Bipartite Dominating Sets in Hypercubes

Mark Ramras*

Abstract
If G is a bipartite graph with bipartition (X,Y), a subset S of X
is called a one-sided dominating set if every vertex y € Y is adjacent
to some z € S. If S is minimal as a one-sided dominating set (i.e.
if it has no proper subset which is also a one-sided dominating set,
) it is called a bipartite dominating set (see [4],[5], and [6]). We
study bipartite dominating sets in hypercubes.

Definition 1 Let G be a bipartite graph with bipartition (X,Y). A subset
S of X is called a one-sided dominating set if every verter y € Y
is adjacent to some z € S, ie. if N(S) =Y. S is a minimal one-
sided dominating set if no proper subset of S is a one-sided dominating set.
It is a minimum one-sided dominating set if no one-sided dominating set
contained in X has smaller cardinality. In that case, S is called a bipartite
dominating set.

Bipartite dominating sets have been studied by Haynes, Hedetniemi,
and Slater [4] and by Hedetniemi and Laskar [5], [6].

Remark 1 A subset S of X is a one-sided dominating set & the only
mazimal independent set containing S is X.

Notation. For any graph G, ¥(G) denotes the minimum size of a
dominating set in G.

We denote by @Q,, the n-dimensional hypercube. Its bipartition (X,Y)
is given by X = {z € Qn | wi(z)is even}, Y = {y € Q, | wt(y)is odd}
where wt(z), the weight of z, is the number of 1’s in the n-tuple z. Al-
ternatively, if we think of the vertices of @, as the subsets of {1,2,...,n},
X consists of the subsets of even cardinality, and Y consists of the subsets
of odd cardinality. We will also at times consider Q,, to be a group under
component-wise addition of n-tuples (or, if the vertices are thought of as
subsets of {1,2,...,n}, then under the operation of symmetric difference).

The next proposition basically restates the Hamming Bound (see [9], p.
413), for Qy, for single-error-correcting codes.
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Proposition 1 (i) A one-sided dominating set S on Q, must have at least

n=1
-"’T- elements.

(i) A dominating set D on Qn must have at least % elements, i.e.
7(@n) < %

Proof. (i) Each even node is adjacent to n odd nodes. Thus to dominate
all 2"~ odd nodes, at least 3’;——1 even nodes are needed.

(ii) Each closed neighborhood of a node in @, has cardinality n + 1.
Thus for v closed neighborhoods to cover the 2" nodes of Qy,, we must have
¥(n + 1) > 2", from which the desired result follows. o

Remark 2 Q4 has a bipartite dominating set of size 2. Furthermore, any
2 even nodes of Q3 form a bipartite dominating set. Qs has a bipartite
dominating set of size 4.

Proof. For Qg4: let S = {0, {1,2,3,4}}. Each node of weight one is adjacent
to @ and each node of weight 3 is adjacent to {1,2,3,4}.

For Q3: Since the distance between any 2 even nodes in Q3 is 2,
we may assume with no loss in generality that S = {0, {1,2}}. Then each
node of weight 1 is adjacent to @ and {1, 2, 3} is adjacent to {1,2}. So S'is
a one-sided dominating set, and by Proposition 1, no single node can form
a one-sided dominating set in Q3. Thus S is a bipartite dominating set.

By Proposition 1, a one-sided dominating set for Qs must have at
least [16/5] = 4 elements. Now {0, {1,2,3,4},{1,5},{2,3,4,5}} is a one-
sided dominating set, and therefore is a bipartite dominating set. o

Proposition 2 Let n > 2. In Q, any set S of 2*~! —n + 1 even nodes is
a one-sided dominating set.

Proof. Let y be an odd node. |N(y)| = n. If SNN(y) = @, then [SUN(y)| =
S|+ IN(¥)| = (2"~ = n+1)+ n=2""1+ 1. But Q, has only 2"~! even
nodes. This contradiction means that SN N (y) # @ and therefore y € N(S).
Thus N(S) = {odd nodes} and so S is a one-sided dominating set. m]

Next we show that 2°=! — n 4 1 can not be replaced by a smaller
number.

