A DECODING SCHEME FOR THE
4-ARY LEXICODES WITH d,,=4

D.G. Kim

Liberal Arts and Science, Chungwoon University, South Korea

ABSTRACT. In this paper, we are interested in lexicographic codes which
are greedily constructed codes. For an arbitrary length n, we shall find the
basis of quaternary lexicographic codes, for short, lexicodes, with minimum
distance d;, = 4. Also using a linear nim sum of some bases (such a vector
is called the testing vector), its decoding algorithm will be found.

1. INTRODUCTION

In this paper, we shall introduce the surprising arithemetical operations
which are used in the Game of Nim. Under these operations, the lexi-
codes are linear over some Galois field. Their definitions are derived from
a greedy algorithm, that is, each codeword is chosen as the first word not
prohibitively near to previous codewords.

The main aim of this paper is to find a decoding algorithm of the 4-ary
lexicodes with minimum distance 4. Using the special vector, called the
testing vector, we correct an error symbol of the received vector.

This paper is arranged as follows. The nim-operation is introduced in
Section 2, and the lexicodes over the Galois field GF(22") are discussed
in Section 3. In particular we get some bases of the 4-ary lexicodes with
minimum distance 4, and give an algorithm to find the basis according to
length n in Section 4. Finally, Section 5 gives a decoding algorithm for this
code and its examples.
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2. NIM OPERATION

First, we define two operations which are called the nim-addition & and
nim-multiplication ®.

Definition 2.1. Let =’ be a variable that ranges over all elements strictly
less than = and mex the least non-negative integer not of the form. Then
we define the two operations:

(1)adb =mez{a'®b, ad ¥}

(2) a®b= mez{(a’ ®b)D (a® V) ® (a' ®V)}

Two operations, & and ®, convert the numbers 0,1,2,--- into a field of
characteristic 2. Also, for a > 0, the numbers less than 22° form a subfield
and isomorphic to GF(22").

Theorem 2.2 ([2]). The nim-operations turn the set of non-negative in-
tegers into a field of characteristic 2.

Using the field laws, we shall fill out the first 4 by 4 corner of the addition
and multiplication tables in nim. Consider the nim-addition of any two
numbers from 0, 1,2, 3.

Theorem 2.3 ([1]). We havez ®0 =0 = = x, for every number .

Since {0,1,2,3} is a field of characteristic 2, we have x & = 0 for all
z € {0,1,2,3}. From Theorem 2.3, 1 @ 2 can not be one of 0,1,2 and so
must be 3. Since 1® 3 # 0,1,3, it must be 2. In the same way, we have
2@ 3 = 1. Therefore the sum of any two distinct numbers from 1,2, 3 is the
third.
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There is a nim-multiplication ® which together with nim-addition &
converts the integers into a field [2]. With nim-multiplication, we know
that 0 ® z must be 0 which is the zero of the field. Also 1 ® z must be z.
Since the elements other than 0, 1 satisfy > = z® 1 (here z> means z® )
over GF(4), we have 2®2=201=3and 3®3 =301 =2. Next 2® 3
can not be one of 0,2,3 and so must be 1.
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The following is a rule enabling us to perform nim-additions. In its
statement, the term 2-power means a power of 2, such as 1,2,4,8,---, in
the ordinary sense:

(1) f z is a 2-power and y < z, then 2Dy = z + y.
(2) z®z =0 for any z.

For example, 1505 = (804020 1) ®(4® 1) = 82 = 10, since both
4’s and 1’s are cancelled.

For finite numbers, the nim-multiplication follows from the following
rules, similar to those for nim-addition. In the following statement, the
term Fermat 2-power means the number 22°, such as 2,4,16,256--- , in
the ordinary sense:

(3) If z is a Fermat 2-power and y < z, thenz @y =z x y.
(4) z®z = 3 x z for any Fermat 2-power z.

