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Abstract

Let u,v be distinct vertices of a multigraph G with degrees d.,
and dy, respectively. The number of edge-disjoint u,v-paths in G is
bounded above by min{d.,d,}. A multigraph G is optimally edge-
connected if for all pairs of distinct vertices u and v this upper bound
is achieved. If G is a multigraph with degree sequence D, then we
say G is a realisation of D. We characterize degree sequences of
multigraphs that have an optimally edge-connected realisation as well
as those for which every realisation is optimally edge-connected.

Let G = (V, E) be a finite multigraph, i.e., a graph with multiple edges
but without loops. Let » and v be distinct vertices of G and let Ag(u,v)
(kc(u,v)) be the maximum number of edge disjoint (internally vertex dis-
joint) u, v-paths in G. The minimum of Ag(u,v) over all u,v € V, called the
edge-connectivity of G, and also the minimum of kg(u,v) over all u,v € V,
called the connectivity of G, have been studied widely. Recently also the av-
erage of Ag(u,v) (kg(u,v)) over all u,v € V, the average edge-connectivity
X(G) (average connectivity %(G)), received attention [1, 3, 5, 7].

I u and v are vertices of G denote their respective degrees by deggu
and deggv. Clearly, min{deggu, degsv} is an upper bound for Ag (u, v) and
kG(u,v). This implies an upper bound on X(G), in terms of the degrees of
the vertices of G,
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We consider graphs that achieve this upper bound.

We call a finite sequence D of non-negative integers multigraphical (or
graphical) if D is the degree sequence of some multigraph, (respectively,
of some graph). If G is a multigraph having D as its degree sequence,
then we say G is a realisation of D. ¥ D : dy > dy 2 ... > dp hasa
connected realisation, then necessarily i d; > 2(n — 1) and if n > 2,
dn > 1. Moreover, if 35 di > 2(n —1) and dn > 1 for n > 2, then
there is a connected realisation of D as we now see. For n = 1 or 2 this
is certainly the case. Suppose now that n > 3. Let G be a realisation of
D with the fewest number of components. Since d, > 1, each component
of G is nontrivial. Moreover, if G has at least two components, then some
component must have a cycle. Let uv be an edge of G that belongs to a
cycle and let 2y be an edge in a component of G that does not contain uv.
Then the graph obtained from G by deleting the edges uv,ry and adding
the edges uz, vy is a realisation of D that has fewer components than G.
This is contrary to our choice of G. Hence D has a connected realisation.

A (multi)graph G is optimally edge-connected if it achieves the bound
(1), i.e., if for all pairs u,v of distinct vertices of G,

Ye] (us 'U) = min{degGua degGU}’ (2)

The definition of an optimally connected (multi)graph is analogous.

We call a (multi)graphical sequence D edge-optimal if and only if there
exists an optimally edge-connected (multi)graph G with degree sequence
D. In this case we say G is an edge-optimal realisation of D.

We make use of the following well-known characterisation of multigraph-
ical degree sequences. For further results or notions not defined here we
refer the reader to [2].

Lemma 1 Hakimi [6] A sequence dy > dy > ... > dn is multigraphical if
and only if S5, d; is even and dy < Y i, di.

The problem of characterising those graphical sequences which are op-
timal or edge-optimal was posed in [5]. The aim of this paper is to give a
characterization of multigraphical degree sequences that are edge-optimal.
Since zero entries result in isolated vertices which together with any other
vertex trivially satisfy condition (2), a degree sequence D containing zeros
is edge-optimal if and only if the sequence obtained from D by discarding
all zero entries is edge-optimal. If D contains exactly two terms, then D
is necessarily edge-optimal since in this case dy = d». Hence, it suffices
to consider multigraphical sequences of length at least 3 with only posi-
tive entries. For a positive integer 7 we denote the number of terms in the
sequence D which equal ¢ by n;.
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Theorem 1 Let D : dy > dp > ... 2 dp, n >3, be a multzgraphzcal
sequence with d, > 0. Then D i3 edge-optzmal if and only if

(i) ny <dy —dy or

(i) D:n~-1,1,1,...,1 where D contains n — 1 terms equal to 1.

