Bipartite Dominating Sets in Hypercubes

Mark Ramras*

Abstract

If G is a bipartite graph with bipartition (X,Y), a subset S of X is called a one-sided dominating set if every vertex $y \in Y$ is adjacent to some $x \in S$. If S is minimal as a one-sided dominating set (i.e. if it has no proper subset which is also a one-sided dominating set,) it is called a bipartite dominating set (see [4],[5], and [6]). We study bipartite dominating sets in hypercubes.

Definition 1 Let G be a bipartite graph with bipartition (X,Y). A subset S of X is called a one-sided dominating set if every vertex $y \in Y$ is adjacent to some $x \in S$, i.e. if N(S) = Y. S is a minimal one-sided dominating set if no proper subset of S is a one-sided dominating set. It is a minimum one-sided dominating set if no one-sided dominating set contained in X has smaller cardinality. In that case, S is called a bipartite dominating set.

Bipartite dominating sets have been studied by Haynes, Hedetniemi, and Slater [4] and by Hedetniemi and Laskar [5], [6].

Remark 1 A subset S of X is a one-sided dominating set \Leftrightarrow the only maximal independent set containing S is X.

Notation. For any graph G, $\gamma(G)$ denotes the minimum size of a dominating set in G.

We denote by Q_n the *n*-dimensional hypercube. Its bipartition (X,Y) is given by $X = \{x \in Q_n \mid wt(x) \text{ is even}\}$, $Y = \{y \in Q_n \mid wt(y) \text{ is odd}\}$ where wt(z), the weight of z, is the number of 1's in the *n*-tuple z. Alternatively, if we think of the vertices of Q_n as the subsets of $\{1, 2, \ldots, n\}$, X consists of the subsets of even cardinality, and Y consists of the subsets of odd cardinality. We will also at times consider Q_n to be a group under component-wise addition of *n*-tuples (or, if the vertices are thought of as subsets of $\{1, 2, \ldots, n\}$, then under the operation of symmetric difference).

The next proposition basically restates the Hamming Bound (see [9], p. 413), for Q_n for single-error-correcting codes.

^{*}Department of Mathematics, Northeastern University, Boston, MA 02115 (ramras@neu.edu), Tel: 617-373-5651, Fax: 617-373-5658.

Proposition 1 (i) A one-sided dominating set S on Q_n must have at least $\frac{2^{n-1}}{n}$ elements.

- (ii) A dominating set D on Q_n must have at least $\frac{2^n}{n+1}$ elements, i.e. $\gamma(Q_n) \leq \frac{2^n}{n+1}$.
- **Proof.** (i) Each even node is adjacent to n odd nodes. Thus to dominate all 2^{n-1} odd nodes, at least $\frac{2^{n-1}}{n}$ even nodes are needed.

 (ii) Each closed neighborhood of a node in Q_n has cardinality n+1.
- (ii) Each closed neighborhood of a node in Q_n has cardinality n+1. Thus for γ closed neighborhoods to cover the 2^n nodes of Q_n , we must have $\gamma(n+1) \geq 2^n$, from which the desired result follows.

Remark 2 Q_4 has a bipartite dominating set of size 2. Furthermore, any 2 even nodes of Q_3 form a bipartite dominating set. Q_5 has a bipartite dominating set of size 4.

Proof. For Q_4 : let $S = \{\emptyset, \{1, 2, 3, 4\}\}$. Each node of weight one is adjacent to \emptyset and each node of weight 3 is adjacent to $\{1, 2, 3, 4\}$.

For Q_3 : Since the distance between any 2 even nodes in Q_3 is 2, we may assume with no loss in generality that $S = \{\emptyset, \{1,2\}\}$. Then each node of weight 1 is adjacent to \emptyset and $\{1,2,3\}$ is adjacent to $\{1,2\}$. So S is a one-sided dominating set, and by Proposition 1, no single node can form a one-sided dominating set in Q_3 . Thus S is a bipartite dominating set.

By Proposition 1, a one-sided dominating set for Q_5 must have at least $\lceil 16/5 \rceil = 4$ elements. Now $\{\emptyset, \{1,2,3,4\}, \{1,5\}, \{2,3,4,5\}\}$ is a one-sided dominating set, and therefore is a bipartite dominating set.

Proposition 2 Let $n \ge 2$. In Q_n any set S of $2^{n-1} - n + 1$ even nodes is a one-sided dominating set.

Proof. Let y be an odd node. |N(y)| = n. If $S \cap N(y) = \emptyset$, then $|S \cup N(y)| = |S| + |N(y)| = (2^{n-1} - n + 1) + n = 2^{n-1} + 1$. But Q_n has only 2^{n-1} even nodes. This contradiction means that $S \cap N(y) \neq \emptyset$ and therefore $y \in N(S)$. Thus $N(S) = \{ \text{odd nodes} \}$ and so S is a one-sided dominating set.

Next we show that $2^{n-1} - n + 1$ can not be replaced by a smaller number.

Proposition 3 Q_n has sets of even nodes of size $2^{n-1} - n$ which are not one-sided dominating sets.

Proof. Let y be any odd node of Q_n , and let $S = X \setminus N(y)$. Since Q_n is n-regular, $|S| = |X| - n = 2^{n-1} - n$. Since $S \cap N(y) = \emptyset$, $y \notin N(S)$ and so S is not a one-sided dominating set.