Proposition 3 Q, has sets of even nodes of size 27-1 _ n which are not
one-sided dominating sets.

Proof. Let y be any odd node of Qy, and let S = X \ N(y). Since Q, is
n-regular, |S| = |X|—n=2""1—-n.Since SNN(y) =@, y ¢ N(S) and so
S is not a one-sided dominating set. O
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Next we give a construction which generalizes the construction of Qn41
from Q,. Let G = (X,Y) be any bipartite graph. Let G = GOKj3. So G
consists of two copies of G, say G and G’ with a an isomorphism ¢ from
G to G'. Note that {(v,4(v)) |v € V(G)} is a perfect matching joining the
two copies of X and also joining the two copies of Y. Define ¢ : G — G
by ¢(z) = z for z € X, and for y € Y, ¢(y) = y’, where y’ is the vertex
in the second copy of Y which is matched with y. Note that in G’, the
two partite sets are Y/ = ¢(Y) and X’ = ¢(X). Thus G is bipartite, with
partite sets X UY’ and X' UY.

Proposition 4 For a bipartite graph G and any subset S of V(G), S dom-
tnates G if and only if Sx U ¢(Sy) dominates Y U X'.

Proof. (=) Suppose that S dominates G. Let v €Y UX'. If v € Y then
since S dominates Y, v is adjacent to some s € S. Now let v € X’. Then
v = ¢(z) for some z € X. If £ € Sx then v is adjacent to an element of Sx.
If z ¢ Sx, then since S dominates G, z is adjacent to some y € Sy. Hence
#(z) is adjacent to ¢(y) € ¢(Sy). Thus Sx U ¢(Sy) dominates Y U X",
(<) Assume that Sx U ¢(Sy) dominates Y U X’. We must show that
S dominates G. First let y € Y. Since y can not be adjacent to anything
in X', and by assumption it is adjacent to some vertex of SU¢(S), it must
be adjacent to some s € Sx. Next, let z € X. If z € Sx there is nothing
to prove. If z € X \ Sx then ¢(z) € Y \ #(Sx). Hence, by the hypothesis,
#(x) is adjacent to some y' = ¢(y) € #(Sy), where y € Sy. Therefore,
must be adjacent to y. Hence Sx U ¢(Sy) dominates Y U X"’. o

Proposition 5 For all n > 3, Q. has a bipartite dominating set of size
n-2,

Proof. Choose S to be the set of all even weight vertices in Q,(,o) ~ Qn-1.
Since S is a maximal independent set in Qs.o) it dominates all odd nodes

of Q&o). 'Each odd node of Q,(,l) is adjacent to a unique member of S. So
S dominates the set of all odd vertices of Q,. Clearly |S| = 2"~2. §

is minimal, for if any z € S is deleted, its neighbor in Qs,l) will not be
dominated. o

Next we show that for n > 4 there are one-sided dominating sets half
the size of those of the preceding proposition. It follows that there are
bipartite dominating sets at least that small.

Proposition 6 Forn > 4, Q, has a one-sided dominating set of cardinal-
ity 273,
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Proof. In Q4, S = {0,{1,2,3,4}} is a one-sided dominating set by Remark
2. Now for n > 4 we proceed by induction. Let S,_; be an one-sided
dominating set of size 2”4 in QS;O) ~ Qn-1. Let T = S,_1A{1,n}. Since
{1,n} has weight 2 and every vertex in S,_; has even weight, so does
every vertex of T. Since Qs.o)A{l, n} o~ QE), T dominates all odd weight
vertices of Qg). Thus S, = Sp—1 UT dominates all odd weight vertices

of QP U QY = Q,, i.e. it is a one-sided dominating set. Clearly, |Sa| =
2. |Spoy] = 2274 =273, o

These results can be improved.
Lemma 1 Forn=2*—1, 4(Q,) = 2*~*.

Proof. The hypercubes of dimension 2¥ — 1 are precisely the ones that have
perfect single-error-correcting codes (Hamming codes). The cardinality of
such a code is 2** and it certainly is a dominating set. It therefore
achieves the sphere-packing bound [8], Theorem 10, p. 23, of nz_-:l’ and so
must be a minimum dominating set. O

The following ge;eral result about the domination number of a product
graph is given as Proposition 8.14 in [7].