Proof. If D is edge-optimal, then all vertices of degree 1 are necessarily
adjacent to the same vertex, and this vertex has degree d;. Hencen; < d) —
dsor D:n—-1,1,1,...,1. For the converse suppose D is a multigraphical
sequence for which (i) and (ii) hold. We show D is edge-optimal. Suppose
that D is a counter example for which 31, d; is as small as possible.

CLamM 1: d,, > 3.

Suppose first that d, = 1. Let D have n; terms equal to 1. Let D' be the
degree sequence obtained from D by discarding all terms that equal 1 and
reducing d; by n;. If D' : 0,0,...,0 and thus D : n —1,1,1,...,1 where
the latter sequence has n — 1 terms equal to 1, then the star K ,—; is an
edge-optimal realisation of D, a contradiction to the choice of D. If, on
the other hand, D' is not 0,0,...,0, then D' is a multigraphical sequence
and satisfies condition (i). By the choxce of D, there exists an edge-optimal
* realisation G’ of the sequence D'. Let G be the graph obtained from G’ by
appending n; end vertices to a vertex of degree d; — n; in G'. Then G is
an edge-optimal realisation of D, a contradiction.

Now suppose that d, = 2. Then let D’ be obtained from D by discarding
dp. By the choice of D, the sequence D’ has an edge-optimal realisation
G'. Let G be obtained from G’ by subdividing an arbitrary edge. Then
G has degree sequence D and it is easy to see that G is an edge-optimal,
realisation of D, a contradiction.

Coam 2: dy < (Thodi) —2.

Since D is multigraphical, we have dy < 3. ,d;. If di = Y 1, di, then
let G be the multigraph with vertex set {vy,v2,...,v,} in which vertex v;
is joined to v, by d; edges and no other edges are present. Then G is a.n
edge-optimal realisation of D, a contradiction. Hence, di < (X, di) —

By the handshake lemma, the mequahty is strict. Hence Claim 2 fo]lows

CLAaM 3: d) = ds.

Suppose not. Then let D’ be the sequence d}, ds, . ..,d,, whered]; =d; —1
and dj, = d, —~1and d; = d; for 2 <7 < n —1. Then D’ has an edge-
optimal realisation G’ with vertices v1,vs,...,v, such that degg.v; = dj.
Let G = G' + v1v,. Then G has degree sequence D. To see that G is
optimally edge-connected consider two vertices v, and vy. If a,b ¢ {1,n},
then Ag(vq,vs) > Ag/(ve,vs) = min{d,,dp}. Also if b # 1, a # 1,n,
then Ag(v1,v.) 2 A¢r(v1,v,) = min{d},d,} = min{dy,d,}. Now consider
Ac(ve,vp) for a € {1,2,...,n— 1}. Since v, has degree d, — 1 in G', there
exist dp, — 1 edge-disjoint v, — v, paths and d, > 3 edge-disjoint vs — v,
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paths in G'. To separate v, and v, in G, one has to remove either v,v, and
at least one edge from each path in any collection of d, — 1 edge-disjoint
va — U paths or one has to delete at least one edge from each path in any
collection of d, (> d,,) edge-disjoint v; — v, paths. In either case, at least
dn, edges have to be removed and so Ag(vq,vsn) > min{d,,dn}. Therefore,
G is an edge-optimal realisation of D. This contradiction proves d; = da.

CramM 4: d; —diy1 <1fori=2,3,...,n—- 1
Suppose, to the contrary, that d; — diy > 2 for some i > 2. Let D' =
.,d;, be obtained from D by subtracting 2 from d;,ds,...,d;. The
new sequence is multigraphical since d} = dj and Y 1., d; is even. As D'
contains no 1’s, it satisfies condition (1) Hence D' has an edge-optimal
realisation G’ with vertex set {vi,vs,...,vn} such that degg/v; = dj for
j =1,2,...,n. Let G be the multigraph obtained from G' by adding a
cycle through vertices of degree dy — 2,dz — 2,...,d; — 2. Then G has
degree sequence D. To prove that G is optimally edge-connected consider
two vertices v, and vp. I a,b >4 or a > % and b < %, then Ag(vy,vs) >
AG' (va,vp) = min{d,,ds}. If a,b < 14, then the added cycle provides two
additional edge-disjoint paths between v, and vy that do not contain edges
in G'. Hence Ag(ve,v) > Ag' (Va, ) + 2 = min{d,,ds }, a contradiction.

