# ON THE TREES WHOSE 2-STEP COMPETITION NUMBERS ARE TWO HAN HYUK CHO\*† and SUH-RYUNG KIM\*‡ Department of Mathematics Education Seoul National University, Seoul 151-742, Korea YUNSUN NAM Biochip Project Team Samsung Advanced Instutite of Technology P.O. Box 111, Suwon 440-600, Korea #### Abstract Since Cohen introduced the notion of competition graph in 1968, various variations have been defined and studied by many authors. Using the combinatorial properties of the adjacency matrices of digraphs, Cho et al. [2] introduced the notion of a m-step competition graph as a generalization of the notion of a competition graph. Then they [3] computed the 2-step competition numbers of complete graphs, cycles, and paths. However, it seems difficult to compute the 2-step competition numbers even for the trees whose competition numbers can easily be computed. Cho et al. [1] gave a sufficient condition for a tree to have the 2-step competition number two. In this paper, we show that this sufficient condition is also a necessary condition for a tree to have the 2-step competition number two, which completely characterizes the trees whose 2-step competition numbers are two. In fact, this result turns out to characterize the connected triangle-free graphs whose 2-step competition numbers are two. Key Words: 2-step competition graph, 2-step competition number, trees, triangle-free graphs ### 1 Introduction Since Cohen [4] introduced the notion of competition graph in 1968, various variations such as competition common enemy graph (competition resource graph), niche graph, p-competition graph have been defined and studied by many authors (see [6, 7, 8] for surveys of the literature of competition graphs). Recently Cho et al. [2] introduced another variant called the "m-step competition graph" of a digraph using the combinatorial properties of the adjacency matrices of digraphs. Given a digraph D, a vertex z of D is <sup>\*</sup>The authors thank the KOSEF for its support under grant Com<sup>2</sup>MaC-KOSEF. <sup>†</sup>Research supported by Choheung Research Fund through Seoul National University. <sup>&</sup>lt;sup>‡</sup>Corresponding author. email address: srkim@snu.ac.kr called an m-step common prey for x and y if there are two directed walks of length m one of which is from x to z and the other from y to z. The m-step competition graph of D has the same vertex set as D and an edge between vertices x and y if and only if x and y have an m-step common prey in D. By this definition, this new notion of m-step competition graph generalizes that of competition graph as the 1-step competition graph is the competition graph. Given a graph G, the m-step competition number of Gis the smallest number k such that G together with k isolated vertices is the m-step competition graph of an acyclic digraph. In their paper, Cho et al. [2] found the 2-step competition numbers of complete graphs, paths and cycles. After having found those numbers, it seems to be natural to seek for the 2-step competition numbers of trees. However, it does not appear to be easy to give the 2-step competition number of a tree in general while the competition number of any nontrivial tree is known to be one. Cho et al. [1] showed that the 2-step competition number of any graph without isolated vertices should be greater than or equal to two. Based on this observation, they defined $\mathcal{T}(m,k,n)$ as the collection of the trees on n vertices with m-step competition number k, and started to look into the trees belonging to T(2,2,n). Cho et al. [1] defined two classes $T_1$ and $T_2$ of trees: Given a tree T and an edge xy in T, T-xy has exactly two components one of which x belongs to and the other of which y belongs to. We denote the former by $T_x$ and the latter by $T_y$ . In addition, given an edge yz of $T_y$ , we denote by $S_y$ and $S_z$ , respectively, the component of $T_y - yz$ to which y belongs and the component of $T_y - yz$ to which y belongs. We also mean by $N_x$ (resp. $N_z$ ) the set of the pendant vertices of $T_x$ (resp. $S_z$ ) adjacent to x (resp. z). Let $T_1$ be the set of all the trees with property: Any T in $T_1$ has an