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Abstract

Since Cohen introduced the notion of competition graph in 1968,
various variations have been defined and studied by many authors.
Using the combinatorial properties of the adjacency matrices of di-
graphs, Cho et al. [2] introduced the notion of a m-step competi-
tion graph as a generalization of the notion of a competition graph.
Then they [3] computed the 2-step competition numbers of complete
graphs, cycles, and paths. However, it seems difficult to compute
the 2-step competition numbers even for the trees whose competi-
tion numbers can easily be computed. Cho et al. [1] gave a sufficient
condition for a tree to have the 2-step competition number two. In
this paper, we show that this sufficient condition is also a necessary
condition for a tree to have the 2-step competition number two, which
completely characterizes the trees whose 2-step competition numbers
are two. In fact, this result turns out to characterize the connected
triangle-free graphs whose 2-step competition numbers are two.
Key Words: 2-step competition graph, 2-step competition number,
trees, triangle-free graphs

1 Introduction

Since Cohen [4] introduced the notion of competition graph in 1968, various
variations such as competition common enemy graph (competition resource
graph), niche graph, p-competition graph have been defined and studied by
many authors (see [6, 7, 8] for surveys of the literature of competition
graphs). Recently Cho et al. [2] introduced another variant called the “m-
step competition graph” of a digraph using the combinatorial properties of
the adjacency matrices of digraphs. Given a digraph D, a vertex z of D is
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called an m-step common prey for z and y if there are two directed walks
of length m one of which is from z to z and the other from y to 2. The
m-step competition graph of D has the same vertex set as D and an edge
between vertices  and y if and only if z and y have an m-step common
prey in D. By this definition, this new notion of m-step competition graph
generalizes that of competition graph as the 1-step competition graph is the
competition graph. Given a graph G, the m-step competition number of G
is the smallest number k& such that G together with & isolated vertices is
the m-step competition graph of an acyclic digraph. In their paper, Cho et
al. [2] found the 2-step competition numbers of complete graphs, paths and
cycles. After having found those numbers, it seems to be natural to seek for
the 2-step competition numbers of trees. However, it does not appear to be
easy to give the 2-step competition number of a tree in general while the
competition number of any nontrivial tree is known to be one. Cho et al. (1]
showed that the 2-step competition number of any graph without isolated
vertices should be greater than or equal to two. Based on this observation,
they defined 7(m, k,n) as the collection of the trees on n vertices with
m-step competition number k, and started to look into the trees belonging
to 7(2,2,n).

Cho et al. (1] defined two classes 7; and 72 of trees: Given a tree T
and an edge zy in T, T — zy has exactly two components one of which z
belongs to and the other of which y belongs to. We denote the former by
T, and the latter by T;,. In addition, given an edge yz of T}, we denote by
S, and S, respectively, the component of T), — yz to which y belongs and
the component of T}y — yz to which z belongs. We also mean by Ny (resp.
N.) the set of the pendant vertices of T; (resp. S.) adjacent to z (resp. 2).

Let 77 be the set of all the trees with property: Any T in 7; has an edge
zy such that (i) (T — N) ~ T, for some N C N; or (ii) (T — N —v) =T,
for some N C N, and some pendant vertex v of T, not in N;. See Figure 1
for an illustration for the trees in 7;.

Let 75 be the set of all the trees with property: Any T in 7; has an edge

zy and an edge yz in Ty such that for some induced subgraphs Sya, Sys of
S, satisfying V(Sy) = V(Sya) U V(Syp) and V(Sya) N V(Syp) = {y}, one
of the following is true:

(i) (Tx — N) ~ S, and Syq =~ (S; — N') for some N C N, and some
N' C N,;

(i) (Tz — N —v) ~ Syg and Sya =~ (S; — N') for some N C Ny, N' c N,
and some pendant vertex v of T; not in Ng;

(i) (Tp—N) =~ Syp and (Sya—v) = (S;—N’) for some N C N, N' C Nz,
and some pendant vertex v of Sya;
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Figure 1: T, T' € T, satisfying (T — N) = Ty; (T, — N —v) =T,

where [N'| < degg,,(y) + 1 in each case. See Figure 2 for an illustration
for the trees in 75.

Then they gave the following theorem.

Theorem 1 If a tree T with n vertices belongs to T U T, then T belongs
to T(2,2,n).

