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Abstract: The associated graph of .a (0,1)-matriz has as its vertex set the
lines of the matrix with vertices adjacent whenever their lines intersect at
a 1. This association relates the (0,1)-matrix and bipartite graph version-
s of the K6nig~Egervé.ry. Theorem. We extend this graph association to
higher dimensional matrices. We characterize these graphs, modulo iso-
lated vertices, using a coloring in which every path between each pair of
vertices contains the same two colors. We rely on previous results about p-
dimensional gridline graphs, where vertices are 1’s in a higher dimensional
matrix and vertices are adjacent whenever they are on a common line. Also
important is the dual property that the doubly iterated clique graph of a
diamond- and simplicial vertex-free graph is isomorphic to the original.

Keywords: (0,1)-matrix; Clique graph; Gridline graph; Vertex coloring

1. Introduction

Every (0,1)-matrix A has an associated bipartite graph, namely, the
one where the rows are the vertices in the first class, the columns are the ver-

tices in the second class, and vertices are adjacent whenever, in the matrix,
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they intersect at a 1. This association relates two versions of the Konig-
Egervéry Theorem, one for bipartite graphs and one for (0,1)-matrices. In
this paper we extend this association to higher-dimensional matrices. Such
matrices occur, for example, in the Taylor expansion for multivariable func-
tions and in computer data structures. We associate with a p-dimensional
(0,1)-matrix a graph having the lines of the matrix as vertices and vertices
adjacent whenever the lines intersect at a 1. We characterize these graphs,
except possibly for some isolated vertices.

Our notation for graph theory is standard and follows Bondy and Mur-
ty [1]; see it for any undefined terms or notation. A graph G = (V,E) is
undirected and has no multiple edges or loops. With a common abuse of
language, we often refer to a vertex or edge as being in a graph G, and
write, for example, v € G or uw € G instead of v € V(G) or uw € E(G).
The cardinality of V' (and, consequently, of E) is finite or denumerable. A
complete graph with n vertices is denoted K,. We take a cligue to be a
mazimal complete subgraph. The clique graph K(G) of a graph G has as its
vertex set the cliques of G, with two vertices adjacent whenever they have
some vertex of G in common. Cliques are typically denoted using capital
letters. Hence, vertices of clique graphs are sometimes denoted by capital
rather than small letters. A hole, or n-hole of & graph, n > 4, is an induced
subgraph that is an n-cycle — that is, an n-cycle with no chord. If G and
H are graphs then G is H-free means that no induced subgraph of G is
isomorphic to H. A diamond is a K4 minus one edge. A coloring in this
paper is always a vertex-coloring and is proper.

Formally, a p-dimensional (or, for brevity, p-d) (0,1)-matriz A, where
p € N (we take N to be the positive integers), is a functiona: Ny x ... x
Np — {0,1} where, fork=1,...,p, Nk = {1,...,nx} for some n; € NUR,.
. The dimensions of A are the numbers ng, k = 1,2,...,p. A lineof A is
a restricted to a maximal subset of N; x ... X N in which the elements

agree in every component but the k** component, some k € {1,...,p}. We
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use the same type of terminology as with normal (2-dimensional) matrices.
For example, a line refers to the subset of N; x ... x Np to which it is
restricted, lines contain the (function) values, lines intersect (if the subsets
of N1 x ... x Ny to which they are restricted intersect), and intersecting
lines intersect at a 0 or a 1. We will sometimes use geometric terms when
speaking of a p-d (0,1)-matrix A, such as parallel, perpendicular, line, and
hyperplane. In this case we are thinking of the value a(éy,...,1,) as being
at (i1,...,1p) in N?. Lines [resp., hyperplanes] are always parallel [resp.,
perpendicular] to an axis. This usage of line is equivalent to the definition
of line given above. The associated graph G of a p-d (0,1)-matrix A is
the graph in which each vertex is a line of A and vertices are adjacent

whenever, as lines of A, they intersect at a 1.

2. Previous Results

All of the results from this section are from Peterson [3]. The first

lemma, is well known and had been used elsewhere.