edge xy such that (i) $(T_x-N)\simeq T_y$ for some $N\subset N_x$ or (ii) $(T_x-N-\nu)\simeq T_y$ for some $N\subset N_x$ and some pendant vertex $\nu$ of $T_x$ not in $N_x$ . See Figure 1 for an illustration for the trees in $T_1$ . Let $T_2$ be the set of all the trees with property: Any T in $T_2$ has an edge xy and an edge yz in $T_y$ such that for some induced subgraphs $S_{y\alpha}$ , $S_{y\beta}$ of $S_y$ satisfying $V(S_y) = V(S_{y\alpha}) \cup V(S_{y\beta})$ and $V(S_{y\alpha}) \cap V(S_{y\beta}) = \{y\}$ , one of the following is true: - (i) $(T_x-N)\simeq S_{y\beta}$ and $S_{y\alpha}\simeq (S_z-N')$ for some $N\subset N_x$ and some $N'\subset N_z$ ; - (ii) $(T_x N \nu) \simeq S_{y\beta}$ and $S_{y\alpha} \simeq (S_z N')$ for some $N \subset N_x$ , $N' \subset N_z$ , and some pendant vertex $\nu$ of $T_x$ not in $N_x$ ; - (iii) $(T_x-N) \simeq S_{y\beta}$ and $(S_{y\alpha}-\nu) \simeq (S_z-N')$ for some $N \subset N_x, N' \subset N_z$ , and some pendant vertex $\nu$ of $S_{y\alpha}$ ; Figure 1: $T, T' \in \mathcal{T}_1$ satisfying $(T_x - N) \simeq T_y$ ; $(T'_x - N - \nu) \simeq T'_y$ where $|N'| \leq \deg_{S_{y\beta}}(y) + 1$ in each case. See Figure 2 for an illustration for the trees in $\mathcal{T}_2$ . Then they gave the following theorem. **Theorem 1** If a tree T with n vertices belongs to $T_1 \cup T_2$ , then T belongs to T(2,2,n). ### 2 The main theorem Cho et al. [1] conjectured that the converse of Theorem 1 is also true. The following theorem whose proof is give in the next section shows that their conjecture is true: **Theorem 2** For a tree T with n vertices, T belongs to T(2,2,n) if and only if T belongs to $T_1 \cup T_2$ . The above theorem actually gives the characterization for a connected triangle-free graph whose 2-step competition number is two. To see why, we consider a connected triangle-free graph G whose 2-step competition number is two. Then there is an acyclic digraph D with acyclic labeling $v_1, v_2, \ldots, v_{n+2}$ whose 2-step competition graph is $G \cup \{v_{n+1}, v_{n+2}\}$ . An acyclic labeling of the vertex set V(D) of an acyclic digraph D is a labeling of V(D) using the set $\{v_1, v_2, \ldots, v_{n+2}\}$ so that i < j holds whenever there is an arc $(v_i, v_j)$ in D. It is a well-known theorem that every acyclic digraph has an acyclic labeling. Note that $v_1, v_2, v_3$ cannot be used as 2-step common prey and so there are at most |V(G)| - 1 vertices in D which are available for 2-step common prey. Furthermore, since G is connected and Figure 2: T, $T^{'}$ , $T^{''} \in \mathcal{T}_2$ satisfying; $(T_x - N) \simeq S_{y\beta}$ and $S_{y\alpha} \simeq (S_z - N^{\prime})$ ; $(T_x^{'} - N - \nu) \simeq S_{y\beta}$ and $S_{y\alpha} \simeq (S_z - N^{\prime})$ ; $(T_x^{''} - N) \simeq S_{y\beta}$ and $(S_{y\alpha} - \nu) \simeq (S_z - N^{\prime})$ . triangle-free, a vertex can be used as a 2-step common prey for exactly two distinct vertices and therefore at least |V(G)|-1 vertices are used as 2-step common prey in D. Thus, we can conclude that |E(G)|=|V(G)|-1 and G must be a tree. Hence G belongs to $\mathcal{T}_1 \cup \mathcal{T}_2$ by Theorem 2 and we have the following theorem: **Theorem 3** The 2-step competition number of a connected triangle-free graph G is two if and only if G belongs to $\mathcal{T}_1 \cup \mathcal{T}_2$ . # 3 The proof of Theorem 2 In this section, we prove Theorem 2. We first give lemmas which characterize the structure of the elements in T(2,2,n). As it can easily be seen that $K_2$ is the only tree that belongs to T(2,2,2), from now on, we will consider T(2,2,n) for n>2. Given $T\in T(2,2,n)$ , let D be an acyclic digraph whose 2-step competition graph is $T\cup\{a,b\}$ where a and b are extra isolated vertices. Let $v_1,v_2,\ldots,v_{n+2}$ be an acyclic labeling of V(D). Clearly the labels of a and b are $v_{n+1}$ and $v_{n+2}$ , and we also label the corresponding vertices of T as $v_1,v_2,\ldots,v_n$ . Since the edge clique cover number of T is n-1 and any of $v_1,v_2,v_3$ cannot be used as 2-step common prey, all of $v_4,\ldots,v_{n+2}$ should be used as a 2-step common prey. We call an arc $(v_i,v_j)$ in D a jump-arc when