Lemma 2 For any graphs G and H, v(GOH) < min {+(G)|V (H)|,¥v(H)|V(G)|}.

Corollary 1 Let G be any bipartite graph, with bipartition (X,Y). Then
GOV is bipartite and v(GOI) < 2v(G). In particular, for anyn, ¥(Qn41) <
27(Qn).

Corollary 2 Form>n=2F -1, 4(Qm) < 2™ "v(Qn)-

Example 1 The following set of 10 vertices of Q¢ s a one-sided domi-
nating set. (It is not @ minimum bipartite dominating set since, by the
preceding proposition, Qs has a one-sided dominating set of size 23 = 8.)
S =

{9,{1,2},{1,3},{1,4},{1,5},{3,4,5,6},{2,4,5,6},{2,3,5,6}, {2,3,4,6}, 6]}
where [n] denotes the set {1,2,...,n}.

Proof. To see that S is a one-sided dominating set, note that every vertex
of weight 1 is adjacent to @, and every vertex of weight 5 is adjacent to [6].
For 2 < i < j <6, {1,i,5} is adjacent to {1,i} € S. Next, there are 4
vertices in S of weight 4, all of which contain the element 6. If 6 is deleted
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from these vertices, we get the 4 subsets of {2,3,4,5} of weight 3. Thus
any vertex {i, j, k} of weight 3 which is contained in {2,3,4,5} is adjacent
to {i,j,k,6} € S. Finally, the only remaining vertices of weight 3 are those
of the form {i, 7,6}, with 2 < i < j < 6. Let & be one of the 2 members of
{2,3,4,5}\ {¢,5}. Then {3, j,6} is adjacent to {¢,j, k,6} € S.

For minimality it suffices to show that for each s € S there is a vertex of
odd weight which is adjacent to s and no other element of S. Now S consists
of five elements and their antipodes (set complements). Thus we need only
check the condition for @ and the four 2-element subsets containing 1. For
@, that element is {6}. For {1,j}, with 2 < j < 5, that element is {1, j,6}.
a .

Lemma 3 If A and B are adjacent in Q,,, then so are A and B, where C
denotes the complement of C in {1,2,...,n}.

Proof. This follows from the fact that taking complements is an automor-
phism of @,. (In fact, it is the antipodal map.) o

Proposition 7 Letn =0 (mod 4) , sayn = 4k. Let A=1{1,2,...,2k}.
Let
S$i={Ce€Qn||IC|=4|CNA|=0 (mod 2)}.

S= U S;
J=0 (mod 4)
0<j<n

Then S is a one-sided dominating set in Q.

Proof. Let D € Y = Q, \ X, and let B = [n]\ A. Since | D | is odd,
exactly one of | DN.A | and | DN B | is odd. Without loss of generality we
may assume that | DN A | is odd. First suppose that | D |=1 (mod 4).
Let i€ DNA. Then D - {i} € S, and D is adjacent to D — {i}. Next,
suppose that | D |=3 (mod 4). Then | D |=1 (mod 4). Thus by the
first case, there is a C € S such that D and C are adjacent. Hence, by
Lemma 1, C and D are adjacent. It is easy to see that S is closed under
complementation, and so C € S. Thus S is a one-sided dominating set. O

It should be noted that the one-sided dominating set produced by
Proposition 4 is not minimal. For example, when n = 8 it produces a set
of cardinality 40. The following subset of that one-sided dominating set,
of cardinality 16, is a minimal one-sided dominating set, i.e. a bipartite
dominating set.
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Example 2 A bipartite dominating set on Qg.

{1,2,3,4} {1,2,5,6} {1,2,7,8} {1,4,6,8}
{5,6,7,8} {3,4,7,8} {3,4,5,6} {2,3,5,7}
{1,3,5,8} {1,3,6,7} {1,4,5,7} 0
{2,4,6,7} {2,4,5,8} {2,3,6,8} {1,2,3,4,5,6,7,8)

The next two propositions establish a 1—1 correspondence between
dominating sets of @), and one-sided dominating sets in Qn41, by means
of a parity check bit. Define F : @, — @n41 by

_ | 20 if wt(z) is even
F(21,22,.--,2n) = { zl otherwise
This mapping F is known in the literature as eztension (see Pless (8], p.
35.)

