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Abstract

A mazimal-clique partition of a graph is a family of its maximal complete sub-
graphs that partitions its edge set. Many graphs do not have a maximal-clique
partition, while some graphs have more than one. It is harder to find graphs
in which maximal-clique partitions have different sizes. L(Kj) is a well-known
example. In 1982, Pullman, Shank, and Wallis [9] asked if there is a graph with
fewer vertices than L(K5) with this property. This paper confirms that there is
no such graph.

1 Introduction

For our purpose, graphs are simple. Cliques are complete subgraphs of a graph
that are not necessarily maximal. The number of vertices in a clique is its order.
A clique of order = is also called an n-clique or K,,. A 3-clique is also referred
to as a triangle. The triangle on the set of vertices {a, b, c} is represented by
A(a,b,c). A cligue partition of G is a family C of cliques of G such that every
edge of G lies in exactly one member of C. If every element in C is maximal, then
C is a mazimal-clique partition of G. The number of cliques in a maximal-clique
partition is its size.

The subject of clique coverings of graphs has its origins in the problem of
representing set intersections by graphs. See Erdés, Goodman, and Pésa (3],
Lovasz [5], and Harary [4]. Many authors have investigated this topic, e.g.,
Orlin (8], Pullman and de Caen [10}, [11] and Pullman, Shank, and Wallis [9].
More recently, clique coverings and partitions were studied by Cacetta et al. [1],
Monson et al. (7], and others. The 1995 paper by Monson, Pullman, and Rees [6]
is an excellent survey.

Many graphs have no maximal-clique partition. For example, if n > 4, then
the graph obtained by deleting one edge from K, has none. The line graph
L(G) of a graph G is the graph whose vertices correspond to edges of G as
follows: e € V(L(G)) & e € E(G) and for any e, e; € V(L(G)), e, is adjacent
to ez if and only if edges e; and e; are adjacent in G.

Pullman, Shank, and Wallis [9] found that the line graph of K& has exactly
two maximal-clique partitions, one of size 10 and one of size 5. They asked
whether there is a graph with fewer vertices than L(Ks) with maximal-clique
partitions of different sizes. Our main result will confirm that there is none.
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Since we are especially interested in this example, in the following we will ex-
amine its properties in some detail.

L(K5s)

Figure 1: L(Kg): The line graph of Ky

Since K has ten edges, L{Ks) has ten vertices. In Figure 1, each vertex
in L(Ks) is labelled according to its inducing edge in G. Then two distinct
vertices in L(K3) are adjacent if and only if their labels share a digit. For each
i =1,2,...,5, there are four vertices in L(Ks) whose labels contain i; these
vertices generate a 4-clique. Thus, we have five 4-cliques partitioning the edge
set of L(K3). Moreover, since L(K5s) has no cliques of order larger than four, the
set of those five 4-cliques is a maximal-clique partition of L(Ks). Next, consider
the ten 3-sets of {1,2,3,4,5}. Let {z,y,2} be any 3-set of {1,2,3,4,5}. Then
vertices ry, yz and zz form a triangle in L(K5). Consider any vertex outside the
triangle A(zy, yz, 2). Its label can contain at most one digit in {z,y, z}. Thus,
it is adjacent to at most two vertices in A(zy, yz, zz). That is, A(zy, yz,zz2) is
maximal. Hence, a 3-set of {1,2,3,4,5} induces a maximal triangle in L{K5s).
Furthermore, the ten maximal triangles induced from the ten 3-sets partition
the edge set of L(K5), forming a maximal-clique partition of L(Kjs). Therefore,
we have two maximal-clique partitions of L(K3), one of size 5 and the other of
size 10. In general, the intersection graph of the 2-sets of an n-set, n > 5, (or
L(K,)) always has two maximal-clique partitions of different sizes.
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2 The result

First, we start by preparing a list of properties of graphs with at least two
maximal-clique partitions for the proof of the main theorem. We will apply
the classic theorem of de Bruijn and Erdds [2] as formulated in graph theoretic
terms by Orlin in [8].

Theorem 1. (N.G. de Bruijn and P.Erd&s [2], 1948)
IfC is a clique partition of K,, and 1 < |C| < n, then either

(i) C consists of one replica of Kn—1 and n — 1 replicas of Ky or
(i) C consists of n replicas of K41 and n=m24+m+1.