i+1< j. Since $v_4$ must be used as a 2-step prey and $v_4$ cannot be a 2-step prey of $v_3,v_4$ is a 2-step common prey of $v_1$ and $v_2$ and therefore $v_1v_2$ is an edge of T. **Lemma 4** Given $T \in \mathcal{T}(2,2,n)$ , let D be an acyclic digraph whose 2-step competition graph is $T \cup \{a,b\}$ where a and b are extra isolated vertices. Let $v_1, v_2, \ldots, v_{n+2}$ be an acyclic labeling of V(D). Then the following are true: - (1) For any $v_i$ , $2 \le i \le n+1$ , there exists an arc $(v_i, v_{i+1})$ in D. - (2) If $v_i v_j$ for i < j is an edge in T, then $v_{j+2}$ is a 2-step common prey of $v_i$ and $v_j$ , and either $(v_i, v_{j+1})$ or $(v_{i+1}, v_{j+2})$ is a jump-arc of D. - (3) If there is no incoming jump-arc toward $v_j$ , 2 < j < n+2, then there should be an incoming jump-arc toward $v_{j+1}$ . - (4) If there is an incoming jump-arc toward $v_j \in V(D)$ , then there is no outgoing jump-arc from $v_i$ . We use induction on n to prove (1) and (2) together. If n=3, then $v_4$ should be the 2-step common prey for $v_1$ and $v_2$ . Thus there exists a directed path of length two in D from $v_2$ to $v_4$ . The only possible such directed path is $v_2 \rightarrow v_3 \rightarrow v_4$ and therefore there are arcs $(v_2, v_3)$ and $(v_3, v_4)$ in D. Similarly $v_5$ should be a 2-step common prey for $v_i$ (i = 1) or 2) and $v_3$ . Thus there exists a path of length two from $v_3$ to $v_5$ , and $(v_4, v_5)$ is an arc in D. For n=3, it can easily be checked that (2) holds. Now suppose that (1) and (2) are true for any tree on less than n vertices whose 2-step competition number is two. Take $T \in \mathcal{T}(2,2,n)$ and let D be an acyclic digraph whose 2-step competition graph is $T \cup \{a, b\}$ where a and b are extra isolated vertices. Since T is connected and D is acyclic, $v_{n+2}$ should be the only 2-step prey of $v_n$ . Thus there exist arcs $(v_n, v_{n+1})$ and $(v_{n+1}, v_{n+2})$ in D. Furthermore the degree of $v_n$ in T is one. It follows that $D^* = D - v_{n+2}$ is an acyclic digraph whose 2-step competition graph $T^*$ is a tree on n-1 vertices together with isolated vertices $v_n$ and $v_{n+1}$ . By the induction hypothesis, there exists arc $(v_i, v_{i+1})$ for any $i, 2 \le i \le n$ , and if $v_i v_i$ for i < j is an edge in $T^*$ then there is either jump-arc $(v_i, v_{i+1})$ or jump-arc $(v_{i+1}, v_{i+2})$ in $D^*$ . Since it has been shown that $(v_{n+1}, v_{n+2})$ is in D, (1) follows. Suppose that $v_i v_n$ is an edge in T for some $i, 1 \le i \le n-1$ . Since it has been shown that $v_{n+2}$ is the only 2-step common prey of $v_n$ , there is a directed path $v_i \to v_l \to v_{n+2}$ in D. If $v_l \neq v_{i+1}$ or $v_{n+1}$ , then $v_{l-1}$ $\neq v_i$ or $v_n$ and $v_i$ , $v_{l-1}$ , $v_n$ induce a triangle $K_3$ , which is a contradiction. Thus there is either arc $(v_i, v_{n+1})$ or arc $(v_{i+1}, v_{n+2})$ in D and (2) follows. Now we prove (3). Now suppose that there is no incoming jump-arc toward $v_j$ for any j, 2 < j < n+2. Since $v_{j-1}$ is adjacent to a vertex $v_i$ in T (i < j-1), either $(v_i, v_j)$ or $(v_{i+1}, v_{j+1})$ is an arc in D by (2). Since there is no incoming jump-arc toward $v_j$ by the supposition, $(v_{i+1}, v_{j+1})$ is an arc in D and (3) follows. We prove (4) by contradiction. Suppose both $(v_i, v_j)$ and $(v_j, v_k)$ are jump-arcs in D. Then $v_i, v_{j-1}, v_{k-2}$ induce a triangle $K_3$ and we reach a contradiction. Thus (4) follows. Throughout the rest of this section, we mean an 'acyclic digraph' D to be a digraph with an acyclic labeling $v_1, v_2, \ldots, v_{|V(D)|}$ such that i < j whenever $(v_i, v_j)$ is in the digraph. Given $T \in \mathcal{T}(2, 2, n)$ , we also denote by $\mathcal{D}_T$ the set of minimal digraphs among the acyclic digraphs whose 2-step competition graphs are $T \cup \{a, b\}$ for some extra isolated vertices a and b. Let $$\mathcal{T}^*(2,2,n) = \{T \in \mathcal{T}(2,2,n) \mid \text{For every } D_T \text{ in } \mathcal{D}_T, \ D_T \text{ has arc } (v_1,v_2).