Lemma 2.1: A graph is diamond-free if and only if any two vertices are
in at most one cliqgue. Moreover, in this case, if A and B are intersecting
cliques then, except for edges incident to the vertex in AN B, no edge is

incident to o vertex in A and to a vertex in B. [ |

Lemma 2.2: Suppose G is a diamond-free graph and that {A; : j € J C N}
is a set of cligues in G that pairwise intersect. Then there exists a unique

vertezx v € G such that A; N A; = {v} whenever i # j. [ ]
Lemma 2.3: If G is a diamond-free graph then so is K(G). [ |

Lemma 2.4: Suppose G is a diamond-free graph. Then K(G) has a 5-hole
if (and, in fact, only if) G has a 5-hole. B
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Lemma 2.5: Suppose G is a diamond-free graph and Z is o cycle in G
containing the vertex v. If the two vertices consecutive to v in Z are not

adjacent, then v is in a hole whose vertices are in Z. |

Given a colored graph, the color ¢ separates vertices » and v whenever
c appears on the interior — that is, on some internal vertex — of every (u,v)-
path. If u and v are in different components then they are separated by
every color in the coloring.

Lemma 2.8: Suppose G is a diamond-free graph and v is a p-coloring of
G in which every pair of vertices at distance greater than two is separated
by at least two colors. Then, using the coloring 7, no hole contains any
color ezactly once if and only if G is 5-hole-free and every 4-hole is colored

with only two colors. [ |

A p-dimensional (or, for brevity, p-d) gridline graph, where p € N, is
a graph G that is isomorphic to some graph G whose vertices are a subset
of N? and vertices x = (z1,...,%p) and X’ = (z},...,Z;) are adjacent
whenever they differ in exactly one entry. That is, G can be realized in
N? such that no two vertices are colocated and two vertices are adjacent
whenever they are on a common line that is parallel to some axis of N?. A
realization is a graph G as given in the definition, and the term line, in the
context of a realization, always refers to a line parallel to some axis.

The following proposition and theorem each characterize p-d gridline
graphs. There is a natural geometric interpretation for each of these; see
Peterson [3].

Proposition 2.7: A graph G is a p-d gridline graph if and only if it is is
diamond-free and K(G) is p-colorable such that (a) no hole contains some
color exactly once, and (b) every pair of vertices at distance greater than

two is separated by at least two colors. [ |
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A p-gridline coloring of a graph is a p-coloring in which (a) every 4-hole
is colored with only two colors and (b) every pair of vertices at distance
greater than two is separated by at least two colors. A graph that admits
a p-gridline coloring is said to be p-gridline colorable.

Theorem 2.8: A graph G is a p-d gridline graph if and only if it is
diamond- and 5-hole-free and K(G) is p-gridline colorable. [ ]

3. Results on Associated Graphs of p-d (0,1)-Matrices

We give here all of the additional definitions and notation needed for
the rest of the paper. The union of two graphs G and H, where V(G) and
V(H) are disjoint, denoted GUH, is the graph (V(G)UV(H), E(G)UE(H)).
The cligue number of G is the number of vertices in a maximum clique, and
is denoted w(G). A vertex is isolated whenever it has degree zero. The
set Ig consists of the set of isolated vertices in graph G. The graph I,
consists of n isolated vertices. A vertex is simplicial whenever it is in only
one clique. Given a graph G, the set Sg consists of the simplicial vertices
and the set Sg consists of those simplicial vertices each of whose cliques
contain exactly one nonsimplical vertex. The set K¢ consists of exactly one
vertex from each component of the graph G that is a complete subgraph
with at least two vertices (such a set exists by the Axiom of Choice, which
is typically assumed as part of the axiomatic system of set theory — see e.g.
Hewitt and Stromberg (2]). If H and G are isomorphic we write H = G,
if H is an induced subgraph of G we write H C G, and if H is isomorphic
to some induced subgraph of G we write H S G. Given a p-d (0,1)-matrix
A, the induced p-d gridline graph Hp is the p-d gridline graph (realization)
obtained by taking (iy,...,1,) as a vertex whenever a(iy,...,i,) = 1. Note
the difference between Ha and the associated graph G o defined in Section 1.
The induced p-d (0,1)-matriz Ay of a p-d gridline graph realization H in N?
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is the p-d matrix A such that H = H,. That is, a(4y, . ..,i,) = 1 whenever
(%1,...,%p) is a vertex of H. (We do not worry about the dimensions of

Ay; for our purposes we may let each dimension be infinite.)

The first lemma of this section shows that, under certain conditions,

there exists a dual relationship between a graph and its clique graph.