CLAIM 5: d, = 3.

This follows as in the proof of Claim 4 by consxdermg the sequence D' =
dy —2,dy - 2,...,d, — 2 and adding a cycle through all n vertices of an
edge-optuna.l reahsa.txon of D'.

CLaM 6: n; <i—1lfori=1,2,...,d;.

Suppose, to the contrary, that n; > > i for some i with i < d;. Let D’ be the
sequence obtained from D by discarding i — 1 terms that equal i. Then the
sum of the terms in D’ is even. By Claims 4 and 5, D and thus D' contain
the subsequence dy,d; — 1,d; — 2,...,3. Therefore, the second condition
of Lemma 1 holds if d; > 5. If d; is 4 or 3, then D and D' both contain
a positive even number of 3’s and again, the second condition of Lemma 1
holds. Thus D’ is multigraphical. By Claim 1, n; = 0 and thus D’ satisfies
condition (i). Hence D’ has an edge-optimal realisation G'. Since n; 2> 4,
there exists a vertex v of degree i in G'. Let G be the multigraph obtained
from G' by replacing v by a complete graph K; and making each of the
i edges of G incident with v now incident with a different vertex of K;.
Then the graph G has degree sequence D and it is easy to prove that G is
optimally edge-connected.

CLAIM 7: ng, > 3.

We already know that d; = da. We next show that dy = d3. Suppose, to
the contrary, that d; = ds > d3. Thenlet D' =d; —1,d3 —1,d3,dy, ..., dn.
Then D' is multigraphical and satisfies condition (i). Hence D’ has an
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edge-optimal realisation G’. Adding an edge between two vertices of degree
dy = djp yields a multigraph G which is easily seen to be optimally edge-
connected, a contradiction. Hence d; = d3 and thus nq4, > 3.

CLAM 8: There exists some 7 with d; = ng,.
By Claims 7 and 5 we have 4, > 3 = dn. By Claim 6 we have ng, < d; —1.
Since, by Claim 3, the difference d; — dj1 is at most 1, Claim 8 follows.

To complete the proof let ¥ = nq, and consider the sequence D' obtained
from D by subtracting 1 from each of the terms d, ds, . . ., di and discarding
a term d; with d; = k. Then D' is multigraphical and satisfies condition (i).
Hence D' has an edge-optimal realisation G'. Let G be the graph obtained
from G’ by adding a new vertex v to G’ and making it adjacent to k vertices
of maximum degree. Clearly; G has degree sequence D. To see that G is
optimally edge-connected consider two vertices v, and v, of degree d, and
dp, respectively, in G and d} and dj, respectively in G'. Suppose v,,vp # v.
If v, and v, are not adjacent to v in G, then Ag(va,vs) = min{d},d;} =
min{d,,ds}. If exactly one of v, and v, say, v, is adjacent to v, then d, > dj
and, as above, we obtain Ag(vq,vs) = min{d;,d;} = dp. If both, v, and v,
are adjacent to v in G, then vertex v provides an additional path of length
2 from v, to vs. Hence Ag(va,vs) = 1+ min{d},,d}} = min{d,;d;}. Finally,
consider Ag(v,v,). Let S C E(G) be a minimum edge-cut separating v,
and v in G. If S contains all edges incident with v, then Ag(v,va) = |S| >
degs(v) = k. If some edge incident with v, say vv;, is not in S then, by
Ag(vi, va) = min{d;,d, }, the edge-cut S contains at least min{d;,d,} =d,
edges. In both cases, we have Ag(v,v,) > min{d,, k}, as desired.

Hence G is an edge-optimal realisation of D. This contradiction com-
pletes the proof. o

We remark that the proof yields a polynomial time algorithm to con-
struct an edge-optimal realisation of a given edge-optimal multigraphical
degree sequence.

Not every multigraphical sequence that satisfies the conditions of Theo-
rem 1 has the property that each one of its realisations is edge-optimal. For
example, if G is obtained from two copies of K, n > 3, by adding exactly
one edge between the two copies of K, yields a connected (multi)graph
that is not edge-optimal. Moreover, its degree sequence satisfies the condi-
tions of Theorem 1. The next result characterises those degree sequences
for which every realisation is edge-optimal.