\}$$ **Lemma 5** For a tree T in $T(2,2,n) - T^*(2,2,n)$ , there exist two adjacent vertices x and y in T such that any vertex other than x and y is adjacent to x or y. Since T is not in $T^*(2,2,n)$ , there exists an acyclic digraph $D_T$ in $\mathcal{D}_T$ in which there is no arc $(v_1, v_2)$ . From Lemma 4(1), it follows that for any $i, 4 \le i \le n+2$ , $v_i$ is a 2-step common prey of $v_{i-2}$ and some vertex of an index less than i-2. Since $v_1$ and $v_2$ are the only possible 2-step predators of $v_4$ , there is an arc $(v_1, v_3)$ in $D_T$ , and $v_1$ and $v_2$ are joined in T. By induction on the index of a vertex in $D_T$ , we claim in the following that for any $i, 3 \le i \le n+1$ , there is a jump-arc from either $v_1$ or $v_2$ to $v_i$ . As we have shown above, $(v_1, v_3)$ is a jump-arc. Now suppose that for some k, $3 \le k \le n$ , there is a jump-arc from either $v_1$ or $v_2$ to $v_i$ for any $i, 3 \le i \le k$ . Since $v_{k+2}$ is a 2-step common prey of $v_k$ and $v_j$ for some j < k, there exists either jump-arc $(v_j, v_{k+1})$ or jump-arc $(v_{j+1}, v_{k+2})$ in $D_T$ by Lemma 4(2). Suppose $(v_j, v_{k+1})$ is in $D_T$ . If $j \neq 1$ and $j \neq 2$ , then $(v_1, v_j)$ or $(v_2, v_j)$ is in $D_T$ by the induction hypothesis. Either case contradicts Lemma 4(4). Thus j = 1 or j = 2 and the claim follows. Now suppose $(v_{j+1}, v_{k+2})$ is in $D_T$ . Since $(v_1, v_3)$ is a jump-arc, $j \neq 2$ by Lemma 4(4). If $j \geq 3$ , then either $(v_1, v_{j+1})$ or $(v_2, v_{j+1})$ is in $D_T$ by the induction hypothesis and either case contradicts Lemma 4(4). Thus j=1 and the claim follows. Now take a vertex $v_j$ for $j \geq 3$ . Then either $(v_1, v_{j+1})$ or $(v_2, v_{j+1})$ is an arc of $D_T$ by the claim. By Lemma 4(1), $v_1 \rightarrow v_{j+1} \rightarrow v_{j+2}$ or $v_2 \rightarrow v_{j+1} \rightarrow v_{j+2}$ , and therefore $v_i$ is adjacent to $v_1$ or $v_2$ . As Lemma 5 characterizes the trees in $T(2,2,n)-T^*(2,2,n)$ , it remains to characterize the trees in $T^*(2,2,n)$ . Given $T \in T^*(2,2,n)$ and $D_T \in \mathcal{D}_T$ , we partition the edge set of T in terms of $D_T$ as follows. Let $e=v_iv_j$ (i < j) be an edge in T. By Lemma 4(2) and the minimality of the digraphs in $D_T$ , exactly one of $(v_i,v_{j+1})$ or $(v_{i+1},v_{j+2})$ is an arc of $D_T$ . We say that e is an $\alpha$ -type edge with respect to $D_T$ if $(v_{i+1},v_{j+2})$ is an arc of $D_T$ . We say that e is a $\gamma$ -type edge with respect to $D_T$ when there is a jump arc $(v_i,v_{j+1})$ in $D_T$ and either $(\gamma 1)$ or $(\gamma 2)$ is satisfied: - $(\gamma 1) \ i = 1;$ - $(\gamma 2)$ i = 3, and $(v_2, v_j)$ is a jump-arc of $D_T$ . We say that e is a $\beta$ -type edge with respect to $D_T$ if e is neither of $\alpha$ -type nor of $\gamma$ -type with respect to $D_T$ . By these definitions, we note that $v_1$ can not be an end point of a $\beta$ -type edge. We also note that if edge $v_iv_j$ is of $\alpha$ -type with respect to a digraph $D_T$ in $\mathcal{D}_T$ , then $v_{i+1}v_{j+1}$ is of $\beta$ -type with respect to $D_T$ if j < n. (See Figure 3 for illustration.) **Lemma 6** Given $T \in \mathcal{T}^*(2,2,n)$ and $D_T \in \mathcal{D}_T$ , let $e = v_i v_j$ for i < j be an edge in T. Suppose that e is a $\gamma$ -type edge with respect to $D_T$ different from $v_1v_2$ . Then $v_j$ is a pendant vertex in T adjacent to $v_1$ (resp. $v_3$ ) if e satisfies $(\gamma 1)$ (resp. $(\gamma 2)$ ). **Proof.** Since e is different from $v_1v_2$ , j > 2. Clearly, $v_j$ is adjacent to $v_1$ (resp. $v_3$ ) if e satisfies ( $\gamma 1$ ) (resp. ( $\gamma 2$ )). Moreover there is a jump-arc from $v_i$ to $v_{j+1}$ in $D_T$ by the definition of $\gamma$ -type edge. Suppose $v_j$ is not a pendant vertex. Then $v_j$ is adjacent to some vertex $v_p$ ( $p \neq i$ ) in T. Then j < p by (1). By Lemma 4(2), either $(v_j, v_{p+1})$ or $(v_{j+1}, v_{p+2})$ is a jump-arc in $D_T$ . Since $(v_i, v_{j+1})$ is a jump-arc, there is no outgoing jump-arc from $v_{j+1}$ by Lemma 4(4). Thus $(v_j, v_{p+1})$ is an arc in $D_T$ . Then by Lemma 4(4) there is no incoming jump-arc toward $v_j$ . First assume that i=3. Then by the definition of an $\gamma$ -type edge there is a jump-arc $(v_2, v_j)$ , and we reach a contradiction. Now suppose that i=1. We note that $v_{j+1}$ is used as 2-step common prey since j>2. Then there must be a jump-arc from vertex $v_q$ for some q, 1 < q < j, to $v_{j+1}$ by Lemma 4(3), which implies that $v_{j+2}$ is a 2-step prey of $v_q$ . Thus, $v_1, v_q$ , and $v_j$ have common prey $v_{j+2}$ , and so they induce a $K_3$ in T, which is a contradiction. **Lemma 7** Given $T \in \mathcal{T}^*(2,2,n)$ and $D_T \in \mathcal{D}_T$ , let $e = v_i v_j$ for i < j be an edge in T. Let P be a path from $v_i$ to $v_l$ in T traversing edge e and edge $v_k v_l$ for some $k \in \{1,2,\ldots,n\}$ . Then the following are true: - (1) k < l. - (2) If $e \neq v_1v_2$ and $v_kv_l$ is an $\alpha$ -type (resp. $\beta$ -type) edge with respect to $D_T$ , then every edge on P is of $\alpha$ -type (resp. $\beta$ -type). **Proof.** We use induction on the length d of P to prove (1). If d=2, then $P=v_iv_jv_l$ . If l< j, then $v_i$ , $v_j$ , and $v_l$ have $v_{j+2}$ as 2-step common prey by Lemma 4 (2), and induce a triangle $K_3$ in T, which is a contradiction. Suppose the statement (1) is true when the length of P is less than or equal to d-1 ( $d\geq 3$ ). Now suppose that the length of P is d, and that $v_h$ immediately precedes $v_k$ on P. Then by the induction hypothesis, h< k. If l< k, then $v_{k+2}$ is a 2-step common prey of $v_h$ , $v_l$ and $v_k$ , and we reach a contradiction. Thus we have k< l. Now we show that (2) holds. Suppose $v_k v_l$ is a $\beta$ -type edge. Let $v_h$ be the vertex immediately preceding $v_k$ on P. We note that h < k by (1) and either $(v_h, v_{k+1})$ or $(v_{h+1}, v_{k+2})$ is an arc in $D_T$ by Lemma 4(2). Suppose that $(v_h, v_{k+1})$ is not an arc. Then $(v_{h+1}, v_{k+2})$ is an arc in $D_T$ . Since $v_k v_l$ is a $\beta$ -type edge, there is arc $(v_k, v_{l+1})$ in $D_T$ . Then by Lemma 4(4), there is no incoming arc toward $v_k$ . Thus by Lemma 4(3), there must be a jump-arc $(v_g, v_{k+1})$ for some g < k. Since $(v_h, v_{k+1})$ is not an arc of $D_T$ , $h \neq g$ . Then we reach a contradiction since $v_{k+2}$ is a 2-step common prey of $v_h$ , $v_g$ , and $v_k$ . Thus $(v_h, v_{k+1})$ is an arc in $D_T$ , and therefore $v_h v_k$ is of $\gamma$ -type or $\beta$ -type. Since $v_k$ is not a pendant vertex, $v_h v_k$ is of $\beta$ -type by Lemma 6. Repeating this argument, we can eventually show that edge $v_i v_j$ is a $\beta$ -type edge. A similar argument holds for the case in which $v_k v_l$ is an $\alpha$ -type edge. Given $T \in \mathcal{T}^*(2,2,n)$ and $D_T \in \mathcal{D}_T$ , label as $v_i$ the vertex of T corresponding to $v_i$ of $D_T$ for $i=1,\,2,\,\ldots,\,n$ . We recall that $v_1v_2$ is an edge in T. Since every edge of a tree is a cut edge, $T-v_1v_2$ has exactly two components. From now on, $T_1(D_T)$ and $T_2(D_T)$ denote the two components of $T-v_1v_2$ where $v_1 \in V(T_1(D_T))$ and $v_2 \in V(T_2(D_T))$ , respectively. If $v_2v_3$ is an edge of $T_2(D_T)$ , then $T_2(D_T)-v_2v_3$ also has exactly two components, and $S_2(D_T)$ and $S_3(D_T)$ denote the two components of $T_2(D_T)-v_2v_3$ where $v_2 \in V(S_2(D_T))$ and $v_3 \in V(S_3(D_T))$ , respectively. When $v_2v_3$ is not an edge of T, let $S_2(D_T)$ and $S_3(D_T)$ denote $T_2(D_T)$ and the trivial graph with vertex $v_3$ , respectively. Graphs $T_{1\alpha}(D_T)$ , $S_{2\alpha}(D_T)$ , $S_{2\beta}(D_T)$ , $S_{3\beta}(D_T)$ are defined as follows: $T_{1\alpha}(D_T)$ is the union of a trivial graph with vertex set $\{v_1\}$ and the subgraph of T induced by the $\alpha$ -type edges in $T_1(D_T)$ ; $S_{2\alpha}(D_T)$ is the union of a trivial graph with vertex set $\{v_2\}$ and the subgraph of T induced by the $\alpha$ -type edges in $S_2(D_T)$ ; $S_{2\beta}(D_T)$ is the union of a trivial graph with vertex set $\{v_2\}$ and the subgraph of T induced by the $\beta$ -type edges in $S_2(D_T)$ ; $S_{3\beta}(D_T)$ is the union of a trivial graph with vertex set $\{v_3\}$ and the subgraph of T induced by the $\beta$ -type edges in $S_3(D_T)$ . Let $T_{1\alpha*}(D_T)$ be $T_{1\alpha}(D_T) - v_n$ if $v_n \in V(T_{1\alpha}(D_T))$ , and $T_{1\alpha}(D_T)$ otherwise. Finally let $S_{2\alpha*}(D_T)$ be $S_{2\alpha}(D_T) - v_n$ if $v_n \in V(S_{2\alpha}(D_T))$ , and $S_{2\alpha}(D_T)$ otherwise. (See Figure 3 for an illustration.) Suppose that $T \in \mathcal{T}^*(2,2,n)$ and $D_T \in \mathcal{D}_T$ are given. For convenience sake, let $T_1 = T_1(D_T)$ , $T_2 = T_2(D_T)$ , $S_2 = S_2(D_T)$ , $S_3 = S_3(D_T)$ , $S_{2\alpha} = S_{2\alpha}(D_T)$ , $S_{2\alpha*} = S_{2\alpha*}(D_T)$ , $S_{2\beta} = S_{2\beta}(D_T)$ , and $S_{3\beta} = S_{3\beta}(D_T)$ . Now we present the following lemmas: **Lemma 8** Let N' be the set of the ends other than $v_3$ of $\gamma$ -type edges with respect to $D_T$ satisfying $(\gamma 2)$ . Then $|N'| \leq deg_{S_{20}}(v_2) + 1$ . **Proof.