For example 16 ® 2 = 32, since 16 = 22°. By the equation (4), we have
2=2x3=34=4x2=6,162=16x3=24,---.
Using the associative and distributive laws, 19 ® 11=(1692® 1) ® (8 ®
2901)=(168)(16®2)(16®1) & 2®8)d(202)d(2®1) &
8®201)=128032016 B(2®8) 9208 =12803201604H 2 =182,
since2®8=20(4182)=4®2°=403=8¢4.
Next, we compute the inverse value 157! satisfying 150157 = 1. 15® 4=
(8p40201)R4=(8®4) ® (494) ® (2@4) & (1®4) = (204R4)H6D8w4=
2R6)0(402)0804=20 (102)P2608=8030208 =3&2=1.
Hence 1571 = 4.

3. LEXICODES

Consider a lexicode over GF(22°). A vector of this code is a sequence
-+ Z3TaTy =X, T; € {0,1,---, 2" —1}. For a convenience, we omit leading
zeros (i.e., 012 = 12). The set of vectors is based on a lexicographic (i.e.,
dictionary) ordering of vectors, namely, the vector - - - 3227 = x is smaller
than the vector - - - y3yoy; = y, written x < y, if for some n we have z,, < y,,,
but zn = yn for all N > n. For example, 123 < 132, 312 < 1032.
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Lexicodes are defined by saying a vector is in the code if it does not
conflict with any earlier codewords. That is, the lexicode with minimum
distance d,, is defined by saying that two vectors do not conflict if the Ham-
ming distance between them is not less than dy,. The Hamming distance d
between two vectors is simply the number of positions in which the vectors
differ. Now we abbreviate the g-ary lexicodes with minimum distance d,,
to Lg d,,-

Example. Applying the greedy algorithm, then the lexicode £4 3 contains
the codewords, 0, 111, 222, 333, 1012, 1103, 1230, 1321, 2023, 2132,
2201, 2310, 3031, 3120, 3213, 3302.

In 3], it was shown that if B = 2°, the lexicodes are closed under
coordinatewise nim-addition over GF(B), and if B = 22°, the lexicodes are
closed under coordinatewise nim-multiplication by scalars k over GF(B).
As a result we provide the following Lexicode Theorem.

Theorem 3.1 ([3]). If B is of the form 2%°, then the lezicode is a linear
code over the Galois field GF(B).

4. BASIS

It is important that we obtain the basis for an arbitrary length n. This
will give an information of decoding. So in this section, it is shown that
according to the range of length, the basis has repeatedly the regular form
in the first three symbols.

Now, any vectors will be shown in bold face.

Lemma 4.1 ([4]). Let e, be the basis of length n of L4,3. Then 111 = e3,
1012 = e4 and 10013 = e;5.

Lemma 4.2([4]). There does not exist the basis of length 6 or 17s + 5
(8 € N) n 64,3.

Notation : Let E, be the basis of length n of L4 4 and a € GF(4). An
extra symbol of E,, is denoted by (fo)n.

Lemma 4.3. We obtain 1111 = E4, 10123 = E5 and 100132 = Eg.

Proof. From Lemma 4.1, we have obtained e3, 4 and e5. Using the basis of
L4 3, we can make the basis of £, 4 by adding a symbol(called an extra sym-
bol). This implies that an extra symbol would be added to the rightmost
position of e,,_;, for 4 < n < 6. Here, the lexicographically earliest vector of
distance 4 from a vector 0 must be 1111. So we get 1111 = E,4. From Lemma
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4.1, 1012 = e4. So we may assume that 1012f, = E;. If (fo)s = 0,1,2,
then the Hamming distance d(Es,a ® E4) = 3. This contradicts the fact
with the Hamming distance no less than 4. Thus we get 10123 = E;.
Also since 10013 = ej, Eg is of the form 10013 f,. If (fo)s = 0,1,3, then
d(Eg,a ® E4) = 3. Hence, we get 100132 = E¢. O

Lemma 4.4. Let s € N. There does not ezist the basis of length 7 or 175+6
in L4,4. Moreover, forn > 7, E, has a symbol 1 in the Tth and the 17s+6th
positions.

