—4.)})
is a 6-cycle system of K,, — E(R).

If R contains no 4-cvcle. then start with the 6-cycle system (Z,7. Bj of
K7 — E(R). where
B = {(0.3.11,4.10.8). (0.10.7.9.8.13). (0.12.1.11.2.14).
(2.6.3.12,5.16). (4.9.6. 16.7.15). (0.5.2. 10.15. 11). (0.6. 15. 13.11. 16).
(2.8.3.13.16.12). (2.7.11.14.12. 9). (5.11.6.12,10.14). (0.1.10. 16.8.4).
(0.2.4,13.5.7), (0.9.11.8.12,15). (1.7.14.9.5. 3). (1.6.4.12.7.13).
(1.4.7.3.15.9). (1.8.14,3.9. 16). (2, 13.10.5.8, 15), (3. 10. 6. 14.4,16).
(5.6.13. 14. 1, 15)}: s0 the leave R = {(1.2.3.4.5), (6.7.8). (9.10.11.12.13).
(14.15. 16)}. The other possible 2-regular leaves can be formed from B by

using the switching process. as is shown in Figure 4, 0

3 Some Building Blocks

In this section. we provide some 6-cycle systems of small graphs which will

be used to build 6-cycle systems of X,, — E(R) in Section 4. Let G¢ denote
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(0.10.7.9.8.13)

Begin with R

(0.10.7.,8.9,13) }

{(1.2.3.1.5),(6.7.8),(9.10.11.12,13).(10.15.16) }  {(1.2.3.-0.5),(14,15.16).(9.10.11.12.13.8.6.7) }

(0.11.2,11.1.12) (0.14.2.1.11.12)

{(6.7.8),(11.15.16).(11.2.3.4,5.1.12,13.9.10) }

(9..1.15.7.16.6) (9.-1.15.16,7.6)\

{(7.8.6.16,1.1.15).(11.2,3.4.5.1.12.13.9.10) }

(0.8.10.1.11.3) (0.8.10.11,1.3)

{{7.8,6.16.11.15).(2.3.11),{1.10.9.13,12.1.5) }

(5.12,3.6.2,16) (5,12.3.2,6.16)

—_—

(6.13.14.1.15,5) (6.13.1-1.15.1,5)

{(1.2.3.4,5.15.16.14),(9.10.11.12.13.8.6.7) }

(9.4.15.7.16,6)
(9.1.15.16,7.6) I

{(1,2.3.4.5).(9.10.11.12.13).(7.8.6.16.14.15) }

(5.12.3.6.2.16) (5.12.3,2.6.16)

{(9.10.11.12.13).(16,2.1.5.4.3.6,8.7.15.1.1} }

{0.8,10.4.11.3)

{0.8.10,11.4.3) 1)

{(4.10.9.13.12,1,5),(7,8,6.3,11,2,16.14,16)} |{(6.7.8).(14,15,16).(2.3.11).(1,10.9,13,12.1,5)}

(6.13.14,1.15.5)

(6.13.14,15.1.5) 1

{(6,7,8).(11,2.3.4.5.15,16.14.1.12.13,9.10) }

(9.4,15.7.16.6) (9.4.15.16.7.6)

{(11.2.3.1.5.15.7.8.6.16,14.1.12.13.9.10) }

Figure 4: All possible leaves (with no 4-cycles) when n = 17.

the complement of a graph G. Also let GV H denote the join of two
vertex disjoint grapls G and H (so K(GVH) = E(G)UE(H)U{u.v:u €

V(G).v e V(H)}).

Lemma 3.1 Define four graphs, each with vertex set Zg. as follows.

Let Gy be the graph K§VKg—{{0.8}.{0,7}.{8.7}.{1.6},{1.5}, {6.5}. {2.4}.

{2.3}. {4.3}}. lct G2 be the graph K§

v Ko — {{0.8}. {0, 7}. {1,7}. {1.6G},

{2,5}. {2.4}. {8.6}, {5.3}, {4,3}}, let G be the graph K§v K- {{0.8},
{0.7}. {1.7}, {1.6}. {2,4}, {2.3}, {8.5}, {6.5}. {4.3}}. and let Gy be
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the graph K§ v K = {{0.8}. {0.7}, {L.7}. {1.6}. {2.6}.{2.5}}. with
V(KS) = Zy and V(Kg) = Zy \ Zy for each case. There exists a G-cycle
system B of Gg for 1 £ 3 < 4.