** Suppose that $v_3v_j$ is a $\gamma$ -type edge for some $j \geq 5$ . Then by the definition of a $\gamma$ -type edge, there exist arcs $(v_2, v_j)$ and $(v_3, v_{j+1})$ . Thus, Figure 3: A tree T and an acyclic digraph $D_T$ in $\mathcal{D}_T$ . The edges of T are labeled in accordance with the definitions of $\alpha$ -type, $\beta$ -type, $\gamma$ -type edges. edge $v_2v_{j-1}$ is of $\beta$ -type by the definition of a $\beta$ -type edge. Then, by the definition of $S_{2\beta}$ , $v_2v_{j-1}$ is an edge of $S_{2\beta}$ if $j \geq 5$ . Hence $$|\{v_3v_j \mid v_3v_j \text{ is of } \gamma\text{-type and } j \geq 5\}| \leq deg_{S_{2B}}(v_2).$$ Since $$N' \subset \{v_j \mid v_3v_j \text{ is of } \gamma\text{-type and } j \geq 5\} \cup \{v_4\},$$ the lemma follows. ## Lemma 9 The followings are true: - (1) Every non- $\gamma$ -type edge in $T_1$ is an $\alpha$ -type edge, and $T_{1\alpha*}$ is a tree. - (2) There is no $\gamma$ -type edge in $S_2$ , and if $v_2v_3$ is not an edge of T, then every edge in $T_2$ is a $\beta$ -type edge. - (3) $S_{2\alpha*}$ and $S_{2\beta}$ are trees. - (4) Every non- $\gamma$ -type edge in $S_3$ is a $\beta$ -type edge, and $S_{3\beta}$ is a tree. **Proof.** Take a non- $\gamma$ -type edge $v_i v_j$ (i < j) in $T_1$ . Then 2 < i. Since $T_1$ is a tree, there is a path P in $T_1$ from $v_1$ to $v_j$ transversing edge $v_i v_j$ . Since the edge $v_1 v_g$ on P is of $\alpha$ -type, so is $v_i v_j$ by Lemma 7(2). Thus every non- $\gamma$ -type edge in $T_1$ is an $\alpha$ -type edge. Hence by Lemma 6, $T_{1\alpha}$ is connected. Since $v_n$ is a pendant vertex, $T_{1\alpha*}$ is a tree. Hence (1) follows. We show that (2) holds. Since $S_2$ contains neither $v_1$ nor $v_3$ , there is no $\gamma$ -type edge in $S_2$ . We claim in the following that if $v_2v_3$ is not an edge of T, then every edge in $T_2$ is a $\beta$ -type edge. Suppose $v_2v_3$ is not an edge of T. Then $(v_2, v_4)$ is not an arc of $D_T$ . By Lemma 4(2), $(v_1, v_3)$ is an arc of $D_T$ , and so, by Lemma 4(4), there cannot be a jump-arc outgoing from $v_3$ . Thus there is no $\gamma$ -type edge in $T_2$ . If $v_2$ is adjacent to $v_j$ in $T_2$ , then $v_2v_j$ is a $\beta$ -type edge since there is no outgoing jump-arc from $v_3$ in $D_T$ . For every edge $v_iv_j$ in $T_2$ , 2 < i < j, there exists a path in $T_2$ from $v_2$ to $v_j$ traversing $v_iv_j$ , and by Lemma 7(2) $v_iv_j$ is a $\beta$ -type edge. Thus every edge in $T_2$ is a $\beta$ -type edge if $v_2v_3$ is not in $T_2$ . Now we show that (3) holds. First suppose $v_2v_3$ is not an edge of T. Then $S_{2\beta} = T_2$ and $S_{2\alpha*} = v_3$ by (2), and clearly $S_{2\alpha*}$ and $S_{2\beta}$ are trees. Next suppose $v_2v_3$ is an edge of T. We first show that $S_{2\beta}$ is a tree. Suppose $f = v_iv_j$ (2 < i < j) is an $\beta$ -type edge in $S_2$ . Then there is a unique path P in $T_2$ from $v_2$ to $v_i$ since $T_2$ is a tree. By Lemma 7(2), every edge in P is a $\beta$ -type edge. Thus P is in $S_{2\beta}$ , and therefore every vertex in $S_{2\beta}$ is connected to $v_2$ in $S_{2\beta}$ . Hence $S_{2\beta}$ is a tree. By a similar argument, we can show that $S_{2\alpha}$ is a tree. Since $v_n$ is a pendant vertex, $S_{2\alpha*} = S_{2\alpha} - v_n$ is also a tree. Finally we prove that (4) holds. It immediately follows from (2) when $v_2v_3$ is not an edge. Now let $v_2v_3$ be an edge of T. If $(v_2, v_4) \notin A(D_T)$ , then $(v_1, v_3) \in A(D_T)$ since $v_1v_2$ is an edge of T. But, then $(v_3, v_5) \notin A(D_T)$ by Lemma 