2 The main theorem

Cho et al. [1] conjectured that the converse of Theorem 1 is also true. The
following theorem whose proof is give in the next section shows that their
conjecture is true:

Theorem 2 For a tree T with n vertices, T belongs to T(2,2,n) if and
only if T belongs to Ty U T5.

The above theorem actually gives the characterization for a connected
triangle-free graph whose 2-step competition number is two. To see why,
we consider a connected triangle-free graph G whose 2-step competition
number is two. Then there is an acyclic digraph D with acyclic labeling
V1,2,...,Uns2 Whose 2-step competition graph is G U {vp+1,vn+2}. An
acyclic labeling of the vertex set V(D) of an acyclic digraph D is a labeling
of V(D) using the set {v1,v2,...,vs+2} so that ¢ < j holds whenever there is
an arc (v;,v;) in D. It is a well-known theorem that every acyclic digraph
has an acyclic labeling. Note that vy, v2, vz cannot be used as 2-step
common prey and so there are at most |V(G)| — 1 vertices in D which are
available for 2-step common prey. Furthermore, since G is connected and
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Figure 2: T, T', T" € T; satisfying ; (Tx — N) ~ Syp and Syq ~ (S, — N');
(T, — N —v) =~ Syg and Sy, > (5. — N'); (T, —N) =~ Syp and (Sya — V)
(Sz _N,).
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triangle-free, a vertex can be used as a 2-step common prey for exactly two
distinct vertices and therefore at least |V (G)| - 1 vertices are used as 2-step
common prey in D. Thus, we can conclude that |E(G)| = [V(G)| — 1 and
G must be a tree. Hence G belongs to 7; U 73 by Theorem 2 and we have
the following theorem:

Theorem 3 The 2-step competition number of a connected triangle-free
graph G is two if and only if G belongs to T, U T.

3 The proof of Theorem 2

In this section, we prove Theorem 2. We first give lemmas which charac-
terize the structure of the elements in 7(2,2,n). As it can easily be seen
that K> is the only tree that belongs to 7(2,2,2), from now on, we will
consider 7(2,2,n) for n > 2. Given T € T(2,2,n), let D be an acyclic
digraph whose 2-step competition graph is T U {a,b} where a and b are
extra isolated vertices. Let vy, vg, ..., Uny2 be an acyclic labeling of V(D).
Clearly the labels of a and b are v,4; and Un+2, and we also label the
corresponding vertices of T as vy, v2, ..., Up. Since the edge clique cover
number of T' is n—1 and any of vy, v, v3 cannot be used as 2-step common
prey, all of vy, ..., vn42 should be used as a 2-step common prey. We call
an arc (v;,v;) in D a jump-arc when i+ 1 < j. Since v4 must be used as
a 2-step prey and v,4 cannot be a 2-step prey of v, v, is a 2-step common
prey of v; and v, and therefore v, v, is an edge of T.

Lemma 4 Given T € T(2,2,n), let D be an acyclic digraph whose 2-step
competition graph is T U {a,b} where a and b are extra isolated vertices.
Let v1,vs,...,vn42 be an acyclic labeling of V(D). Then the following are
true:

(1) For any v;, 2 <i< n+1, there ezxists an arc (v, vi41) in D.

(2) If vivj for i < j is an edge in T, then vjio is a 2-step common prey
of v; and v;, and either (vi,vj41) or (Viy1,vj42) is a jump-arc of D.

(3) If there is no incoming jump-arc toward v;, 2 < j < n+2, then there
should be an incoming jump-arc toward v;,.