Proof: For 1 < 3 < 4. there exists a 6-cycle system (Zg. By) of G5 defined

by

By ={(0.4.1.8.6.3). (0.5.2.7,4.6). (1.4.0.3.6.8). (2.6.7.3.5.8)}.

By = {(0.4.8.7.2.6). (0.3.8.1.4.5). (1.3.6.4.7.5). (2.3.7.6.5.8)}.

By ={(0.3.6.7.5.4). (0.5.1.4.8.6). (1.3.5.2.7.8). (2.6.4.7.3.8)}. and
By ={(0.5.8,2.3.6). (0.3.5.7.8.4). (1.4.2.7.6.8), (1.3.7.4.6.5) }. 0

Lemma 3.2 Let G be the graph K, — E(R) for some 2-veqular subgraph
R of K,,. where 6 divides |E(K, — E(R))|. n is odd, and v > 25. Fur-
thermore. if R contains x cycles. then let them. have lengths 1y 1y 15 ... 1.
Supposc that if R is any 2-regular subgraph of K12 such that 6 divides
[E(Ky—12) — I2(R')| then there exists a G-cycle system of K, 12 — E(R').
If there exists a subset L of {1.2.....x}, say {1.2..... y} such that for each
i in L there exists an integer j; such that

(i)3<ji<9orj; =12 and

(i) li—jgi=z3orli =y

and such that 37| ji = 12 (s0 clearly y < 4). then there erists a 6-cycle
system of K,, — E(R). »

Proof: Cousider a complete graph of order n with vertex set N that con-
tains the 17 vertices {0.0;.bi.¢;odi | 1 < @ < 4} with [N| = ». Partition
N\ {0} into four sets A;.As. By. and By where: A = {ar.epoaz 03}
| 42| = n — 17; {ag. 2. ax.ca} © Ag: |Bi] = |Ba| = 6 {b1.d1. b2 d2} C Du;
and {ba. dy.by.dy} € By (see Figure 5).

Let Py = {A1.B1}. Py = {Ao. B1}. Py = {Ay. By}, and Py = {A3. Ba}.
For 1 < ivj < 2. let (A; UBj, Bfyq;. ) be a 6-cycle system of K1 p;);
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this exists by Lemma 2.1, Without loss of generality. for 1 < <4 we may
assume each set BF of 6-cycles contains the 6-cycle C; = (ai. bi. ¢i. di. i i)
for some x;. ;.

Since R contains @ cvcles of lengths Iy lo. ... L. let L = {1.....y}. and
= {i e L|ji <li}|. We may assume j; < l; for 1 <i < z. Using the
assumption in the statement of this lemma. we can obtain a partial 6-cycle
svstem ({0} U Ay U Ap. By) with leave R, for 1 <i <z and y+1<i < .
where each cycle in R} has length I; — j; if 1 <7 < 2. and length I; for
y+1<i<.e Wemay assmme that for 1 < i < =, R’ contains the cdge
{ni.ei}.

By Lemuna 2.4. there exists a partial 6-cycle systemn ({0} U By U Bs. Bg)
with leave R where each cycle has length j; for 1 <i < 3. We may assume
that for 1 <i < z. R does not. contain vertex 0 aud does contain the edge
{bi.d;}.

Finally. consider the partial 6-cycle system (K,. B U B3 UBjUDBj U
Bz U Bg). For 1 <4 £ z. first veplace the G-cycle C; by the G-cyvele
(@i i bicdi i yi). Then replace the leave cycles R: and RY by the single
leave cycle on edges (E(R))UE (RO {ai. b} {ei. di D\ Hai i} {bi. di}}
of length I;. 0

4 The Main Result

The complete solutions for » < 17 fowd in Lomimas 2.3 - 2.6 form the basis
for an inductive argument which we need to split into the two following
resnlts. The first considers the harder cases where n = 1.3 or 5 (mnod 12)
where |Z(R)| € 1. The second case uses this result to handle the cases
where n.= 7.9 or 11 (mod 12). These are then gathered together to prove

the main theorem. Theoren 4.1.
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A

by b ds___

Bl B'.!

Figure 5: Using Lemma 3.2 with [} =13, ) = 9. and I = jo = 3.

Proposition 4.1 Suppose n = 1.3. or 5 (mod 12), and n # 5. Assume
that for all e satisifying 7 < o < n, and for any set of vertex disjoint cycles
in K, that satisfy

1) |E{K,, — E(R")| is dimisible by 6. and

2 ) ais odd.

there exists o G-cycle system of Ko — E(R'). If R is a sel of verler disjoind
eyeles of K, such that 6 divides |12(K,, — I2(R))| then there exists a G-cycle
system of K,, — E(R).