If a clique C is covered by maximal cliques in a maximal-clique partition,
then the edge set of C is partitioned into smaller cliques by those maximal
cliques. Theorem 1 guarantees that an n-clique is decomposed into at least n
smaller cliques. Hence, it follows that we need at least n maximal cliques from
a maximal-clique partition to cover an n-clique that does not belong to the
maximal-clique partition. Now with this idea, we can apply Theorem 1 to get
the following lemma and theorems. Three simple facts about clique partitions
are listed in the first lemma for easy reference.

Lemma 1.

(i) The intersection of two different mazimal cligues of a graph is empty or
is a clique of order less than the order of either.

(i) Any two cliques in the same clique partition of a graph share at most one
vertez.

(iii) Let G be a graph with a mazimal-cligue partition. Let M be any mazimal-
clique partition of G. Then each n-clique that does not belong to M needs
at least n different cliques in M to cover its edges.

Proof. The proofs are simple, but here are the details:

(%) Clearly the nonempty intersection of two cliques is a clique. If the in-
tersection is a clique of the same order as one of the original cliques, then one
clique is properly contained in the other, contradicting its maximality.

(#) If two cliques in a maximal-clique partition P share two vertices, they
will share the edge joining these vertices, contradicting the fact that P is a
partition.

(i11) Let K be an n-clique outside M. Let P= {C € M :E(C)n E(K) # 0}
and P’ = {KNC : C € P}. Notice that members of P’ are cliques and by Lemma.
1(i), pairwise they share at most one vertex, thus P’ is a clique partition of
K. Moreover, both types of clique partitions of K in Theorem 1 have size n,
which means that K has no clique partitions of size i, where 1 < i < n. Hence,
|P|=|P|2>n. @]
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Theorem 2. Let G be a graph with a mazimal-cligue partition. Let M be any
mazimal-clique partition of G, then

(i) If G has an n-cliqgue K that does not belong to M and if every pair of
mazimal cliques in M covering edges of K shares a vertez in K, then G
has at least 2n wvertices.

(ii) If G has an n-cligue K that does not belong to M and there ezist two
mazimal cliques in M covering some edges of K but not sharing a vertez
in K, then G has at least n + 6 vertices.

Proof. (i) Let K be an n-clique that does not belong to M such that every
two maximal cliques in M covering K share a vertex of K. By Lemma 1(3i7),
K is covered by at least n cliques in M. Let X and Y be two maximal cliques
in M covering K. Then X and Y share a vertex in K. By Lemma 1(i), each
of X and Y must contain a vertex that is not contained in K. However, since
they share a vertex in K, by Lemma 1(ii), they cannot share a vertex not in
K. Hence, each maximal clique that covers K contains a distinct vertex not in
K, and there are at least n vertices not in K. These n vertices together with
the n vertices in K give at least 2n vertices in G.

(1) Assume G has an n-clique K that does not belong to M, and there exist
two maximal cliques, M; and Ms, in M covering edges of K and not sharing a
vertex in K. Then each of them contains at least one edge of K, i.e., each of
them contains at least two vertices of K. Let ab and cd € E(K) be contained
in M; and My, respectively. Because M; and M do not share a vertex of K,
ac, ad, bc and bd cannot be in M) or M2 and they must be in different maximal
cliques in M. This yields a 4-clique ®(a, b, ¢, d) which is a subset of K covered
by six maximal cliques in M.