4(4), contradicting Lemma 4(2). Thus, $(v_2, v_4) \in A(D_T)$ . Suppose $v_3v_g$ is a non- $\gamma$ -type edge in $S_3$ . Then $(v_2, v_g) \notin A(D_T)$ or $(v_3, v_{g+1}) \notin A(D_T)$ . Since there cannot be an outgoing jump-arc from $v_4$ in $D_T$ , $(v_3, v_{g+1})$ is an arc of $D_T$ by Lemma 4(2). Therefore $v_3v_g$ is a $\beta$ -type edge. Now for a non- $\gamma$ -type edge $v_iv_j$ in $S_3$ , 3 < i < j, there exists a path in $S_3$ from $v_3$ to $v_j$ traversing $v_iv_j$ . The vertex, say w, immediately following $v_3$ on this path is not a pendant vertex, and hence $v_3w$ is a non- $\gamma$ -type edge by Lemma 6. Thus by Lemma 4(2), $v_iv_j$ is a $\beta$ -type edge. Hence every non- $\gamma$ -type edge in $S_3$ is of $\beta$ -type. By applying a similar argument as above, it can be shown that $S_{3\beta}$ is a tree. ## **Lemma 10** It is true that (a) $T_{1\alpha*} \simeq S_{2\beta}$ and (b) $S_{2\alpha*} \simeq S_{3\beta}$ . **Proof.** We prove part (a). Let $\phi$ be a map from $V(T_{1\alpha*})$ to V(T) mapping each vertex $v_i \in V(T_{1\alpha*})$ to $v_{i+1} \in V(T)$ . We claim that this map $\phi$ induces a graph isomorphism between $T_{1\alpha*}$ and $S_{2\beta}$ . Suppose $e = v_i v_j$ (i < j) is an edge in $T_{1\alpha*}$ . Then j < n and e is of $\alpha$ -type by the definition. Therefore $v_{i+1}$ and $v_{j+1}$ are joined in T and $f = v_{i+1}v_{j+1}$ is of $\beta$ -type. We now claim that f is in $S_{2\beta}$ . If i = 1, then clearly f is in $S_{2\beta}$ . Suppose i > 1. By Lemma 9(1), there is a path P in a tree $T_{1\alpha*}$ from $v_1$ to $v_i$ . Let $\phi(P)$ be the sequence of vertices whose ith vertex is the image of the ith vertex of P under $\phi$ . Then $\phi(P)$ is a path from $v_2$ to $v_{i+1}$ . Since all the edges on P are P are P does not pass through P and P are an edges on P are adjacent in P and P are adjacent in P and P are adjacent in P and P are adjacent in P are adjacent in P are adjacent in P are adjacent in P and P are adjacent in and P are adjacent in P and P are adjacent in P are adjacent in P and P are adjacent in P are adjacent in P and P are adjacent in and P are adjacent in P are adjacent in P and P are adjacent in P are adjacent in P and P are adjacent in P and P are adjacent in Conversely, we prove that if $v_{i+1}v_{j+1}$ is an edge in $S_{2\beta}$ , then $v_iv_j$ is an edge in $T_{1\alpha^*}$ . Let $f=v_{i+1}v_{j+1}$ (i< j) be an edge in $S_{2\beta}$ . Note that $f\neq v_2v_3$ and $(v_{i+1},v_{j+2})$ is a jump-arc of $D_T$ . Suppose i=1. Then 2< j< n since $v_{j+1}$ is in $S_{2\beta}$ . Note that $\phi(v_1)=v_2$ and $\phi(v_j)=v_{j+1}$ . Since 2< j and $v_2v_{j+1}$ is of $\beta$ -type, there is a jump-arc $(v_2,v_{j+2})$ and, by the minimality of $D_T$ , there is no arc $(v_1,v_{j+1})$ . Thus by the definition of an $\alpha$ -type edge, $e=v_1v_j$ is an $\alpha$ -type edge in $T_{1\alpha^*}$ . Suppose i>1. Since $v_{i+1}v_{j+1}$ is a $\beta$ -type edge, $v_i$ and $v_j$ have $v_{j+2}$ as 2-step common prey since there is a jump-arc $(v_{i+1},v_{j+2})$ in $D_T$ . Thus $v_i$ and $v_j$ are adjacent and $e=v_iv_j$ is an $\alpha$ -type edge. By Lemma 9(3), there exists a path Q in $S_{2\beta}$ from $v_2$ to $v_{i+1}$ . Since every edge on Q is of $\beta$ -type, every edge $v_xv_y$ , where $v_{x+1}v_{y+1}$ is an edge on Q, is of $\alpha$ -type. Since Q does not pass through $v_3$ , it is true that $v_x \neq v_2$ for any vertex $v_{x+1}$ on Q. Thus there is a path from $v_1$ to $v_i$ in $T_{1\alpha*}$ and e is in $T_{1\alpha*}$ . Therefore there is a unique $\alpha$ -type edge $v_iv_j$ in $T_{1\alpha*}$ corresponding to each edge $v_{i+1}v_{j+1}$ (i < j) in $S_{2\beta}$ , and $\phi$ induces a graph isomorphism between $T_{1\alpha*}$ and $S_{2\beta}$ . Now we show that $S_{2\alpha*}$ is isomorphic to $S_{3\beta}$ . First, suppose $v_2v_3$ is not an edge in T. Then, by Lemma 9(2), $S_{2\alpha*}$ is the trivial graph with vertex $v_2$ and $S_{3\beta}$ is the trivial graph with vertex $v_3$ . Suppose $v_2v_3$ is an edge in T. Now consider a map $\phi$ from $V(S_{2\alpha*})$ to V(T) mapping each vertex $v_i \in V(S_{2\alpha*})$ to $v_{i+1} \in V(T)$ . By applying a similar argument for (a), we can claim that this map $\phi$ induces a graph isomorphism between $S_{2\alpha*}$ and $S_{3\beta}$ . Now we present the proof of Theorem 2. **Proof of Theorem 2.