Proof: In view of Lemmas 2.4. 2.5. and 2.6. we can assume that n > 25
and in view of assumption (*) we know that |Z(R)| € {0.1} (see Table 1).
Case 1: Suppose R contains cycles whose lengths add to 9. There are
fowr possible choices for R. namely R € {Ry. Ry, Rs. R,} (the vertices are
named explicity for onr construction of B: see Figure 6) where:
Ri={(0.n=Ln=2).(Lon=3n—1).(2.u—=5n-06)}
Ro={(n-10,n-2Ln=-3).(n—-42.n-5n-06)}
Ri={(n-10.n-21L.n—3.n—4).(n-52n-06)} and
Ry={n-10n-2.1.n-3.2.n—4n—"5n— 6)}.

Form a partial G-cycle system (Z,. B) of K, — £(R) as follows. Define
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Figure 6: Graphs containing R; isomorphic to Gj.
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R, = R[Z, .} aud lot ¢ =0 —6 2 7. Then for 1 <7 <4 |[ER)| =
|E(R)| -9 = [E(R)| -3 (wmod 6). Since we asswned that 6 divides | (K, -~
E(R))|. by Table 1. we have that 6 divides |E(f,— L (Ri))]. Clearly since n
isodd. @ = n—6 isodd. So we can apply the assumption in this proposition
to obtain a 6-cycle system (Z,..c. B1) of |E(Ka — E(R)))!.

Since n > 25, clearly n.—9 > 4, and clearly n—9 is even and |Z,,\Z,, _g|
is 6. So by Lemma 2.1 there exists a 6-cycle system (Zy,. Ba) of K,,_g4
with bipartition {Z,, -¢ \ Z3.Zy \ Zpn-c} of the vertex sot.

Finally. by Lemma 3.1. there exists a G-cycle system ((Z,, \ Zy..¢) U
Zy. By) of Ky — (E(R;) U {{0.1}.{1.2}.{2.0}}) = G;. (Notice that the
edges in the 3-cycle (0.1.2) are in a G-cycle in B.)

Since By U By U By are cycles covering all edges in K, except those in
R. we have that (Z,,. By U By U By) is a G-cycle system of I, — E(R).
Case 2: Suppose R contains a set of cycles Ry whose lengths add to 12.
Let V(Ry) = Zy \ Zy—12. Define R’ = R[Z,12). and let o =1 — 12. Then
[E(R)] = |E(R)| - 12. Since we asswned that 6 divides |[E(K, — E(R))].
by Table 1, we have that 6 divides |[E(K,-12 — E(R'))|. Clearly since n is
odd. 1 — 12 is odd. So we can apply the assumption in this proposition to
obtain a G-cycle system (Z,_ 2. B1) of (I, 12 — E(R'))].

Since n > 25. clearly n — 13 > 4. and clearly n — 13 is even and |Z, \
Z, _12| is divisible by 6. so by Lemina 2.1 there exists a G-cycle system
(Z,. Ba) of K, - 1312 with bipartition {Z, -12\Zy. Zy, \Z, .12} of the vertex
set.

Finally. by Lemma 2.4, there exists a G-cycle system ((Zy \Zy-12) U
Zy. By) of K13 — E(1)).

Since By U Bs U By are cycles covering all edges in K,, except those in
R. we have that (Z,,. By U By U By) is a 6-cvele system of K, — E(R).

Case 3: Suppose R contains a set of cycles Ry whose lengths add to

15. Let V(Ry) = Zy \ Zy-15. Let C = (n — 16.2 — 1d.n — 13). Define
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the 2-regular graph R = R[Zy \ Zy-15) U C and let o = n — 15, Then
|E(R)] = |E(R)| - 15+ 3 = |B(R)| — 12. Since we assumed that. 6 divides
(I, — E(R))]. by Table 1 we have that 6 divides | (K12 — E(RN)|.
Since 1 is odd clearly n — 12 is odd. So we can apply the assumption in
this proposition to obtain a 6-cycle system (Z,-12. By) of K,_12 — E(R').

Since » 2 25. clearly » — 15 > 4 and dearly n — 15 is even. and |2, \
Zy_12| is clearly divisible by 6. so by Lemma 2.1 there exists a G-cycle
system (Z,,. Bp) of Ky_.15.12 with bipartition {Z,,_.5.Z, \ Z,_12} of the
vertex set.