Proof. From Lemma 4.2, it was known that there does not exist e,, of length
6, 17s + 5 for all s. E,, can be obtained by adding an extra symbol to e,_;
of £4,3. For these reasons, neither E7 nor E;7,.¢ exist in £4,4. From [4] (see
the proof of Theorem 2.2), the second result is clear. O

Notation : Let [f2f1fo]n be the first three symbols of E, and [f2fi]n-1
the first two symbols of e,_; of £4,3. Now we abbreviate the dimension k
of L4,4 as 52’4.

Lemma 4.5. [f2flf0]l2 = [110].

Proof. We first prove that [f2 fi folu1 is [101]. Since [f2fi]i0 = [10], [f2f1
folin = [10fo). If (fo)11 = O, then the Hamming weight wt(1---10f,)
is equal to 3. Assume that (fo)11 = 1, i.e., [101};;. For 4 < n < 6,
d(En, 1... 10f0) >4. In [3], we have obtained [Olfols, [02f0]9 and [03f0]10.
If we count the distinct symbols between [101];; and [fafi fo]n for n =
8,9, 10, those numbers are at least 2 for any (fo),. This means that d(E,,,
E,) > 4 for n = 8,9,10. Hence the vector with (fg)1, = 1 is the lexico-
graphically earliest vector of distance 4 from £§ ,. We get [101],;.

Now let us obtain [11fo]12(In [4], [11]11). We have (fo)12 # 1 because
(fo)11 = 1. Assume that [110];2. For n = 4,5,6,11, d(E,,1---110) > 4. For
Ey with [02fo]9, we have d(Eg,1--- 110) 2> 4. For Ejg with [03fo]10, then
d(Ej0,1---110) > 4. In the case of [01fo]s, we must have (fp)s # 0. Other-
wise, wt(1---010) = 3. Hence for any (fo)s # 0, then d(Eg,1---110) = 4.
Therefore we get [110];2. O

Lemma 4.6. [f2f1f0]17 = [221]

Proof. From [4], [f2f1]16 = [22]. So we assume [22f0]]7. If (fo)17 = 0, then
2®[110];2 = [220]. Since d(1---22fp,2® E;2) = 3, it is a contradiction. If
(fo)17 =2, then 2® [111)4 = [222] and d(1---22f,,2 @ E4) = 3.

Suppose (fo)17 = 3, i.e., [223],7. We shall claim that (fo);5 = 3. First, we
have to obtain [f2 f1 fo]15. Since [20]14, we assume [20fo15. Here if (fo)15 =
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0, then 'wt(l cen 20fo) =3.If (fo)ls =1, then d(]. x 20fo,E11) =3 (see the
proof of Lemma 4.5). In the case (fo)15 =2, then d(1---20f0,2Q Ej2) =3
from Lemma 4.5. Hence, we get (fo)i15 = 3, i.e., [203];5. Since (fo)i15 = 3,
it contradicts to hypothesis. We get [221];7. O

Theorems 4.7 and 4.11 show that the basis E,, of £4,4 has a regular form
[f2f1foln according to the range of length n.

Theorem 4.7. For length n such that 8 < n < 22, then [f2fifo]n takes
over from [011] to [331].

Proof. 1t is enough to find [f2f1fo]s and [f2f1 fo]22, because Table 1 of
[4] gives [fafi]n for 7 < n < 21. Since [01]; and Lemma 4.5, we assume
[01fo)s for (fo)s # 0. Thus when (fo)s = 1, the vector with [011]g is the
lexicographically earliest vector of distance 4 from £3 ,. We get [011]s.

In a similar way, we can assume that [33fo)22. The distance between
every pair of codewords should be compared. But it is enough to find
the basis B, (n < 22) such that a ® [fafi foln = [33fo)22. Then we have
3® [111}4 = [333], 3 ® [110];2 = [330], 2 ® [221],7 = [332] from Lemmas 4.5
and 4.6. Hence if (fo)22 = 3,0,2,d(1---33fo,a @ E,) = 3 for n = 4,12,17.
It is a contradiction. Hence we get (fo)22 = 1, i.e., [331]22. O

Definition 4.8. We denote the Remainder of E,, by E,,. This means (n—3)
coordinates ezcluded [f2 f fo] of E,,. For two bases E,, and E,,,, the distinct
number between E,, and Ey is denoted by D(E,, En/).