Proposition 8 A subset S of Q, is a dominating set for Qn < F(S) is a
one-sided dominating set in Qpn41.

Proof. (=) Let y =y1,¥2,...,¥n+1 be an odd vertex of Qny1- f yn41 =0
then y;,¥2, - - ., Yn is an odd vertex of Q,,. Suppose first that y;,¥2,...,yn €
S. Then y1,92,..-,¥nl € F(S). Since this vertex is adjacent to y, we have
y € N(F(S)). On the other hand, if y1,y2,...,9n € S, then since S is
a dominating set for @, ¥1,¥2,...,¥n is adjacent to some s1,52,...,8n €
S. Hence sy,53,...,5y is even, and so F(81,82,...,8n) = §1,52,...,8n,0.
Thus y = y1,%2,-- -, ¥n, 0 is adjacent to an element of F(S).

Now suppose that y,41 = 1. Then y1,¥2,...,yn iseven. If y1,92,...,¥n €
S, then y1,¥2,..-,¥n,0 € F(S) and is adjacent to y1,¥2,..-,¥n,1 = ¥.
If y1,¥2,...,Un ¢ S, then since S dominates Q,, there is some s € S
which is adjacent to y1,¥2,---,¥n. In particular, s is therefore odd. Hence
F(s) = s1. Since s is adjacent to y1,¥2, . - ., Yn, it follows that 51 is adjacent
to ¥1,%2,---,¥n, 1. SO Y1, ¥2,---,¥a € F(5).

(<) Assume that F(S) is a one-sided dominating set in Qn41. Let
2€EQn, z¢S.

Case 1: z is even. Then z1 € Qn4; is odd. Therefore z1 is adjacent
to F(s) for some s € S. If s is even, then F(s) = 0. Since z1 is adjacent
to 50, we must have z = s. But then z € S, contrary to our assumption.
So s must be odd and therefore F(s) = sl. Hence sl is adjacent to z1,
which implies that s is adjacent to z.

Case 2: r is odd. Then F(z) = z1 ¢ F(S). Now z0 must also
be odd, and so z0 is adjacent to F(s), for some s € S. If 5 is odd, then
F(s) = sl, and z0 is adjacent to s1. It follows that £ = s, contradicting
the fact that s ¢ S. So s must be even. Therefore F(s) = 50, and so z0 is
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adjacent to s0. Hence z is adjacent to s € S.
Thus S is a dominating set for Q. o

Now we define a map G : Qn41 — @y by
G(xl)zzy . --1zn+l) =21,T2,...,2p

which is a left inverse to F, but more importantly, a right inverse to F
when restricted to the even nodes of @Qn41. This mapping is known in the
literature as puncturing (see Pless [8], p. 35).

Proposition 9 (i) F o G is the identity on the set of even nodes of Qpn41.
(i) Let A be any subset of the even weight nodes of Q1. Then A is a
one-sided dominating set <> G(A) is a dominating set in Q,.

Proof. (i) Let z = z1,23,...,%n,Zn4+1 be any even node of Qn41. G(z) =
T1,%2,...,Zn, Whose weight is congruent (mod 2) to z,4+1. Hence F(G(z)) =
F(z1,22,...,2p) = 21,Z2,...,Zn, Tnt1 = Z.

(ii) It suffices to show that if A is any subset of the even nodes of Q, 41,
then A = F(S) for some subset S of the nodes of Q,. For then G(A) =
G(F(S) = S, and so the result follows from the preceding proposition. But
ifa =ay,a3,...,a,4) is any even node in Qn41, a = F(a1,az,...,a,). O

Corollary 3 There is a 1-1 correspondence between dominating sets in Qy,
and one-sided dominating sets in Qn41. This correspondence is inclusion-
preserving, and therefore preseves minimality and mazimality.

The one-sided dominating set of Example 2 belongs to a special class of
bipartite dominating sets in @, which we introduce now.