(4) If there is an incoming jump-arc toward v; € V(D), then there is no
outgoing jump-arc from v;.
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Proof. We use induction on n to prove (1) and (2) together. If n = 3,
then v4 should be the 2-step common prey for v; and ve. Thus there exists
a directed path of length two in D from v to v4. The only possible such
directed path is v2 — v3 — v4 and therefore there are arcs (ve,v3) and
(v3,v4) in D. Similarly vs should be a 2-step common prey for v; (i =1 or
2) and v3. Thus there exists a path of length two from v3 to vs, and (v4, vs)
is an arc in D. For n = 3, it can easily be checked that (2) holds. Now
suppose that (1) and (2) are true for any tree on less than n vertices whose
2-step competition number is two. Take T € 7(2,2,n) and let D be an
acyclic digraph whose 2-step competition graph is T'U {a, b} where a and
b are extra isolated vertices. Since T is connected and D is acyclic, vn42
should be the only 2-step prey of v,. Thus there exist arcs (vn,vn+1) and
(Yn+1,Vn+2) in D. Furthermore the degree of v, in T is one. It follows that
D* = D — vy, is an acyclic digraph whose 2-step competition graph T is
a tree on n — 1 vertices together with isolated vertices v, and vp4+1. By the
induction hypothesis, there exists arc (v;,vi+1) for any i, 2 < i < m, and if
v;v; for ¢ < j is an edge in T* then there is either jump-arc (v;,v;41) or
jump-arc (v;41,V;42) in D*. Since it has been shown that (vn41,%n+2) is in
D, (1) follows. Suppose that v;v, is an edge in T for some ¢, 1 <i<n-—1.
Since it has been shown that v,2 is the only 2-step common prey of v,,
there is a directed path v; — vy — vp42in D. If v; 7 v;41 OF Vp4p1, then vy
# v; or v, and v;, Y1, U, induce a triangle K3, which is a contradiction.
Thus there is either arc (v;,vn+1) Or arc (vi41,vn+2) in D and (2) follows.

Now we prove (3). Now suppose that there is no incoming jump-arc
toward v; for any j, 2 < j < n + 2. Since vj—; is adjacent to a vertex v;
in T (i < j — 1), either (v;,v;) or (vi41,v;41) is an arc in D by (2). Since
there is no incoming jump-arc toward v; by the supposition, (vi4+1,vj4+1) is
an arc in D and (3) follows.

We prove (4) by contradiction. Suppose both (v;,v;) and (v;,vx) are
jump-arcs in D. Then v;, vj_1, vx—2 induce a triangle K3 and we reach a
contradiction. Thus (4) follows. O

Throughout the rest of this section, we mean an ‘acyclic digraph’ D to
be a digraph with an acyclic labeling vi, v2, ..., vjy(p) such that ¢ < j
whenever (v;,v;) is in the digraph. Given T € T(2,2,n), we also denote by
Dr the set of minimal digraphs among the acyclic digraphs whose 2-step
competition graphs are T U {a, b} for some extra isolated vertices a and b.
Let

T*(2,2,n) = {T € T(2,2,n) | For every Dr in Dr, Dr has arc (vy,v2).}

Lemma 5 For a tree T in T(2,2,n) —7*(2,2,n), there exist two adjacent
vertices T and y in T such that any vertex other than x and y is adjacent

134



tox ory.

Proof.  Since T is not in 7*(2,2,n), there exists an acyclic digraph Dy
in Dz in which there is no arc (v;,v3). From Lemma 4(1), it follows that
for any ¢,4 < i < n+2, v; is a 2-step common prey of v;_, and some vertex
of an index less than i — 2. Since v; and v, are the only possible 2-step
predators of vy, there is an arc (v,v3) in D7, and v; and v, are joined in T.
By induction on the index of a vertex in Dr, we claim in the following that
for any i, 3 < i < n+ 1, there is a jump-arc from either v; or vy to v;. As
we have shown above, (v1,v3) is a jump-arc. Now suppose that for some k,
3 < k < n, there is a jump-arc from either v; or v, to v; forany i, 3 < i < k.
Since vg42 is a 2-step common prey of v and v; for some j < k, there exists
either jump-arc (v;, vg41) or jump-arc (vj41,vk+2) in Dy by Lemma 4(2).
Suppose (vj,Vk+1) is in Dp. If 5 # 1 and j # 2, then (v1,v;) or (vs,v;) is
in Dr by the induction hypothesis. Either case contradicts Lemma 4(4).
Thus j =1 or j = 2 and the claim follows. Now suppose (v;41,vk+2) is in
Dr. Since (v1,v3) is a jump-arc, j # 2 by Lemma 4(4). If j > 3, then either
(v1,v;41) or (v2,v;41) is in Dy by the induction hypothesis and either case
contradicts Lemma 4(4). Thus j = 1 and the claim follows. Now take a
vertex vj for j > 3. Then either (vy,v;41) or (v2,vj41) is an arc of Dr by
the claim. By Lemma 4(1), v; — vj41 = j42 OF va — ¥j41 — vj42, and
therefore v; is adjacent to v; or va. O