Theorem 2 Let D:dy >dy >...2>dy bea muliigraphical sequence with
dn > 0. Then every realisation of D is optimally edge-connected if and only
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if n—1
42 d (3)

=2

Proof. Let D be a multigraphical sequence satisfying d, > 0 and (3).
Let b:= (X, di — dy). Since D is multigraphical, Y7, di — d; is even
and nonnegative. Hence, by our hypothesis,

0 < 2b < dy.

We show that each realisation G of D is optimally edge-connected. Let
v1,%2,...,VUn be the vertices of G with degrees d,,ds, ..., dn, respectively.
It suffices to show that

dg(vi,v) =d; fori=2,3,...,n, 4)
since we then have, for: > j > 1,
Ac(vi,v;) > min{Ag(vi, 1), Ag(vj,%1)} = d; = min{d;, d;},

and G is optimally edge-connected. Denote the graph G —v; by H. Then
H has exactly b edges and for each vertex v;, 1 < j < n, we have

degyg 5 Sb< 5dn < 25 )

Consider a vertex v; (1 < i < n). If there are a; ; edges from v; to v;, then
by (5) there are at least a;; edges from v; to v;. Hence there exist a;,;
edge-disjoint paths v;,v;,v; for each v;, j # 1,i. Together with the a;,
edges from v; to vy, we obtain ), i B = d; edge-disjoint paths from v;
to v;. This proves (4). Hence G is optimally edge-connected.

For the converse consider a multigraphical sequence D : dy,...,d,
with dy < .7 d;. We show that D has a realisation G that is not
optunally edge-c0nnected Let ¢ = [4(dn + 1)]. Consider the sequence
D' : d\,d,,...,d,_, where d = d; fori =1,2,...,n—2and d,_;, =
dn-1 + d,, - 2c. We first show that D’ is multigraphxca.l. Clearly 307 &
is even. Since d),_, < dn—1 < di = di, the entry d) is the largest en-
try of the sequence D’. The second condition of Lemma 1 holds since

=d < Yradi=Yr,d+2—dy <Y, } di + 1, hence D' is
multigraphical Let H be a rea.hsamon of D' with vertmes Vi,...,Un—1 Of
degree d},dj,...,d,,_,, respectively. Let G be the graph obta.med from H
as follows. Add a vertex vn, replace dn — ¢ edges that, in H, join vn_; to
other vertices by d,, — c edges now joining v, to those vertices, and add ¢
edges between vn—, and v,. Then G is a realisation of D.
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It remains to show that G is not optimally edge-connected. Since only
dy,_, edges join a vertex in {vp—1,v,} to a vertexin {vi,...,v,—2}, we have

)\G('Un—la'ul) < d, 1= dn—1 +dn —2c < dp-1.

implying that G is not optimally edge-connected, as desired. m

The problems of characterising the graphical degree sequences which
are optimal or edge-optimal remains open. ¥ D : dy > dy > ... > d,
is graphical, then as for multigraphs D is edge-optimal if and only if the
sequence obtained from D by deleting all terms equal to 0 is graphical.
Suppose now that D : d; > ds > ... > d, > 1 is graphical and contains
n; terms equal to 1. Then D is edge-optimal if and only if d» = 1 and
di=morifd,—n; >d; and D' : dy —ny,ds,...,dn—n,+1 is edge-optimal.
So it suffices to characterize edge-optimal graphical sequences D where
D:dy >2d; 2 ... >dp, > 2. We conjecture that all graphical sequences
with smallest term at least 2 are edge-optimal. Edmonds showed in [4],
that if D : dy > dy > ... > d, > 1 is graphical, then there is a graph G
baving D as its degree sequence and edge-connectivity at least d,, if and
only if Y3 di > 2(n - 1).

Examples show that not all such graphical sequences are optimal graph-
ical sequences. For example, D : 5,5,3,3,3,3 is graphical and K> + (2K3)
is the unique graph having D as its degree sequence. Since the two vertices
of degree 5 form a vertex cut, not every pair of vertices of degree 3 are
_connected by three internally disjoint paths.
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