Definition 2 A set C of even weight vertices of Q, is a half-perfect sin-
gle error correcting code if every odd weight vertex is adjacent to exactly
one member of C.

Lemma 4 A set C of even weight vertices is a half-perfect single error
correcting code in Q, ¢ Vz,y € C,d(z,y) >4and n-|C |=2""L.

Proof. (=) If z,y € C and d(z,y) = 2, there exists a z € @, such that z
is adjacent to both = and y. Since the weight of z is necessarily odd, this
contradicts the assumption that C is half-perfect. So d(z,y) > 4. Since
each odd vertex is adjacent to a unique z € C, {J,¢c N(z) = {z € Qn |
wi(z) =1 (mod 2)} (where N(z) denotes the set of vertices adjacent to z,
and wt(z) denotes the weight of z) and the neighbor sets N(z), for z € C,
are pairwise disjoint. Thus

> IN(@) =21

zeC
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The desired conclusion now follows from the n-regularity of @,.

(«) If z,y € C, then since d(z,y) > 2,N(z)N N(y) = 0. Thus no
odd weight vertex can be adjacent to more than one member of C. Since
n- | C |=2""! and the family {N(z) | z € C} consists of pairwise disjoint
sets, we have

| U N@) =27
z€C
and so |J,ee N(z) = {z € Qn | wt(z) =1 (mod 2)}. Thus C is half-
perfect and single error correcting. n]

In particular, if Q, has a half-perfect single error correcting code, then
n must be a power of 2. The next proposition says that by means of an
additional parity-check bit, we can convert a perfect single error correcting
code on Q,,_; to a half-perfect single error correcting code on Qy.

Proposition 10 Let F be the ertension mapping from codes on Qn -, to
codes on Qy,, and let G be the puncturing mapping which is its right inverse.
If 8 is a perfect single error correcting code on Qn_1, then C = F(S) is a
half-perfect single error correcting code on Q.

Conversely, if C is a half-perfect single error correcting code on Qn,
then G(C) is a perfect single error correcting code on Qn-1. Moreover,

C =F(G6(0))-

Proof. Let S be a perfect single error correcting code on @,-1. Then for
all z,y € S,d(z,y) > 3. If wi(z) and wt(y) have the same parity then
d(z, y) must be even. Therefore d(z,y) > 4 and d(F(z), F(y)) = d(z v)-
Now suppose that wi(z) and wt(y) have opposite parity, say wt(z) is even
and wi(y) is odd. Then }'(z) = z0, F(y) = yl. Hence d(F(z), F(y)) =
1+ d(z,y) > 4. Finally, since S is perfect, and each closed neighborhood
{z} U N(z) has cardinality n, n- | S |=2"~! >, and so n- | C |= 2""'. The
desired result now follows from Lemma 5.

Now suppose that C is a half-perfect single-error correcting code on Qy.
Then for all z,y € C, d(z,y) > 4. We must show that d(G(z),G(y)) > 3.
Now d(G(z),G(y)) = wt(G(z) + G(v)). Since G is a group homomorphism,
the latter is wt(G(x + y)). Now for any z € Qn, wi(2) < 1+ wt(G(2)). So
if wt(g(z +1y)) <2, then wi(z +y) < 3, contrary to our assumption. Thus
G(C)isa smgle-error correcting code on @Qn_1.

Next, we must show that the single-error correcting code G(C) on Qn_-1
is perfect. Thus we must show that for z,y € G(C), »|G(C)| = 2~
By Lemma 5, n|C| = 2"~!. Hence it suffices to show that |[G(C)| = |C|.
For this, it suffices to show that on C, the map G is one-to-one. But if
G(z) = G(y), then 7122+ ZTn—1 = $1¥Y2---Yn—1. Call this (n — 1)-tuple
2122+ -Zn—1. Then z = 2123 - - - 2n—10 and y = 2122 - - - Zn—11, or vice versa.
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Either way, this implies that d(z,y) = 2, contradicting the fact that for
z,y € C,d(z,y) > 4. Finally, it is easy to see that F oG is the identity map
on the even weight vertices of @,, and so C = F(G(C)). o

Definition 3 For a graph G, subsets S and S’ of V(G) will be said to be
isomorphic if there is an automorphism of G which carries S to S'.