Lemma 4.9. For length n such that 24 < n < 39, then [f2f1fo]n takes
over from [001] to [330].

Proof. It was mentioned in Table 2 of [4] that [f2f1]; takes over from [00]
to [33], for 23 < i < 38. It is only enough to find [f2f1 fo]24 and [f2f1 fo]39
We assume [00 fo]24, ([00]23). Let 4 < n < 22. We consider the Remainders
E, and Eyq4. Since Eo4 has a symbol 1 in the 7th and 23rd positions from
Lemma 4.4, then D(E,,E24) > 3. If (fo)2a = 0, wt(1---00fp) = 3. For
all n such that 4 < n < 22, there is no [00fo], with fo # 0. Hence for
such n, d(En,1---00fo) > 4 if fo # 0. So when (fg)24 = 1, the vector with
[001]24 is the lexicographically earliest vector of distance 4 from £}5. We
get [001]24.

We assume [33 fo]zo. Then D(Ey, E39) = 3 for 8 < n < 22. So we need to
compare the distance between [331]22 and [33 fo]se. Clearly, (fo)ss # 1. If
we consider the lexicographic ordering of [f2 f1 fo], we should have (fo)3e =
(fo)22 @ 1. Hence, we get [330]39. O
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Lemma 4.10. For length n such that 41 < n < 56, then [f2f1fo]n takes
over from [000] to [331).

Proof. Table 2 of [4] gives [fafi]n for 40 < n < 55. So it is enough to
obtain [f2f1fo]a1 and | f2f1fo]se. We assume [00fo]41. For any (fo)a1 and
4 < n <39, we have D(Ey, E,)) > 4. When (fp)a1 = 0, the vector with
[600]4, is the lexicographically earliest vector of distance 4 from £3%. Hence
we get [000]4;.

We can assume [33fo)s6. Consider [33fo], for 4 < n < 55. By Theo-
rem 4.7 and Lemma 4.9, we have [331]22 and [330]39. For 24 < n; < 39,
D(Ess, En,) = 3. Hence, (fo)se # (fo)ss, i-e., (fo)se # 0. For 4 < ny < 22,
D(Es6, En,) > 4. It may allow to have (fo)ss = (fo)22, i.e., (fo)ss = 1. Also
the vector with [331]s¢ is the lexicographically earliest vector of distance 4
from £%. Therefore we get [331]s6. O

Theorem 4.11. Let p € N such that 17p+7 < n, < 17p + 22.
(1) If p is odd, then [f2f1fo]n, takes over from [001] to [330].
(2) If p is even, then [f2f1 foln, takes over from [000] to [331].

Proof. Let g=p+1andr = p+2such that 17i+7 < n; <17i+22fori =
g,7. As before, E,,_, E, , and E,,. refer to the Remainders of Enp, E,, and
E,,, respectively. Then we have D(En,,E,,) = 3, D(E,,,Es,) = 3 and
D(Ey,,En,) = 4. Hence for n,, and n,, we must have (fo)17p+a # (fo)17¢40
for a = 7,8,---22. If we consider the lexicographic ordering, (fo)i7¢+a =
(fo)17p+0 ® 1. Similarly for n, and n,, we have (fo)17r+o = (fo)179+a © 1.
On the other hand, (fo)17r+a = (fo)17p+a- Thus we have proved. O

From Lemma 4.4, E,, has a symbol 1 in the nth, the 7th and the 17s+6th
positions such that 7< 17s +6 <n, s € N.