Lemma 3.1: If the graph G is diamond-free and has no nonisolated simpli-
cial vertices then K(K(G)) = G. Moreover, K(G) also satisfies the above
hypotheses.

Proof: We may assume that G has no isolated vertices since these re-
main (isomorphically) unchanged in the clique graph. Define C : V(G) —
V(K(K(G))) asfollows: C(v) consists of those cliques of G containing v. We
first show C(v) is in fact a clique of K(G), and thus a vertex in K(K(G)).
By the definition, C(v) is a clique of K(G). Since G has no simplicial vertex,
C(v) contains at least two cliques of G, and by Lemma 2.2 no other clique
of G (not containing v) can be added to C(v) so that they still pairwise
intersect. Thus the set of cliques of G in C(v) is maximal, as desired.

We now show that C is an isomorphism. Suppose C’ is a clique in K(G).
We claim C’ contains at least two cliques of G. Suppose in contradiction that
C’ contains only one clique A of G. Then A is an isolated vertex in K(G).
Now any vertex v € A is nonsimplicial in G and thus contained in another
clique B of G. Thus A and B are adjacent in K(G), a contradiction. We can
now invoke Lemma 2.2 to see that C is an isomorphism: The two or more
cliques of G in C’ intersect at a unique vertex v € G, so C' = C(v) # C(u)
where u # v.

To see the edge correspondence, observe that uwv € E(G) iff » and
v are in a common clique of G iff C(u) and C(v) intersect iff C(v)C(v) €
E(K(K(G))).

Finally we prove the last statement of the lemma. By Lemma 2.3,
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K(G) is diamond-free. Since G has no isolated vertex, aﬁy clique A of G
contains (at least) two vertices u and v. Thus A is in (at least) two cliques
C(u) and C(v) of K(G), so K(G) has no simplicial vertex. | |

We make two observations related to this lemma. First, if G is diamond-
free but is not simplicial vertex-free, there still exists a diamond-free graph
H such that K(H) = G. The construction of H is given by Roberts and
Spencer [5]: Begin with K(G) U Ijy(g) where each vertex v’ of Ijy(gy cor-
responds to a vertex v of G, then join v’ to the vertices of K(G) that, as
cliques of G, contain v. Thus a graph is diamond-free if and only if it is the
clique graph of a diamond-free graph. Though K(H) ¢ G, we do have that
K(H) € G. Second, this lemma is an example of Theorem 3.1 in Prisner
[4] regarding convergence of iterated clique graphs. This result requires
the clique-Helly property that if a set of cliques pairwise intersect then
their intersection is nonempty. By Lemma 2.2, this property is satisfied in
diamond-free graphs.

Lemma 8.2: If A is a p-d (0,1)-matriz then G4 is diamond-free and each

of its cligues is an isolated vertex or has exactly p vertices.

Proof: To see that G4 is diamond-free, suppose that AV A A®) and
AP ABG)AM are triangles in G4. Since A, A, A®) are, as lines of A,
perpendicular to one another, it follows that they all intersect at a unique
element of A (which is a 1). Since the same is true of A(?), A®), A(®), all
four lines intersect at the same element. Thus they induce a K, in Ga.
An isolated vertex in G4 results from a line of all 0’s in A. Any edge
in G4 results from a 1 in A, which is at the intersection of p lines and thus

yields edges between p vertices in G4, that is, yields a clique of p vertices.

One way of viewing G4 in the lemma is as a hypergraph, where each
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hyperedge consists of p vertices and any two hyperedges intersect in at most

one vertex.

The following operation will be used in Lemmas 3.3, 3.4, and Theorem
3.6. The "NC” stands for "nearly constructs” and the operation will be
used to nearly construct an associated graph of a p-d (0,1)-matrix from

another graph.

Step NC: Extend every clique to p vertices, that is, for each clique C’ with
g vertices, where g < p, add a K,_4 and join every vertex in the K,_, to

every vertex in C’.

The following technical lemma will be needed in the proofs of Lemma
3.4 and Theorem 3.6.