Finally by Lenima 2.5, there exists a 6-cycle svstemn (Z,, \ Z,, .15. By) of
K5 — E(R). (Notice that the edges in C do not ocenr in a G-cyele in By;
each of these edges ocowr in a cycle in R\ R’ or in a 6-cycle in By.) Since
By U B,y U By is a collection of 6-cycles covering all edges in K, except those
in B. We have that (Z,,. B; U B2 U By) is a 6-cycle ststem of K,, — E(R).

Case 4: Having dealt with these three cases. we need to determine
what possiblities are left.

Let N(I?) = (n3.14. ... n3), where /4 is the length of the longest cycle
in R. and where »; is the mumber of i-cycles in R. 1f R contains a cycle of
length 1} > 15. by choosing & = 1 and j; = 12 apply Lemma 3.2. We can

‘now asswumne that 3 < 14. Similarly, we can assume that: by Case 1, n3 <2
and ng = 0; by Case 2. nqy < 2. ng < 1, and nya = (O by Case 3, ng < 2
and ny5 = 0; by Lemma 3.2. ny < 2 (if 7 = 3 then choose y = 3 and
J1 = jo2 = ja = 4), and similarly by Lemma 3.2 ng < 1L mjg < Lonpp < 1
g < 1oand nyg < 1. S0 we can now assume that N(R) (expressed with
4 = 14) is majorized by N = (2.2.2.1.2.1.0.1.1.0.1.1) (the scquence N(R) is
majorized by (). sa. ... 83) if n; < s; for 1 <i <3). To form the required
6-cvele system (Z,,. B) of K, — E(R). we will use Lemma 3.2 and define B

by considering various cases in turi.
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Case 4.1: Suppose R contains exactly one eycle of length Iy € {13. 14}.
Then since [I5(R)} > 24. R contains another cycle say of length . I ly 2> 6.
let. jy =9 and jo = 3. and if lp < 5. let j; =121y and ja = l5. In either
case apply Lemma 3.2 to form B.

Case 4.2: Suppose R contains a longest cycle of length [y = 11. Then
since |E(R)| > 24 and since R contains at most two 3-cycles. R contains
another evele with length lo > 4. If lo 2 7. let j; =8 and jo = 1. If I» < 6.
let j; =12 — s and ja = Iy, In cither case apply Lemma 3.2 to formn B.

Case 4.3: In view of Cases 4.1 and 4.2, we can now assume that /3 < 10,
Suppose R contains a cycle with length [y = 10, Then since [L(R)] > 24
and nyy = 1, R must contain at least 3 cyeles. Suppose 2 contains two
cveles with lengths I and Iy, If o Iy < 4. let ji = 12— 15 — I3, jo = lo. and
Ja=ly. U5 < <7 let j; =12 1o and jo =1y, If I > 8. let j; =7 and
Jjo = 5. In any case apply Lemma 3.2 to form B.

Case 4.4: We can now assume 7 < 8. Suppose R contains one cycle of
length [} = 8. Since |£(R)] = 24. R contains more cycles.

If 7> 1. thenlet I =7, jy =8 and ja = 4.
If n = 0 and ng = 1 then let Is = 6. There must be a third cycle
Iy € {3.4.5}.

If Iy = 5. then let j, =4, jo = 3. and jy = 5.

If Iy = 4. then let jy = 5. jo = 3. and ja = 4.

If I3 = 3. then let j; = 3. jo = 6. and jz = 3.

If ny = ng = 0. then in view of Lemma 3.2, it must be that N(R) =
(2.0.2.0.0.1): et jy =4. Iy = jo = 5. and I3 = jy = 3.

In any case. apply Leinma 3.2 to form B.

Case 4.5: We can now assume 3 < 7. Suppose R contains two cycles
of length Iy = lp = 7. Since I} + 1o < 24 < |E(R)| then there exists a
third cvele in R of length Iy, If ng = 1. then let j, = 3. jo = 3. and

Iy = js = 6. If ng > 1. then let j; = 3. j2 = 4. and Iy = jy=5. If ny 2 1.
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then let ji = jo = jy = Iy = 4. Since |[E(R)] > 24. it is impossible for
ne =5 =ng=0since 7+ 7+ 3 +3 < 24. Apply Lemma 3.2 to formn B.
Case 4.6: Suppose R contains at most one 7-cycle. By Case 1: cither
ny=0orn; = 0: and either ng = 0 or ng = 0. Also. N(R) is majorized by
N. 50 Ing+06ng < 6 and dng+5n5 < 10. Therefore |E(R)| < 74+6+10 < 24,
But we know that |E(R)| > 24. a contradiction. So this is not possible.