Table 1 gives [f2f1 fo]n such that 8 <n <22 0r 17p+7<n < 17p+ 22
for2|p,peN.

fofifo 000 011 023 032 101 110 122 133
n 8 9 10 11 12 13 14

n 41 42 43 44 45 46 47 48
fofifo 203 212 221 230 302 313 320 331
15 16 17 18 19 20 21 22

n 49 50 51 52 53 54 55 56

Table 1
Table 2 gives [f2f1 fon such that 17p+7<n < 17p+22for 2¢p,p € N.
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fofifo 001 010 022 033 100 111 123 132
n 24 25 2 27 28 29 30 31
n 58 50 60 61 62 63 64 65

fofifo 202 213 220 231 303 312 321 330
n 32 33 34 35 36 37 38 39
n 66 67 68 69 70 71 72 73

Table 2

For length n such that n > 8 and n # 173+ 6, we introduce the following
algorithm to find E,,.

ALGORITHM

Let p,s € N, and 17s+6 < n.

Step 1 : Let n be a length such that 8 <n < 22.

The basis E,, has a symbol 1 in the 7th and the nth positions. Lexicographi-
cally, [f2f1 fo]n takes the (n—7)th ordered form from [011] to [331](see Table
1).

Step 2 : Let n be a length such that 17p+7<n <17p+22 and 2 | p.
Then E,, has a symbol 1 in the 7th, the (17s + 6)th and the nth positions.
Lexicographically, [f2f1fo]n takes the (n — 17p — 6)th ordered form from
[000] to [331] (see Table 1).

Step 3 : Let n be a length such that 17p+7 <n < 17p+22 and 2{p.
Then E,, has a symbol 1 in the 7th, the (17s + 6)th and the nth positions.
Lexicographically, [f2f1fo]» takes the (n — 17p — 6)th ordered form from
[001] to [330] (see Table 2).

The following Table 3 gives E,, such that n > 8, n # 173 + 6.

=Eg

110000011
101000023 =E
1 001000032 =Ep
10001000101 =En

1 000010O0CO0O1T1GO0

=Ei2
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Table 3

Let us give some examples which are helpful to find the basis of L4 4.

EXAMPLES

(1) Consider a length n = 14. Then Ey4 has a symbol 1 in the 7th and the
14th positions by Step 1, i.e., 1000 00601000f2f, fo = E14. Since 8 < n < 22,
[f2f1fol14 takes [133] which is the 7th ordering from [011]. Therefore, we
get 1000 0001000133 = E4.

(2) Let n = 49. When s = 1,2, it satisfies 17s+6 < 49. So E49 has a symbol
1 in the 7th, the 23rd, the 40th and the 49th positions, by Step 2. Thus we
get 100000000 1000000000 0000000100 GGCO00C000 0001000, f1 fo = Eag.

When p = 2, it satisfies 17p+7 < 49 < 17p+22. So [f2 f1 folas takes [203]
which is the 9th ordering from [000]. Hence, we get 100000000 1000600000
0000000100 0000000000 0001000203 = Eyp.

(3) Let n = 59. When s = 1,2,3 it satisfies 17s + 6 < 59. So Eso has a
symbol 1 in the 7th, the 23rd, the 40th, the 57th and the 59th positions,
by Step 3. So 101600000 0000000000 1000000000 0000000100 00GC000000
00010005 f1 fo = Esxg.

When p = 3, it satisfies 17p+7 < 59 < 17p+22. So [f2f1 fo]se takes [010]
which is the 2nd ordering from [001]. Hence, we get 101000000 0000600000
1000000000 0000060100 0000000000 6001000010 = Esg.
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5. DECODING

In this section, we describe a decoding algorithm of £4 4 using the testing
vector, and give its examples.

Definition 5.1. Given e received vector rp—1-+-ToT179 =T over GF(4),
n
The testing vector t of L4,4 is defined by @ (ri—1 ®Ey) where k # 7,175+
k=4
6, seN.

Theorem 5.2. Letr, t be the received and the testing vector, respectively.
d(r,t) = 1 if and only if one of ri_1’s 18 not correct for i = 1,2,3,7,17s +
6, seN.