Lemma 3.3: Suppose G is a diemond-free graph, each cligue of which
contains exactly one or exactly p vertices, where p € N \ {1}. Suppose
further that G’ = (G \ Sg) UKg. Then Step NC applied to G’ yields a
graph G such that:

eGEGEC
e Each clique of G contains exactly p vertices
o V(G\G) = Ig USY where SY is a subset of S

Proof: Suppose C is a clique of G with p vertices. Suppose first that
C contains at least two nonsimplicial vertices. Then those two vertices
are in G'. By Lemma 2.1, these vertices are contained in only one clique
of G (namely C) and in only one clique of G’ (say C’). Using that each
clique in G having at least two vertices contains exactly p vertices, Step
NC reconstructs C from C’. (With an abuse of language we say we are
reconstructing vertices of G when we add vertices isomorphic to those in

G.) Conversely, by Lemma 2.1, every clique C’ in G’ with at least two
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vertices corresponds to a clique C in G (with exactly p vertices).

Suppose every vertex in C is simplicial, that is, C is a component that
is a K,. Since K¢ is in G, we have that G’ contains exactly one vertex of
C, and it is isolated in G’. Then Step NC reconstructs C from that vertex.

Suppose an isolated vertex ¢ € G’ is not in Kg. Then c is the only
nonsimplicial vertex in a component of G consisting of two or more cliques
that pairwise intersect at ¢. Then Step NC reconstructs one of the cliques
containing c.

We have that Step INC reconstructs no vertices not originally in G.
Any nonisolated vertex v of G (i.e. v is in some clique having at least
two vertices) that has not been reconstructed belongs to a clique of G that
contains exactly one nonsimplicial vertex. That is, v € Sg. Finally, Step
NC reconstructs no isolated vertices of G. [ |

Suppose A is a p-d (0,1)-matrix where p > 2. Table 3.1 gives several
relationships between A, Ha, Ga, and K(Ha). This table will be useful
in proving Lemma 3.4 and Theorem 3.6. Row one is immediate. Rows 2-3
follow since each 1 in A has a corresponding clique of p vertices in Ga.
Row four follows from rows 2-3.

The point of the following lemma is that, given a p-d (0,1)-matrix A,
K(Ha) = Ga except possibly for some simplicial vertices of Go. Further-
more, if A is not given, K(Ha ) can still be constructed from G4 and Ga

can be nearly constructed from K(Ha).

Lemma 8.4: Suppose A is a p-d (0,1)-matriz where p € N\ {1}. Then
statements (1)-(8) below hold.

(1) K(Hp) S Ga, with isomorphism if and only if every line of A has

at least two 1’s.

(2) K(HA) = (Ga\Sca)UKG,-
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In A (or Ha) In Ga In K(Ha)
A line withno1’'s & An isolated Nothing (no
[no vertices] vertex vertex)

A line with > two &< A nonsimplicial A vertex

1’s [vertices]

vertex

A line with exactly
one 1 [vertex]

&

A simplicial
vertex in a
clique of p
vertices

An isolated vertex
or nothing (no
vertex)

A line with exactly
one 1 [vertex]

where the 1 [vertex]

is contained in
exactly ¢ lines that
each contain > two
1’s [vertices]

One of exactly
p — g simplicial
vertices in a
common clique
(if ¢ = 0 this is
a component
that is a Kp)

An isolated vertex
(iff ¢ = 0 and this
line is chosen to
represent the
clique of Ha
consisting of

this vertex) or
nothing (no vertex)

Table 3.1: Relationships between A, Ha, Ga, and K(Ha)

(8) Step NC applied to K(Ha) yields a graph G such that:

e K(HA)SGSGa

o Each clique of G contains exactly p vertices

o V(Ga\ &)= Ig, USE, where Sg, is a subset of Sg,

Proof: (1) Each line of A corresponds to a vertex of Ga. It also corre-
sponds to a line in Ha, which may yield a clique of Ha, that is, a vertex

of K(Hp) (see rows 1-3 of Table 3.1). To show K(H,) is induced, if t-

wo vertices A(D) and A(? of G4 have corresponding vertices a; and ay of

K(Ha), then A® and A®@ are adjacent in G, iff A() and A intersect

(as lines of A) at a 1 iff a; and a2 intersect (as lines in the realization Ha)

at a vertex iff a; and a, are adjacent in K(Hy). The isomorphism follows
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from statement (2) (or by a simple direct argument).