Therefore all possibilities of R have been exhansted. and the result is

proved.

]
Proposition 4.1 exhansts the cases where p = 1.3, or 5 (imod 12). n #5.

We now complete the proof by considering the cases » = 7.9, or 11 (inod
12).

Proposition 4.2 Suppose n = 7.9.11 (mod 12). Assume that for all «
satisifying 7 < o < n. and for any set R’ of verter disjoint cycles in K,
thatl satisfy

') |E(Ky = E(R'))| is divisible by 6. and

2 ) v is odd,

there exists a G-cycle system of K, — E(R'). If R is a sct of vertex disjoint
eycles of K, such that 6 divides |E(K,, — [£(R))] then there exists a G-cycle
system of K,, — E(R).

Proof: In view of Lemma 2.3. we can assume that o > 19.

From Table 1. we sce that since n = 7.9, or 11 (mod 12) R has at least
3 isolated vertices: so we can asswme that o —4.2.=5. and 1 — 6 are isolated
vertices. We will consider 3 cases in turn. In each case R’ will be formed so
that |E(R')| = |E(R)| =3 (so also I(R') = I(R) —3). and o is chosen to be
n—6 > 13. Since we assume that 6 divides LK, — E(R))|. by Table 1 we
have that 6 divides |[E(IC, ¢ — 1(R'))] (since 1(R') = I(R) = 3). so (1') is

satisficd. Also n — 6 is odd since n is odd so (2') is satisfied. We can apply
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the assumption in this proposition to obtain a 6-cycle systen (Z,, - 6. By) ol
Ky_g - E(R).

Case 1: Suppose R contains a 3-cyele. Call the 3-cyele O = (0 — 1L.n —
2.n—-3). Let R =R[Z,,¢).- Then |E(R')| = |[E(R)| - 3.

Since n > 19. clearly n — 7 > 4. and clearly n — 7 is even and since
|Z, \ Z,, _g| is divisible by 6. by Lemma 2.1 there exists a 6-cycle system
(Zn. B2) of Ky 7.6 with bipartition {Z,,.¢ \ Z,. Z, \Z,. s} of the vertex
set.

Finally. by Lemma 2.3 there exists a 6-cycle system (Z,\Z, U {0}. By)
of K7 — E(C). Since By U Be U By is a collection of G-cycles covering all
odges in A, except those in R. we have that (Z,,. By U By U By) is a G-cycle
systan of K, — E(R).

Case 2: Suppose I contains a cycle of length @ > 6; call this z-cycle
C=0.n-1.2-2.1.n-3.2.3.4....... —4). Let R’ be formed from R[Z,. ¢|
by adding edges {0.1} and {1.2}. Then |E(R')| = |£(R7)| - 3.

Since n 2 19, clearly 2. — 9 > 4. and clearly Z,_¢ \ Z3 is cven and
|Zu \ Zy -4} is divisible by 6, so by Lenuna 2.1 there exists a 6-cvele system
(Zy. By) of K,; 9. with bipartition {Z,, .¢ \ Zy. Z, \ Z, ¢} of the vertex
sot.

Finally. by Lemma 2.3. there exists a 6-cyvele systemn (Z,\Z,, -¢UZs. By)
of Kg — E((0.n—1.n—-2.1.n-3.2)). (Notice that if r # 6 then the edge
{0.2} occwrs in a G-cyele in By.)

Since By U By U By contain cycles covering all edges in &, except those
in R. we have that. (Z,,. B) U By U By) is a G-cycle system of K, — E(R).
Case 3: Suppose R contains ouly cycles of length 4 and 5. Since by Table 1
|E£(R)| = 122 +y for some y € {3.6. 7} s0 |£(R)] = 4(3z) +2’ where 2’ > 2.
Therefore R has at least two 5-cveles. Choose two 5-cyeles and call themn
Cr=0.n=1.n-21.2)and Cy = (3.1 —3.4.5.6). Let R’ be formed from
R[Z,, ¢} by adding edges {0.1} and {3.4}. Then |E(R')] = |E(R)| - 3.
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Since n > 19, clearly w — 11 > 4. and clearly |Z,, 6\ Z5] is even aud
|Z, \ Zy -4 is divisible by 6, so by Lenmna 2.1, there exists a G-cycle systen
(Zy. B2) of Ky, with bipartition {Z, _6\ Zs.Z, \Z,,_s} of the vertex set.