Proof. (=) Given a received 1y, - - - 727170 = T, an error-corrupted vector,
suppose 7;_1 is correct for all i = 1,2,3,7,17s + 6. That is, let 7,y (I # i)
be an error symbol. If 4 < I < 6, all symbols of [f2 f1 fo]; are nonzero. Thus,
d(r,t) > 4. If 1 > 8 and ! # 34s + 7, then [f2f1 fo); has of nonzero symbol
no less than 1. In addition, E; has a symbol 1 in the 7th and the 17s + 6th
positions. Thus, d(r,t) > 2. Finally if | = 34s+7, we have [f2 f1 fo}: = [000].
But E; has a symbol 1 in the positions no less than 3. Hence, d(r,t) > 3.
Therefore in any case, d(r,t) # 1.

(<) Since there does not exist E; corresponding to r;—; in t, so t is not
affected by an error symbol r;_;. Hence d(r,t) = 1. O

Corollary 5.3. As for Theorem 5.2, let us have r and t. If d(r,t) > 1,
then one of r;—1’s is not correct for i > 4 and i # 7,175+ 6, s € N.

In the following remark, we explain how to find a decoding algorithm in
more detail.

Remark 5.4. Given r,_1 -+ -7ror179 =T, then weobtain ¢,,_; ---t2 t1ilg = t
from Definition 5.1. Let ¢p—1 - - €160 = ¢ be a desired codeword.

(A) If d(r, t) = 1, clearly t is obtained by sum of the bases which do not
depend on error symbol. Therefore, we have the desired codeword ¢ = t.

If d(r,t) > 1, from Corollary 5.3 there is r;_; such that ri_; # cx—1 for
k>4 and k # 7,17s + 6. We consider the following four cases.

(B) In the case of ck—1 = 0 and rx_; # 0 (k < n), then r¢—; ® E; must be
deleted in t. Hence, we obtain ¢ =t ® (rg—1 ® E¢). On the other hand, we
replace ;-3 by Oin r.

Here, there is rx—) @ Ex with [dzdldo] in t such that [t2t1 to] @ [dz d) do]
= [ror170)- '
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Let r,_, be a nonzero correct symbol, i.e., 7;,_; = ck~1.

(C) In the case of ¢;—) # 0 and r4—; = 0 (k < n), then r}_, ® E; must be
added to t. Hence, we obtain ¢ =t & (r;,_, ® Eg).

Here, there is no r;—; ® E; with [d2 didp] in t such that [t2t10) © [d2
dido] = [ra7170). But there is r},_, ® E; with [dadydg] for k < n. As a result,
we have a nonzero r;_,. Therefore, we replace 0 by r}._, inr.

(D) In the case of ¢g—1,7%—1 # 0 and r¢—1 # cx—1 (k < n), then rr_; @ By
must be deleted in t, and r},_, ® E; must be added to t. Hence, we obtain
c=t & (Tk—l ® Ek) @ (7‘2_1 ® Eg).

In order to find r,_,, we should know that rx_; # cx—1. There is no
ri—1 @ E; with [dgdldo] in t such that [tztlto] ® [dg dldo] = [T2T11‘0]. And
if there is o € GF(4) such that a ® (rx—1 ® [f2/1fo)k) = [d2d1do), then
Tk—1 # Ck—1, i.e., Tg—; is not correct. From the above equation ¢ = t
® (rk-1 ® Er) ® (rp_; ® E;), we get r;_, such that (rx— & r,_,) ®
[f2f1folk=[rar170] @ [tatito], because [czcico) = [rarimo). Therefore, we
replace rg—) by rj_, inr.

(E) In the case of ¢k # 0 and rx—; =0 (k > n), then Tk_1 ® E; must be
added to t. Hence, we obtain ¢ =t & (r,_, ® Eg).

Here, there is no vector (r;—; ® E;) with [d2d;dp] in t. And there is no
vector @ ® (ri—1 ® E;) with [d2dido] for all i < n. We should find 7_,
for k > n. If n < 7, we obtain r,_, ® Eg such that r}_, ® [fofifolx =
[d2d1do] for 8 < k < 22. If 7 < n < 23, we obtain 7,_, ® E; with [dad) do]
for24 <k < 39.1fn > 23 and 17p+6 < n < 17p+ 23, we obtain r|,_, ®E;
with [dad1do] for 17p+ 24 < k < 17p + 39. Therefore, we replace 0 by 7}._,
mr.