(2) We will use the second and third columns of Table 3.1 to 1dent1fy
which vertices of G4 to delete to obtain (a graph isomorphic to) K(Hj).
First suppose A1) is a vertex of G4 that is simplicial but not in K¢, ;
we show it must be deleted. We have that A(1) is either (i) isolated, (ii)
nonisolated and not in a component that is a K, or (iii) in a oompbnent
that is a K, exactly one other vertex of which is in Kg,. If (i) holds,
then by row one of Table 3.1, A() must be deleted. If (ii) holds, then by
row four with ¢ # 0, A must be deleted. If (iii) holds, then by row four
with ¢ = 0, A must be deleted (by the first column of row four, this
corresponds to an isolated vertex in the realization Ha, which yields an
isolated vertex in K(Ha)).

Now suppose a vertex A(!) of G4 was not deleted; we show it has a
corresponding vertex in K(Ha). Since A(Y) was not deleted it was either
(i) nonsimplicial or (ii) it was in a component that is a K}, the other p —1
vertices of which were deleted. If (i) holds then, by row two of Table 3.1,
AQ) has a corresponding vertex in K(Ha). If (i) holds then, by row four
with ¢ = 0, A(!) corresponds to an isolated vertex in H, which yields an
isolated vertex in K(Ha). In either case A1) has a corresponding vertex
in K(Hp), as claimed.

(3) By Lemma 3.2 and statement (2), this is exactly Lemma 3.3 with
G=Gp and G' = K(H,). [ ]

Recall the definition of p-gridline colorable that preceded Theorem 2.8.
We will use this in Lemma 3.5 and Theorem 3.6.
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Lemma 3.5: Suppose G is a graph and G’ is an induced subgraph such
that every verter of G\ G’ is simplicial (in G). Then, if G is p-gridline
colorable then so is G'. If, in addition, G is diamond- and 5-hole-free and
w(G) < p, then the converse also holds.

Proof: For brevity, we refer to the part of p-gridline colorability for 4-holes
simply as (a) and the part for vertices at distance greater than two as (b).

We show the p-gridline coloring used for G works for G’; the argument
assumes this coloring. Clearly (a) holds for G’. Suppose (b) does not hold;
then G’ has vertices a and b such that dg(a, b) > 2 and there are less than
two colors that separate a and b. Then, since all paths of G’ are also in G,
there are less than two colors that separate a and b in G. Thus dg(a,b) < 2
in G, and since G’ is induced, this implies that dg(a,b) = 2 in G. Then
a and b are both adjacent to a vertex c¢ that was removed from G. But
then c is simplicial in G, so a, b, and c are in a common clique in G and are
therefore pairwise adjacent; hence a and b are adjacent so dg(a,b) =1, a
violation.

Now suppose that the converse does not hold. It will be convenient
to take G’ = G \ {a} for some simplicial vertex a € V(G); we may do this
by taking a minimal G violating the converse and a maximal subgraph G’
satisfying the lemma hypotheses. (Formally, such graphs exist by Zorn’s
Lemma, which is logically equivalent to the Axiom of Choice — see Hewitt
and Stromberg [2]). By hypothesis G’ is p-gridline colorable, and we can
easily extend the p-coloring to G: Vertex a has at most p — 1 neighbors
since it is simplicial and its clique has by hypothesis at most p vertices, so
there is at least one color available to color a. To see that (a) holds in G,
note that a is in no 4-hole, since it is simplicial implying its neighbors are
adjacent. To show that (b) indeed holds in G, suppose that dg(z,y) > 2
in G. If neither of = or y is a, then they do not violate (b). For, if a is

in an (z,y)-path of G then a can be removed, since it is simplicial and the
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vertices on either side of it are adjacent; thus z,y are separated at least
by the same colors as in G’. We have then that (b) can only be violated
by vertices a,b in G for some vertex b. Suppose a is in clique C (in G).
Suppose P is an (a,b)-path in G. Then the vertex adjacent to a in P is a
vertex ¢ € C. We show that in fact there are at least two colors, each of
which separates a and b in G. We consider two cases.

Case 1: dg(a,b) > 3. Then dg(c,b) > 2. Since ¢,b # a then, as
noted above, there are at least two colors, say colors 1 and 2, each of which
separates ¢ and b in G. If every (a, b)-path passes through ¢ then a,b are
also separated by colors 1 and 2. If there is an (a, b)-path P’ not passing
through c, then it passes through ¢ € C where ¢’ # c¢,a. But then the
portion of P’ from b to ¢/, with ¢ concatenated to the end, is a (b, c)-path
in G’, and thus contains the colors 1 and 2 in its interior. It follows that
P’ contains the colors 1 and 2 in its interior.