As Lemma 5 characterizes the trees in T'(2,2,n) — T*(2, 2, n), it remains
to characterize the trees in T%(2,2,n). Given T € T7*(2,2,n) and Dr € Dr,
we partition the edge set of T' in terms of Dr as follows. Let e = v;v; (i < 7)
be an edge in T'. By Lemma 4(2) and the minimality of the digraphs in Dr,
exactly one of (v;,vj41) or (v;41,vj42) is an arc of Dy. We say that e is an
a-type edge with respect to Dr if (vi41,vj42) is an arc of Dr. We say that
e is a y-type edge with respect to Dy when there is a jump arc (vi,vj41) in
Dr and either (1) or (72) is satisfied:

(Mi=1

(v2) i = 3, and (v2,v;) is a jump-arc of Dr.

We say that e is a f-type edge with respect to Dy if e is neither of a-type
nor of «-type with respect to Dp. By these definitions, we note that v
can not be an end point of a S-type edge. We also note that if edge v;v; is
of o-type with respect to a digraph Dr in D7, then v;41vj41 is of S-type
with respect to Dy if 7 < n. (See Figure 3 for illustration.)

Lemma 6 Given T € T*(2,2,n) and Dr € Dr, let e = v;v; fori < j be
an edge in T. Suppose that e is a y-type edge with respect to Dr different
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from viva. Then v; is a pendant vertez in T adjacent to vy (resp. v3) if e
satisfies (y1) (resp. (v2)).

Proof. Since e is different from vyv2, j > 2. Clearly, v; is adjacent to
v (resp. v3) if e satisfies (y1) (resp. (72)). Moreover there is a jump-arc
from v; to v;41 in D7 by the definition of y-type edge. Suppose v; is not a
pendant vertex. Then v; is adjacent to some vertex v, (p # %) in T. Then
J < pby (1). By Lemma 4(2), either (v;, vp+1) or (vj41,Up42) is & jump-arc
in Dr. Since (vi,vj41) is a jump-arc, there is no outgoing jump-arc from
vj4+1 by Lemma 4(4). Thus (vj,vp41) is an arc in Dr. Then by Lemma 4
(4) there is no incoming jump-arc toward v;. First assume that i = 3.
Then by the definition of an v-type edge there is a jump-arc (v2,v;), and
we reach a contradiction. Now suppose that i = 1. We note that v;4, is
used as 2-step common prey since j > 2. Then there must be a jump-arc
from vertex vg for some ¢, 1 < ¢ < j, to vj41 by Lemma 4(3), which implies
that v;12 is a 2-step prey of v;. Thus, v;, v, and v; have common prey
¥j+2, and so they induce a K3 in T', which is a contradiction. ]

Lemma 7 Given T € T*(2,2,n) and Dr € Dr, let e = v;v; fori < j be
an edge in T. Let P be a path from v; to vy in T traversing edge e and edge
vy for some k € {1,2,...,n}. Then the following are true:

(1) k<l

(2) If e # viv2 and vV i3 an a-type (resp. B-type) edge with respect to
D, then every edge on P is of a-type (resp. B-type).

Proof. We use induction on the length d of P to prove (1). If d = 2, then
P = vvju. Ifl < j, then v;, vj, and v; have v;42 as 2-step common prey
by Lemma 4 (2), and induce a triangle K3 in T, which is a contradiction.
Suppose the statement (1) is true when the length of P is less than or
equal to d — 1 (d > 3). Now suppose that the length of P is d, and that v,
immediately precedes vx on P. Then by the induction hypothesis, h < k.
If | < k, then vg,o is a 2-step common prey of vy, v; and vg, and we reach
a contradiction. Thus we have k < L.