DECODING ALGORITHM

Step 1 : Suppose d(r,t) = 1.
Then ¢ = t. Otherwise, i.e., d(r,t) > 1, we go to Step 2.

Step 2 : Suppose d(r,t) > 1.
If there is 74—; ® E; with [dzdldo] int,thenc=t & (re—; ® E;).
Otherwise, we go to Step 3.

Step 3 : Suppose there is no r;_; ® E; with [d2d;dp) in t. (Here, r¢_; = 0)
If there is r;,_; # O such that ri_, ® [f2f1folx = [d2d1dp)] for k < n, then
¢ =t & (ry_, ® E;). Otherwise, we go to Step 4.

Step 4 : Suppose rx—; # 0 and there is no r¢_; such that r¢_; ® [f2£1 fo)k
= [d2d1dp] for k < n.
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If there is @ ® (rg-1 ® Ex) with [dodyd) for k < n, we can get r}_,;
(# Tx—1) such that (rx—1 & 7}_,) ® [fofifolx = [r2r170] @ [tat1to]. Then c
=t ® (re-1 ® Ex) & (r}_; ® E). Otherwise, we go to Step 5.

Step 5 : Suppose there is no vector & ® (ri—; ® E;) with [dad1dp] for all
i < n. (Here, r¢—1 = 0,k > n)

We can get r,_, # O such that ri_, ® [fafifolx = [d2d1do] from Re-
mark(E). Then c =t & (r},_; @ Eg).

EXAMPLES

(1) Given a received vector 2200 6000000000 1003300312 = r, we get (2®
Ez) © (1 ® Epp) ® (3 ® Eg) = 2200 00000600000 1003300311 = t. Since
d(r,t) = 1, we have the desired codeword ¢ = t.

(2) Given 2200 0000000002 1003300311 = r, we get (2 ® E24) ® (2® Eyy)
® (1 ® Ey) @ (3® Eg) = 2200 0000060002 1001300113 = t. From [113]
® [dad1dp) = [311), [d2dydp) = [202]. Since d(r,t) > 1 and there is 2® Ey,
with [202] in t, therefore t ® (2® E;;) = 2200 6000000000 1003300311 = c.

(3) Given 2200 0000060000 3001300120 = r, we get (2 ® Ezs) & (3 ® Eio)
@ (3® Eg) = 2200 0000000000 3001300302 = t. Using [302] & [dadydo] =
[120], we have [d2d1do) = [222]. Then d(r,t) > 1 and there is no (ri—1 ® E;)
with [222] in t. But there is 2 ® E4 with [222]. Therefore, t ® (2® E4) =
2200 0000000000 3001302120 = c.

(4) Given 2200 0000000000 3003300311 = r, we get (2 ® Ea4) @ (3 ® Eqo)
® (3 ® Eg) = 2200 0000000000 3001300302 = t. Hence, we have [d2d, do]
= [013] such that [302] & [d2d1do] = [311]. So d(r,t) > 1 and there is no
i1 ® E; with [013] in t. When a = 3 and rp = 3, it satisfies a® (r9®
[032]10)=[013]. Thus g # cs. Now we can get ry = 1 satisfying (ro & rp) ®
[032]10 = [311] & [302]. Therefore, t & ((3 ® 1) ® E10) = 2200 0000000000
1003300311 = c.

(5) Given 0200 6000000000 1003300311 = r, we get (1 ® Eqg) ® (3 ® Eg)
= 1001300313 = t, and [d2d;do]=[002]. Then d(r,t) > 1 and there is no
-1 ® E; with [002] in t. Also, there is no vector a® (r;—) ® E;) with [002]
for i < 23. Since n = 23, we can obtain 2 ® Ey4 such that 2® [001])s4 =
[002]. Therefore, t & (2 ® Ez4) = 2200 6000000000 1003300311 = c.
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