Case 2: dg(a,b) = 3. We may assume P is a shortest (a, b)-path acdb
where, say, c has color 1 and d has color 2. We show that every (a, b)-path
Q contains the colors 1 and 2 in its interior. Observe that, since G’ is an
induced subgraph of G, it is diamond- and 5-hole-free. Thus we will be able
to apply Lemmas 2.5 and 2.6. We now consider four subcases.

Case 2a: Path Q contains ¢ and d. Then Q contains colors 1 and 2 in
its interior.

Case 2b: Path Q contains ¢ but not d. Then Q contains the color 1 in
its interior, at c. The portion of @ from b to ¢ together with d forms a cycle
in G’. Vertices b and c are not adjacent, or else dg(a,b) < 3. By Lemmas
2.5 and 2.6, the portion of @ from b to ¢ contains the color 2 in its interior.

Case 2c¢: Path Q contains d but not c. Then Q contains the color 2 in
its interior, at d. Let ¢’ be the first vertex in C that Q hits, going from b to
a. Then the portion of @ from d to ¢/, together with ¢, forms a cycle in G'.
Vertices ¢’ and d are not adjacent, or else {a, ¢, ’,d} induces a diamond in

G. Again by Lemmas 2.5 and 2.6, the portion of Q from d to ¢’ contains
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the color 1 in its interior.

Case 2d: Path Q contains neither ¢ nor d. Let ¢/ be as in case 2c.
If dgr(b,c’) > 2 in G’ then, since b,c’ # a, there are at least two colors
each of which separates b and ¢’; by path bded’ two of these colors are 1
and 2. Then the portion of Q from b to ¢’ contains the colors 1 and 2
in its interior. Suppose now that dg:(b,¢’) = 2 in G’ (note dg+(b,c’) > 2
since dg(b,a) = 3 in G). Then there is a path bd’c’. Now d # d' since ¢
and d are not adjacent, as observed in case 2c. Then bdcc'd’ is a 5-cycle.
There is no chord from b or else dg(b,a) < 3, violating the hypothesis of
case 2. There is no chord from c to d' or ¢ to d, or else a diamond is
induced. Thus dd’ is the only chord. Then cc/d'd is a 4-hole, so by (a),
which was shown to hold, ¢/ has color 2 and d’ has color 1. Now rename
P = acdb to P = add'b, reverse colors 1 and 2, and apply either case 2a
or 2b (depending on whether Q contains d’). We conclude that Q contains

the colors 1 and 2 in its interior. B

If some vertex of G\ G’ is not simplicial then the lemma does not hold.
For example, if G is a 6-cycle with chords between vertices 1 and 4, 2 and
6, and 3 and 5, then it is not gridline colorable (for any p). But removing
any vertex yields a graph that is 3-gridline colorable.

The following theorem is the main result of the paper. It is a charac-
terization, except possibly for some isolated vertices, of associated graphs
of p-d (0,1)-matrices.

Theorem 38.6: Suppose G is a graph and p € N. Then GU I, = G4 for
some p-d (0,1)-matriz A and some n € NU {0} URo if and only if (1) G
is diamond- and 5-hole-free, (2) each cligue of G has ezactly one or exactly
p vertices, and (8) G is p-gridline colorable. In particular, Ga séiz’sﬁes
conditions (1)-(8).

Proof: In the case p = 1, G4 is an isolated vertex. If G is 1-gridline
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colorable then it too is an isolated vertex, since if there were at least two
(isolated) vertices then there would only be one color to separate them.

Suppose p > 2.

("only if”) It suffices to prove that G4 satisfies (1)-(3). For then it is
immediate that G = G4 \ I, also satisfies (1)-(3). By Lemma 3.2, G, is
diamond-free and (2) holds. To show G4 has no 5-hole, by Lemma 3.4 (1)
K(Ha) € Ga, and by Proposition 2.7 K(Ha) has no 5-hole. By Lemma
3.4 (2), any vertex a of GA \ K(Hp) is simplicial. Thus a’s neighbors are
adjacent and so it is in no 5-hole. Thus (1) holds. Finally, K(H,) is p-
gridline colorable by Theorem 2.8, and by Lemma 3.5 G, is also p-gridline
colorable.