Now we show that (2) holds. Suppose viv; is a -type edge. Let v, be
the vertex immediately preceding vx on P. We note that h < & by (1) and
either (vp,Vk41) OF (U1, Yk+2) is an arc in Dr by Lemma 4(2). Suppose
that (vn,vk+1) is not an arc. Then (vp41,Vk42) is an arc in Dp. Since
v is a B-type edge, there is arc (vg,vi41) in Dp. Then by Lemma 4(4),
there is no incoming arc toward vg. Thus by Lemma 4(3), there must be a
jump-arc (vg, vk+1) for some g < k. Since (vh, vk+1) is not an arc of Dr,
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h # g. Then we reach a contradiction since vi2 is a 2-step common prey
of Up, vg, and vg. Thus (vs,vk41) is an arc in Dp, and therefore v,vy is
of y-type or B-type. Since vy is not a pendant vertex, vyvy is of S-type by
Lemma 6. Repeating this argument, we can eventually show that edge V;;
is a B-type edge. A similar argument holds for the case in which vk is an
a-type edge. ]

Given T € T*(2,2,n) and Dt € Dr, label as v; the vertex of T corre-
sponding to v; of Dy for i =1, 2, ..., n. We recall that v;v, is an edge in
T. Since every edge of a tree is a cut edge, T — v;v, has exactly two com-
ponents. From now on, T1(Dr) and T2(Dr) denote the two components of
T — v1v; where v, € V(T1(Dr)) and vz € V(T2(Dr)), respectively. If vovs
is an edge of T>(Dr), then To(Dr) — vovus also has exactly two components,
and S3(Dr) and S3(D7) denote the two components of Ta(Dr)—vov3 where
va € V(S2(Dr)) and v3 € V(S3(Dr)), respectively. When wvqvs is not an
edge of T, let Sp(Dr) and S3(Dr) denote T>(Dr) and the trivial graph
with vertex vs, respectively.

Graphs T14(Dr), S2a(Dr), S2g(Dr), S3(Dr) are defined as follows:

T1a(Dr) is the union of a trivial graph with vertex set {v; } and
the subgraph of T induced by the a-type edges in T1(D7);
S2a(Dr) is the union of a trivial graph with vertex set {vy} and
the subgraph of T" induced by the a-type edges in So(Dr);
S25(Dr) is the union of a trivial graph with vertex set {v2} and
the subgraph of T induced by the SB-type edges in So(Dr);

S33(Dr) is the union of a trivial graph with vertex set {vs} and
the subgraph of T induced by the SB-type edges in S3(D7).

Let T1a+(Dr) be T1a(D71) — vy if vp € V(T14(D7)), and T1o(Dr) oth-
erwise. Finally let Saq.(D7) be S2a(Dr) — v, if vy € V(S2e(Dr)), and
S2q(Dr) otherwise. (See Figure 3 for an illustration.)

Suppose that T € T*(2,2,n) and Dr € Dr are given. For convenience
sake, let Ty = T1(Dr), Tz = T2(Dr), S2 = S2(Dr), S3 = S3(Dr), S20 =
S2a(DT), S2ax = S2ax(D71), S2g = S28(Dr), and S3g = S33(Dr). Now we
present the following lemmas:

Lemma 8 Let N’ be the set of the ends other than v3 of y-type edges with
respect to Dt satisfying (v2). Then |N'| < degs,,(v2) + 1.

Proof. Suppose that vav; is a 7-type edge for some j > 5. Then by the
definition of a v-type edge, there exist arcs (vz,v;) and (v3,vj41). Thus,
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Figure 3: A tree T and an acyclic digraph D7 in Dp. The edges of T are
labeled in accordance with the definitions of a-type, B-type, y-type edges.
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edge v2vj—; is of B-type by the definition of a B-type edge. Then, by the
definition of Sag, vov;_; is an edge of Sag if j > 5. Hence

[{vsv; | v3v; is of 7-type and j > 5}| < degs,, (v2).

Since
N' C {v; | vavj is of y-type and j > 5} U {v4},

the lemma follows. o
Lemma 9 The followings are true:

(1) Every non-y-type edge in Ty is an a-type edge, and Ti4. is a tree.

(2) There is no y-type edge in Sz, and if vovz is not an edge of T, then
every edge in Ty is a B-type edge.

(3) Saas and Sap are trees.

(4) Every non-y-type edge in Ss is a B-type edge, and Sag is a tree.

Proof. Take a non-y-type edge v;v; (i < j) in T;. Then 2 < i. Since
T: is a tree, there is a path P in T} from v; to v; tranversing edge v;v;.
Since the edge v1v4 on P is of a-type, so is v;v; by Lemma 7(2). Thus
every non-y-type edge in T} is an a-type edge. Hence by Lemma 6, T}, is
connected. Since v, is a pendant vertex, Tiq« is a tree. Hence (1) follows.