Finally. there exists a G6-cycle system ((Z,,\ Z,, . 6)U Z5. By) of K5V K
+ {{0.1}.{3.4}} - {{0.n—=1}. {1, 0 —2}. {3, n—=3}. {4.n~-3}. {n— L. —2}}
defined by By = {(0. 1.n—=6.n=5.n-1.n.-3). (0.n—=6.n—2.n—3. 1.n-5),
2n—6n-1ln-4n-2n-5).3.n—dn—-3n-54n-2). (0.0 —
140-6.2.n-2). (L.o—4.2-6.4.3.0-1). 2.2-4.2-5.3.n-6.n-3)}.
We have that (Z,,. By U B, U By) is a G-cycle system of K, — E(R). a}

Finally. we present the main theorem of this paper.

Theorem 4.1 Let R be a 2-reqular graph in the complete graph K,,. There
exists a G-cycle system of G = K, — E(R) if and only if:

1) |E(K, — E(R))| is divisible by G,

2) nis odd. and

) n# 5.

Proof: Suppose that there exists a 6-cycle system (V. B) of G = K, — R.
Since the G-cyveles in B partition the edges of G. 6 must divide |E(K, -
L(R))]. For cach v € V. the edges in B incident with ¢ are partitioned iuto
pairs by the G-cycles. Since I is 2-regular there are 0 or 2 edges incident.
with @ in R. Therefore d(v) is even. It follows that since n = d(v) + 1. »
is odd. Finally, suppose n = 5. Clearly there is no G-cyele on § vertices so
B = o. It follows that all of the edges in I(; must be in R. But the edges
remaining do not induce a 2-regnlar graph. Therefore n # 5.

To prove the sufficiency. we begin by observing that ifn € {1.3.7.9. 11.
13.15. 17} then Lenmas 2.3, 2.4, 2.5, and 2.6 provide a 6-cycle systemn of
K, — E(R). We can now assume that » > 19.

1f 22 > 19 then the sufficiency follows by induction by applying Proposi-

tion 4.2 if n. = 7.9. or 11 (nod 12) and applying Proposition 4.1 if n = 1. 3.

or 5 (wod 12). 1}

148



References

(1] B. Alspach and 1. Gavlas. Cycle decompositions of K, and K, — 1.

J. Combinat. Th. (I3) 81 (2001). 77-99.
{2] H. Buchanan. Ph.D. dissertation. University of West Virginia. 1996.

[3] C. J. Colbowrn. C. C. Linduer. C. A. Rodger. Neighbor designs and m-

wheel systems. Journal of Statistical Planning and Inference 27 (1989).
335-340.

[4] C. J. Colbown and A. Rosa. Quadratic Leaves of maximal partial

triple systems. Graphs and Combinatorics. 2 (1986). 317-337.

[5] H. L. Fuand C. A. Rodger. Four-cycle systems with two-regular leaves.

sraphs and Cowbinatorics. 17 (2001). 457-461.

(6] D. G. Hoffman. C. C. Linduer. and C. A. Rodger. On the constrnetion
of odd cycle svstems. J. Graph Th. 13 (1989). 417-426.

[7} C. D. Leach and C. A. Rodger, Nondisconnecting disentanglements
of amalgamated 2-factorizations of complete multipartite graphs. JJ.

Combinatorial Designs. 9 (2001). 460-167.

(8] C. C. Linduer. and C. A. Rodger. Decompositions into cycles I Cy-
cle Systems. Contemporary Design Theory: A Collection of Survevs,

Wiley. New York (1992).

{9] C. A. Rodger. Probleins on eycle systems of odd length. Conigressus

Numerantinm. 61 (1938). 5-22.

[10] C. A. Rodger. Cycle Systems, in The CRC Haudbook of Combinatorial
Designs. (C. J. Colbourn and J. H. Dinitz. eds). CRC Press. 1996.

[11] M. Sajuer. Cycle decompositions 11I: Complete graphs with fixed

length cycles. J. Combinatorial Designs. 10 (2002). 27-78.

149



[12] D. Sotteau. Decompositions of K, (K7, ,) into cyceles (civenits) of

length 2k, J. Combin. Th. (B), 30 (1981), 75-81.

(13] M. Tarsi. Decompositions of complete multigraphs into stars, Discrete

Math. 26 (1979). 273-278.

[14] M. Tarsi. Decompositions of the complete multigraphs into simplé
paths: non-balanced handenffed designs, J. Combinat. Th. (A), 34
(1933). 60-70.

150