Lemma 5 If T is an independent subset in Q,,, then Q,, — T contains an
independent set isomorphic to T.

Proof. Let u € @, be any vertex of weight one. We claim that the set
u + T has the desired properties. It is clearly isomorphic to 7 since the
map £ — u + z is an automorphism of @,. We must show that it is
disjoint from 7. If not, then for some ¢;,t, € 7,12 = u+t;. But then since
wt(u) = 1, £, is adjacent to ¢;, contradicting the independence of 7. O

For a perfect single error correcting group code, and for the half-perfect
single error correcting code obtained from it, we can say a good deal more.

Proposition 11 Let C be a perfect single error correcting group code on
Qn. Then V(Qy) has a partition into isomorphic copies of C.

Proof. C is a subgroup of @,,. Thus the cosets of C in Q,, partition C. Each
coset is of the form z+C and is thus the image of C under the automorphism
z— x4 2. ]

Proposition 12 Let C be a perfect single error correcting group code on
Qn and let S be the half-perfect single error correcting code on Qn 41 derived
from C. Then V(Qn4+1) has a partition into isomorphic copies of S.

Proof. The map extension mapping F is a group homomorphism. So
S = F(C) is a subgroup of Qn41, and just as in the lemma, the cosets of S
in Qn41 yield the desired partition. o

Proposition 13 Suppose S s a subset of the even weight vertices of Qn-1.
Define §* = Sy U 81, where

So={20 | z€ S} and Sy ={z1+¢1 | z€ S}

Then 8 is a minimal one-sided dominating set on Q,,_1 <> S* is @ minimal
one-sided dominating set on Q.

Proof. (=) It is easy to check that ¢ preserves adjacency, and also the
parity of the weight of a vertex. Note that by construction, every vertex in
S* has even weight. First we shall show that S* is an one-sided dominating
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set in Q. So let u € Q,, be any vertex of odd weight. Then ¢(u) has odd
weight, and so it is adjacent to some z1,%3,...,Za-1 € S. If uy = 0 then
u = U, Us,...,Un—1,0 is adjacent to z = z1,2Z2,...,2a-1,0 € So C S*.
On the other hand, if u, = 1, then 1y, u2,...,4y-1 = ®(u) is adjacent to
z and so ui,uz,...,Un—1,1 is adjacent to £1. Hence uy,u3,...,Un-1,1is
adjacent to £1,22,...,%n-1,1 € 81 C 8*. So in either case, u is adjacent
to some z € §*, and so 8* is an one-sided dominating set.

To prove the minimality of S*, suppose that 7 C S*, where 7 is an
one-sided dominating set. Then ¢(7T) C ¢(8*) = S and ¢(7) is an one-
sided dominating set. So, by the assumed minimality of S, ¢(7) = 8.
Now suppose y € S* — 7. If yo = 0, then o(¥) = y1,¥2,---,¥n-1,
SO UY1,Y2,---1Un—-1 € S, and therefore y = 1,¥2,...,%-1,0 € §*. On
the other hand, if y, = 1, then ¢o(y) = #1,¥2,.--,¥n-1 € S. Therefore
Y1,Y2,---,Yn—-1,1 €S, i.e. y € S*, which is a contradiction. Thus 7 = §*,
and so S* is minimal.

(«=) Suppose S8* is a minimal one-sided dominating set in Qn. Let
z € Qn-1 be any odd weight vertex. Then 20 € Q, has odd weight and
thus is adjacent to some s* € 8*. If s* = y0 then y € S and z is adjacent to
y. If s* = yl then y+¢] € S and z = y. But z is adjacent to z+€1 = y+¢€i.
Thus S is a one-sided dominating set.

Now let 7 C S be a bipartite dominating set. Then by the first half of
this proof, 7 is a bipartite dominating set in Q,. Since 7* C §*, and by
hypothesis S* is minimal, 7* = §*. Now let z € S. Then 20 € §* =T".
Hence z € 7. Thus S = 7, and so § is minimal. ]

Definition 4 A subset S of a graph G is irredundant if for all proper
subsets S’ of S, N(8') # N(S).