We show that (2) holds. Since Sz contains neither v; nor vs, there is
no y-type edge in S2. We claim in the following that if vov3 is not an edge
of T, then every edge in T3 is a B-type edge. Suppose vov3 is not an edge
of T. Then (vs,v4) is not an arc of Dr. By Lemma 4(2), (v1,v3) is an arc
of Dr, and so, by Lemma 4(4), there cannot be a jump-arc outgoing from
v3. Thus there is no y-type edge in T2. If v, is adjacent to v; in T3, then
vov; is a f-type edge since there is no outgoing jump-arc from vz in Dr.
For every edge v;v; in T3, 2 < i < j, there exists a path in T> from v to v;
traversing v;v;, and by Lemma 7(2) v;v; is a -type edge. Thus every edge
in T is a B-type edge if vovs is not in To.

Now we show that (3) holds. First suppose vov3 is not an edge of T.
Then S25 = T2 and S24. = vs by (2), and clearly Saz,. and Szg are trees.
Next suppose vavs is an edge of T'. We first show that Sag is a tree. Suppose
f =vv; (2 <i<j)is an B-type edge in S2. Then there is a unique path
P in T5 from v; to v; since T3 is a tree. By Lemma 7(2), every edge in P
is a B-type edge. Thus P is in Sog, and therefore every vertex in Sag is
connected to v2 in Syg. Hence Sag is a tree. By a similar argument, we can
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show that So, is a tree. Since v, is a pendant vertex, Soqs = Soo — Vn is
also a tree.

Finally we prove that (4) holds. It immediately follows from (2) when
vovg is not an edge. Now let vovs be an edge of T. If (v2,v4) € A(Dr), then
(v1,v3) € A(Dr) since vyvy is an edge of T. But, then (v3,vs) € A(Dr)
by Lemma 4(4), contradicting Lemma 4(2). Thus, (v2,v4) € A(Dr).
Suppose v3vy is a non-y-type edge in S3. Then (v2,vy) ¢ A(Dr) or
(v3,v9+1) ¢ A(Dr). Since there cannot be an outgoing jump-arc from
vg in D, (v3,vg+1) is an arc of Dy by Lemma 4(2). Therefore vzv, is a
P-type edge. Now for a non-y-type edge v;v; in S3, 3 < i < j, there exists
a path in S3 from v3 to v; traversing v;v;. The vertex, say w, immediately
following v3 on this path is not a pendant vertex, and hence vzw is a non-+y-
type edge by Lemma 6. Thus by Lemma 4(2), v;v; is a B-type edge. Hence
every non-v-type edge in S3 is of S-type. By applying a similar argument
as above, it can be shown that S3g is a tree. O

Lemma 10 It is true that (a) Tias = S2p and (b) S2q. = Sag.

Proof. @ We prove part (a). Let ¢ be a map from V(Tiax) to V(T)
mapping each vertex v; € V(Tiqs) to vi41 € V(T). We claim that this map
¢ induces a graph isomorphism between Ti,. and Sag. Suppose e = v;v;
(i < j) is an edge in Tiqs. Then j < n and e is of a-type by the definition.
Therefore v;4; and vj4, are joined in T' and f = v;410j41 is of S-type. We
now claim that f is in Szg. If i = 1, then clearly f is in Sog. Suppose i > 1.
By Lemma 9(1), there is a path P in a tree Tiq. from v; to v;. Let ¢(P)
be the sequence of vertices whose ith vertex is the image of the ith vertex
of P under ¢. Then ¢(P) is a path from v2 to vi4. Since all the edges on
P are a-type edges, all the edges on ¢(P) are of §-type. Since P does not
pass through va, ¢(v) # v3 for any vertex v on P. Thus ¢(P) is a path in
Sap and f is in Szg. Hence if v; and v; are adjacent in Tiqs, then v;4+, and
vj4+1 are adjacent in Spg.