** The 'if' part of the theorem is proved in [1]. We now prove the 'only if' part. Take a tree $T \in \mathcal{T}(2,2,n)$ . If $T \in \mathcal{T}(2,2,n) - \mathcal{T}^*(2,2,n)$ , then $T \in \mathcal{T}_1$ . For, by Lemma 5, there exist two adjacent vertices x and y in T such that any vertex distinct from x and y is adjacent to x or y. We may assume the degree of x is greater than or equal to that of y in T. Now suppose that $T \in \mathcal{T}^*(2,2,n)$ . Take $D_T \in \mathcal{D}_T$ . Then by the definition of $T^*(2,2,n)$ , there is an arc $(v_1,v_2)$ in $D_T$ . Let N be the set of the ends other than $v_1$ of $\gamma$ -type edges and satisfying ( $\gamma 1$ ). We also let N'be the set of the ends other than $v_3$ of $\gamma$ -type edges and satisfying ( $\gamma$ 2). By Lemma 6, any vertex in N is a pendant vertex adjacent to $v_1$ and any vertex in N' is a pendant vertex adjacent to $v_3$ . Thus $N \subset N_x$ and $N' \subset N_z$ if $N_x$ (resp. $N_z$ ) is the set of the vertices adjacent to $v_1$ (resp. $v_3$ ). By the definition of $T_{1\alpha*}(D_T)$ and Lemma 9(1), $T_{1\alpha*}(D_T) = T_1(D_T) - N - v_n$ if $v_n$ is in $T_{1\alpha}(D_T)$ and $T_{1\alpha*}(D_T) = T_1(D_T) - N$ otherwise. First suppose that $v_2$ and $v_3$ are not adjacent in T. Then $S_{2\beta}(D_T) = T_2(D_T)$ by the definition of $S_{2\beta}(D_T)$ and Lemma 9(2). Therefore, by Lemma 10, $T \in \mathcal{T}_1$ as we take $x = v_1, y = v_2, T_x = T_1(D_T), T_y = T_2(D_T), \text{ and } v = v_n$ . Now suppose that $v_2$ and $v_3$ are joined in T. Then by the definition of $S_{3\beta}(D_T)$ and Lemma 9(4), $S_{3\beta}(D_T) = S_3(D_T) - N'$ . By definition, $S_{2\alpha*}(D_T) =$ $S_{2\alpha}(D_T) - v_n$ if $v_n \in V(S_{2\alpha}(D_T))$ and $S_{2\alpha*}(D_T) = S_{2\alpha}(D_T)$ otherwise. By Lemma 10, one of the following four cases holds: $$T_1(D_T) - N \simeq S_{2\beta}(D_T)$$ and $S_{2\alpha}(D_T) \simeq S_3(D_T) - N';$ $T_1(D_T) - N - v_n \simeq S_{2\beta}(D_T)$ and $S_{2\alpha}(D_T) \simeq S_3(D_T) - N';$ $T_1(D_T) - N \simeq S_{2\beta}(D_T)$ and $S_{2\alpha}(D_T) - v_n \simeq S_3(D_T) - N';$ $T_1(D_T) - N - v_n \simeq S_{2\beta}(D_T)$ and $S_{2\alpha}(D_T) - v_n \simeq S_3(D_T) - N'.$ But $v_n$ cannot belong to $T_{1\alpha}(D_T)$ and $S_{2\alpha}(D_T)$ at the same time, and therefore the fourth case cannot happen. Thus $T \in \mathcal{T}_2$ as we take $x = v_1$ , $y = v_2$ , $T_x = T_1(D_T)$ , $T_y = T_2(D_T)$ , $S_y = S_2(D_T)$ , $S_z = S_3(D_T)$ , $S_{y\beta} = S_{2\beta}(D_T)$ , $S_{y\alpha} = S_{2\alpha}(D_T)$ , and $v = v_n$ . Finally, by Lemma 8, $|N'| \leq deg_{S_{y\beta}}(y) + 1$ and the theorem is proved. ## Acknowledgments The authors would like to thank an anonymous referee for careful proofreading and helpful comments. # References - [1] H. H. Cho, S-R Kim, and Y. Nam, "A Sufficient Condition for a Tree Belonging to $\mathcal{T}(2,2,n)$ ," Congressus Numerantium, 123 (1997), 43-53. - [2] H. H. Cho, S-R Kim, and Y. Nam, "The m-Step Competition Graph of a Digraph," Discrete Appl. Math., 105 (2000), 115-127. - [3] H. H. Cho, S-R Kim, and Y. Nam, "Acyclic Digraphs Whose 2-Step Competition Graphs Are $P_n \cup I_2$ ," Bulletin of the Korean Mathematical Society., 37 (2000), 649-657. - [4] J. E. Cohen, "Interval Graphs and Food Webs: A Finding and a Problem," Document 17696-PR, RAND Corp. Santa Monica, Calif., 1968. - [5] S-R. Kim, "Competition Graphs and Scientific Laws for Food Webs and Other Systems," Ph.D. Thesis, Rutgers University, 1988. - [6] S-R. Kim, "The Competition Number and Its Variants," Annals of Discrete Mathematics, 55 (1993), 313-326. - [7] J. R. Lundgren, "Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs," in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (F. S. Roberts, ed.), Springer-Verlag, "IMH Volumes in Mathematics and Its Application," Vol. 17, 1989, pp. 221-243. - [8] C. Wang, "Competition Graphs, Threshold Graphs and Threshold Boolean Functions," Ph.D. Thesis, Rutgers University, 1991.