(*if”) Suppose G satisfies (1)-(3). We will construct a p-d (0,1)-matrix
A satisfying the condition. We may assume:

(i) G has no isolated vertex. To create isolated vertices in G5 we can
insert into A hyperplanes of all 0’s to obtain at least as many lines of 0’s
— which correspond to isolated vertices in G4 — as needed. (Note that this
argument is not valid for p =1.)

(ii) Every clique of G has at least two nonsimplicial vertices. To create
a clique C in G with at most one nonsimplicial vertex a, where a has
a corresponding line A(!) in A, we can insert into A a hyperplane per-
pendicular to A(}) and give all elements in the new hyperplane the value
0, except give the element at the intersection with A(!) the value 1. If o
has no corresponding line in A (this occurs where there is a component
containing at most one nonsimplicial vertex), then we add a hyperplane to
A as described in (i) above, choose one of the lines in this hyperplane to
correspond to a, and proceed as in the previous sentence.

Delete Sg from G and call the resulting graph G’. We claim that no
vertex a € G’ is simplicial. Since a € Sg, a is in (at least) two cliques
C1 and C; of G. By (ii), there are vertices a; € C; for i = 1,2 such that
a; € Sg and a; # a. By Lemma 2.1, a; and a; are distinct (or else the
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pair {a,a,} is in both C; and C3) and nonadjacent (since C; and C; are
nonadjacent except at a). Thus a has (at least) two neighbors in G’ that are
not adjacent, so a is not simplicial, as claimed. We can now apply Lemma
3.1: There exists a graph H — namely K(G’) —such that K(H) & G’, H is
diamond-free, and H contains no simplicial vertex. By Lemma 2.4 H has
no 5-hole and by Lemma 3.5 G’ is p-gridline colorable. Then, by Theorem
2.8, H is a p-d gridline graph, which we may assume to be a realization in
NP, We show that A = Ay satisfies the condition of the theorem.

Now by (ii) K¢ is empty, so deleting S¢ from G was the same as
deleting S¢ \ Kg. Thus, by Lemma 3.3, Step NC reconstructs G from
G’ except for Ig and possibly some vertices of Sg. But by (i) and (ii) Ig
and S are empty, so Step NC applied to G’ yields G. Now by Lemma
3.4 (8), Step NC applied to K(H) = G’ reconstructs G4, except for Ig,
and possibly some vertices of Sg A We show that Sz Ay is empty. This
will complete the proof, for then Step NC applied to G’ yields (graphs
isomorphic to) both G and Ga,, \ Ig,,- Suppose Ga,, contains a vertex
of Sg A" By row four of Table 3.1 with ¢ = 1, there is a vertex v of
H contained by only one line with at least two vertices. But then v is

simplicial in H, a contradiction. [ |

Observe that if p = 2 then any bipartite graph satisfies conditions (1)-
(3) of Theorem 3.6. Further, in that case, we may take n = 0 in I,, that
is, G & G 4. For, in two dimensions we can delete single lines of A that are
0 everywhere, which deletes single isolated vertices in Ga.

For p > 3 we may not be able to delete a single line that is 0 everywhere
from a p-d (0,1)-matrix A .
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4, Conclusion

We have associated with any p-d (0,1)-matrix A a graph G having the
lines of A as vertices and edges being between vertices that as lines of A
intersect at a 1. This association is often used between a bipartite graph
G and a (2-d) (0,1)-matrix. In any dimension, the associated graph G4
is closely associated to the p-d gridline graph Ha induced by A, in that
K(Hp) 2 G4 modulo some simplical vertices. Using this idea, we have
nearly characterized graphs associated with p-d (0,1)-matrices. A graph G,
modulo isolated vertices, is associated with a p-d (0,1)-matrix whenever it
is diamond- and 5-hole-free, each clique has exactly one or p vertices, and
it is p-colorable such that every 4-hole is colored with only two colors and
every pair of vertices at distance greater than two is separated by at least

two colors.

Among the questions remaining are:

o What full characterization is there for graphs associated with p-d (0,1)-

maltrices?

o What is the minimum number of isolated vertices that must be added to

a graph such that it becomes associated with some p-d (0,1)-matriz?
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