For convenience, for any 1,7 € {a,b,c,d}, let M;; be the maximal clique
in M covering edge ij of K. Hence, M; and M, are renamed My, and M,
respectively. It is sufficient to show that there exist at least six different extra
vertices not in K. By Lemma 1(i), each M;; contains an extra vertex not
in K. If all such extra vertices are different, we have six extra vertices as
desired. Otherwise, there are two maximal cliques sharing the same extra vertex
outside K. By Lemma 1(ii), they cannot share another vertex. Without loss
of generality, say Mg, and M4 share the same extra vertex v;. For all 4,5 €
{a,b,¢,d}, let P;j = M;; N K. It follows that vertices in {v;} UV (Pap) UV (Pea)
form a clique properly containing the clique formed by {v;}UV (Pap). Since Mgy
is maximal, it cannot be the clique composed of vertices in {v1 }UV(P,p). Thus,
M, must contain another vertex, say ve. Similarly, vertices in {v;} UV (P,)U
V(P.q) form a clique properly containing the clique formed by {v1} U V(Pea);
hence, M.q4 contains another vertex, say vs. If v3 = vo then v, and v; are two
vertices, both of which are in Mg, and M,4, contradicting Lemma 1(ii). Hence
vs is not equal to va. Now, let v and vg be extra vertices of My, and Mg,
respectively, that is, v4 € M,. \ K and vs € M,q \ K. Since edges ac and ad
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share a, by Lemma 1(iz), v4 % vs. Furthermore, ac and ad share a vertex with
both ab and cd; hence, vy, v5 ¢ {vy,v2,v3}.

Next let u be an extra vertex of My outside K. Then u cannot be vy, v, v3
or vy because bc shares a vertex with ab, cd and ac. If u is not vs, we have six
different extra vertices as desired. If u is vs, vertices in {vs} UV (Poe) UV (Paq)
form a clique properly containing the clique formed by {vs} U V(P); hence,
My, must contain at least one more vertex outside {v;, vz, v3,v4,vs}; thus, we
get the sixth extra vertex. Hence, G contains at least six extra vertices not
in K. These six vertices together with the n vertices of K give at least n + 6
vertices in G. O

We know that L(Ks) with ten vertices has two maximal-clique partitions of
different sizes. The next theorem confirms that any graph on a smaller number of
vertices than 10 cannot have maximal-clique partitions of different sizes. Hence,
ten is the minimum number of vertices of graphs with this property.

Theorem 3. If G is a graph with at least two mazimal-clique partitions of
different sizes, then |V(G)] > 10.

Proof. Suppose the theorem is not true. Let G be a graph of at most nine
vertices with at least two maximal-clique partitions of different sizes. Let M
and NV be two maximal-clique partitions of G of different sizes. If M and A have
nonempty intersection, remove all edges of the cliques in the intersection from
G to get a graph G’ of at most nine vertices with two maximal-clique partitions
M\ N and N\ M. Because M and N are different and they partition the
edges of G, neither M\ N or N\ M is empty. Hence, without lost of generality,
assume that M and N have empty intersection. Note that neither M nor N
can contain a 2-clique, because if a 2-clique is a maximal clique, it must be in
every maximal-clique partition. Hence, maximal cliques of G in M U A are
cliques of order at least three. By Theorem 2(z) and (%), if there is a clique
of order at least five that not belong to a maximal-clique partition, G has at
least ten vertices. Since G has at most nine vertices, M and A can not contain
cliques of order at least five. Thus, M and N are composed of 3-cliques and
4-cliques.

Let m and n be the numbers of 4-cliques in M and N, respectively, and let s
and ¢ be the numbers of 3-cliques in M and N, respectively. Since M and A/ are
clique partitions of G, counting the number of edges we have 6m + 3s = 6n+ 3t.
If m = n, then s = t. Then M| =m + s = n+¢t = |N|, which contradicts
IM| # |N|. Hence, m # n. We can assume without loss of generality that
m>n. Thenm > 1.

To prove the theorem, it suffices to prove that M contains a 4-clique covered
by six different maximal cliques in V. If this occurs, we can apply Theorem 2(i1)
to conclude that G has at least 4 + 6 = 10 vertices contradicting |V(G)| < 9.
Then it follows that the theorem is true.

Suppose that every 4-clique in M is covered by fewer than six maximal
cliques in V. Hence, each 4-clique in M must share at least a triangle with
some maximal clique in /. Moreover, we can conclude by Lemma 1(i) that
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they share exactly a triangle and that such a maximal clique in & must be a
4-clique. However, if any two 4-cliques in M share a triangle with the same
4-clique in WV, they must share at least two vertices, contradicting Lemma 1(iz).
Thus, each 4-clique in M shares a triangle with a 4-clique in A and no two
4-cliques in M share a triangle with the same 4-clique in A. Therefore, the
number of 4-cliques in M is at most the number of 4-cliques in WV, or m < n.
This contradicts m > n. Hence, we have the desired result and the theorem is
proved. a
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