Conversely, we prove that if v;+1v;41 is an edge in Sz, then v;v; is
an edge in Th4-. Let f = vi419j41 (i < j) be an edge in Spg. Note that
f # vovs and (vi41,vj4+2) is a jump-arc of Dr. Suppose ¢ = 1. Then
2 < j < n since vj41 is in Sog. Note that ¢(v1) = v2 and ¢(v;) = vj41.
Since 2 < j and v2v;41 is of B-type, there is a jump-arc (v2,v;4+2) and, by
the minimality of Dy, there is no arc (v1,vj4+1). Thus by the definition of
an a-type edge, e = v1v; is an a-type edge in Tja.. Suppose i > 1. Since
Vi+1Vj+1 is & B-type edge, v; and v; have v;2 as 2-step common prey since
there is a jump-arc (vit+1,vj+2) in Dr. Thus v; and v; are adjacent and
e = v;vj is an a-type edge. By Lemma 9(3), there exists a path Q in Sag
from v, to v;41. Since every edge on Q is of B-type, every edge vzvy, where
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Vz+1Vy+1 IS an edge on Q, is of a-type. Since Q does not pass through
v3, it is true that v, # v, for any vertex vz41 on Q. Thus there is a path
from v; to v; in Ty4, and e is in Tiqa. Therefore there is a unique a-type
edge v;v; in T14. corresponding to each edge Vi+1V541 (¢ < j) in Sap, and
¢ induces a graph isomorphism between Ti,. and Sas.

Now we show that S,,. is isomorphic to Sag. First, suppose vyu3 is not
an edge in T. Then, by Lemma 9(2), Sz« is the trivial graph with vertex
vz and S3g is the trivial graph with vertex vs.

Suppose vpv3 is an edge in T. Now consider a map ¢ from V(S2q+) to
V(T) mapping each vertex v; € V(S2ax) to v;41 € V(T). By applying a
similar argument for (a), we can claim that this map ¢ induces a graph
isomorphism between Sy,. and Ssg. ]

Now we present the proof of Theorem 2.

Proof of Theorem 2. The ‘if’ part of the theorem is proved in [1].
We now prove the ‘only if’ part. Take a tree T € 7(2,2,n). If T ¢
7(2,2,n) — T*(2,2,n), then T € T;. For, by Lemma 5, there exist two
adjacent vertices z and y in T such that any vertex distinct from z and y
is adjacent to z or y. We may assume the degree of z is greater than or
equal to that of y in T'.

Now suppose that T' € 7%(2,2,n). Take Dr € Dp. Then by the
definition of 7*(2,2,n), there is an arc (v1,v2) in Dp. Let N be the set of
the ends other than v; of v-type edges and satisfying (y1). We also let N’
be the set of the ends other than vs of y-type edges and satisfying (v2).
By Lemma 6, any vertex in N is a pendant vertex adjacent to v; and any
vertex in N’ is a pendant vertex adjacent to v3. Thus N ¢ N, and N’ C N,
if N (resp. N,) is the set of the vertices adjacent to v; (resp. v3). By the
definition of T1o4(Dr) and Lemma 9(1), Tiou(Dr) = Ty(D1) — N — vy, if
vy is in T14(Dr) and Tiau(Dr) = T1(Dr) — N otherwise. First suppose
that v2 and v3 are not adjacent in T. Then Sy5(Dr) = T2(Dr) by the
definition of S2g(Dr) and Lemma 9(2). Therefore, by Lemma 10, T € T;
as we take T = vy, y = v3, T, = T1(Dr), Ty = To(Dr), and v = v,,. Now
suppose that v and v3 are joined in T. Then by the definition of S3g(Dr)
and Lemma 9(4) , S3g(Dr) = S3(Dr) — N'. By definition, Seq«(Dr) =
S2a(DT) —vp if Un € V(S2a (DT)) and S2at(DT) = S2a(DT) otherwise. By
Lemma 10, one of the following four cases holds:

T](DT) — N~ S23(.DT) and Sza(DT) ~ Ss(DT) - N';

TI(DT) —N- Up =~ Sgﬁ(DT) and 32Q(DT) >~ S3(DT) el N’;
Ty(Dr) - N == S2p(Dr) and S2q(Dr) — v, =~ S3(D7) — N';
TI(DT) - N—‘Un o~ Szp(DT) and S2Q(DT) —Vp ™~ Sa(DT) - N,
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But v, cannot belong to Tio(Dr) and S2,(Dr) at the same time, and
therefore the fourth case cannot happen. Thus T € T3 as we take ¢ =
v, Y =0, I = TI(DT)) Ty = T2(-DT)1 Sy = SZ(DT)r S; = S3(DT)1
Sys = S28(Dr), Sya = S2a(Dr), and v = v,. Finally, by Lemma 8,
|N’| < degs,,(y) + 1 and the theorem is proved. m]
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