Lemma 6 Let G be a bipartite graph with bipartition (X,Y), and assume
that G has a perfect matching. Let S be a subset of X. Then S is a
minimal one-sided dominating set < S is irredundant and mazimal among
the irredundant subsets of X.

Proof. (=>) Assume that S is a bipartite dominating set. Suppose that
T C S and N(T) = N(S). Then T is also a one-sided dominating set and
so, by the minimality of S, T = S. So S is irredundant. Now suppose
that SC W C X. ThenY = N(S) C N(W) C N(X) =Y, and so
N(S) = N(W). Soif S # W then W is not irredundant. Hence S is
maximal among the irredundant subsets of X.

(<=) Assume that S is maximal among the irredundant subsets of X.
First we show that S is a one-sided dominating set, i.e. that N(S) =Y.
Suppose not. Then V = Y — N(S) # 8. By hypothesis, G has some
perfect matching, say M. Let U be the subset of X matched with V
under M. Then N(U) = V and U is minimal among subsets with this
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property. Let W = SUU. Then S C W C X and S # W. Note
that N(W) = N(S)UN(U) = N(S)UV =Y. We claim that W is
irredundant. For suppose W/ C W and N(W’) = N(W) = Y. Since
W' =(W'nS)u(W’'nU), we have

Y = N(W') = N(W'nS)UNW'NU). (1

Now N(W’'NS) C N(S), and VAN(S) = 0,50 V C N(W’'NU). But N(W’'n
U) C N(W) =V, and so we have N(W'NU) = V. By the minimality of
U, we get WNU =U, and so U C W’. Next, since N(W'NS) C N(S)
and N(S) NV =@, it follows from Equation 1 that N(W’' N S) = N(S).
Since S is irredundant it follows that W/NS = S. Hence S C W’. Since we
also have U C W', it follows that W = SUU C W’. Hence W’ = W. Thus
W is irredundant. But by hypothesis, S is maximal among irredundant
subsets of X, so we have a contradiction. Therefore N(S) =Y, ie. Sisa
one-sided dominating set.
Finally, if $' C S is a one-sided dominating set, then N(S') = N(S) =

Y. But since S is irredundant, we must have S’ = S. Thus S is a bipartite
dominating set. a

Lemma 7 Let G be an irredundant subset of the even weight vertices of
Qn and suppose that G is a subgroup of Q.. If G is a one-sided dominating
set, then G is a bipartite dominating set. Otherwise, there ezists a subgroup
H consisting of even weight vertices, H D G, which is also irredundant.

Proof. First suppose that G is an one-sided dominating set. If S C G and
S is also a one-sided dominating set, then N(S) = {odd vertices of Q,} =
N(G). Since G is irredundant, it follows that $ = G. Thus G is a bipartite
dominating set.

Now suppose that G is not a one-sided dominating set and that no
H of the desired form exists. Let z be a vertex of odd weight such that
z ¢ N(G). For1<i<nlety =z+¢6. Soy is adjacent to z. Then
wi(y;)isevenand 4 ¢ G. Let H; =G +y; = {9+ v | g € G}. Then
H; is a subgroup of the group of vertices of even weight, and H; D G. So
by our assumption, H; is not irredundant and therefore for some g € G,
N(H; - (9+w)) = N(H;). Thus N(9+w) C N(H; — (9+ %)). Now since
z is adjacent to y;, g+ z is adjacent to g+ y;. So g+ =z € N(H; - (9 +u)).
Hence g+z is adjacent to ¢’ +yi,9' # 9,9’ € G. Therefore z +y; is adjacent
to g + ¢’ # 0. In other words, for each 1 < i < n, & € N(G — {0}). This
contradicts the assumed irredundance of G, so an H of the desired form
must exist. (]

Proposition 14 Let G be an irredundant subset of the even weight vertices
of @n and suppose that G is a subgroup of Q.. Then there ezists a subgroup
G’ O G which is a bipartite dominating set.
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Proof. Let G’ be maximal among those subgroups of the group of even
weight vertices which contain G and are irredundant. It follows from the
preceding lemma that G’ is a one-sided dominating set and hence a bipartite
dominating set. a
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