Next we give a construction which generalizes the construction of Q_{n+1} from Q_n . Let G = (X,Y) be any bipartite graph. Let $\overline{G} = G \square K_2$. So \overline{G} consists of two copies of G, say G and G' with a an isomorphism ϕ from G to G'. Note that $\{\langle v, \phi(v) \rangle | v \in V(G) \}$ is a perfect matching joining the two copies of X and also joining the two copies of Y. Define $\phi : G \longrightarrow \overline{G}$ by $\phi(x) = x$ for $x \in X$, and for $y \in Y, \phi(y) = y'$, where y' is the vertex in the second copy of Y which is matched with y. Note that in G', the two partite sets are $Y' = \phi(Y)$ and $X' = \phi(X)$. Thus \overline{G} is bipartite, with partite sets $X \cup Y'$ and $X' \cup Y$.

Proposition 4 For a bipartite graph G and any subset S of V(G), S dominates G if and only if $S_X \cup \phi(S_Y)$ dominates $Y \cup X'$.

Proof. (\Longrightarrow) Suppose that S dominates G. Let $v \in Y \cup X'$. If $v \in Y$ then since S dominates Y, v is adjacent to some $s \in S$. Now let $v \in X'$. Then $v = \phi(x)$ for some $x \in X$. If $x \in S_X$ then v is adjacent to an element of S_X . If $x \notin S_X$, then since S dominates G, x is adjacent to some $y \in S_Y$. Hence $\phi(x)$ is adjacent to $\phi(y) \in \phi(S_Y)$. Thus $S_X \cup \phi(S_Y)$ dominates $Y \cup X'$.

(\iff) Assume that $S_X \cup \phi(S_Y)$ dominates $Y \cup X'$. We must show that S dominates G. First let $y \in Y$. Since y can not be adjacent to anything in X', and by assumption it is adjacent to some vertex of $S \cup \phi(S)$, it must be adjacent to some $s \in S_X$. Next, let $x \in X$. If $x \in S_X$ there is nothing to prove. If $x \in X \setminus S_X$ then $\phi(x) \in Y \setminus \phi(S_X)$. Hence, by the hypothesis, $\phi(x)$ is adjacent to some $y' = \phi(y) \in \phi(S_Y)$, where $y \in S_Y$. Therefore, x must be adjacent to y. Hence $S_X \cup \phi(S_Y)$ dominates $Y \cup X'$. \square

Proposition 5 For all $n \geq 3$, Q_n has a bipartite dominating set of size 2^{n-2} .

Proof. Choose S to be the set of all even weight vertices in $Q_n^{(0)} \simeq Q_{n-1}$. Since S is a maximal independent set in $Q_n^{(0)}$ it dominates all odd nodes of $Q_n^{(0)}$. Each odd node of $Q_n^{(1)}$ is adjacent to a unique member of S. So S dominates the set of all odd vertices of Q_n . Clearly $|S| = 2^{n-2}$. S is minimal, for if any $x \in S$ is deleted, its neighbor in $Q_n^{(1)}$ will not be dominated.

Next we show that for $n \geq 4$ there are one-sided dominating sets half the size of those of the preceding proposition. It follows that there are bipartite dominating sets at least that small.

Proposition 6 For $n \geq 4$, Q_n has a one-sided dominating set of cardinality 2^{n-3} .

Proof. In Q_4 , $S = \{\emptyset, \{1, 2, 3, 4\}\}$ is a one-sided dominating set by Remark 2. Now for n > 4 we proceed by induction. Let S_{n-1} be an one-sided dominating set of size 2^{n-4} in $Q_n^{(0)} \simeq Q_{n-1}$. Let $T = S_{n-1}\Delta\{1, n\}$. Since $\{1, n\}$ has weight 2 and every vertex in S_{n-1} has even weight, so does every vertex of T. Since $Q_n^{(0)}\Delta\{1, n\} \simeq Q_n^{(1)}$, T dominates all odd weight vertices of $Q_n^{(1)}$. Thus $S_n = S_{n-1} \cup T$ dominates all odd weight vertices of $Q_n^{(0)} \cup Q_n^{(1)} = Q_n$, i.e. it is a one-sided dominating set. Clearly, $|S_n| = 2 \cdot |S_{n-1}| = 2 \cdot 2^{n-4} = 2^{n-3}$.

These results can be improved.

Lemma 1 For
$$n = 2^k - 1$$
, $\gamma(Q_n) = 2^{n-k}$.

Proof. The hypercubes of dimension $2^k - 1$ are precisely the ones that have perfect single-error-correcting codes (Hamming codes). The cardinality of such a code is 2^{n-k} , and it certainly is a dominating set. It therefore achieves the sphere-packing bound [8], Theorem 10, p. 23, of $\frac{2^n}{n+1}$, and so must be a minimum dominating set.

The following general result about the domination number of a product graph is given as Proposition 8.14 in [7].

Lemma 2 For any graphs G and H, $\gamma(G \square H) \leq \min \{ \gamma(G) |V(H)|, \gamma(H) |V(G)| \}$.

Corollary 1 Let G be any bipartite graph, with bipartition (X,Y). Then $G \square I$ is bipartite and $\gamma(G \square I) \leq 2\gamma(G)$. In particular, for any $n, \ \gamma(Q_{n+1}) \leq 2\gamma(Q_n)$.

Corollary 2 For
$$m \ge n = 2^k - 1$$
, $\gamma(Q_m) \le 2^{m-n} \gamma(Q_n)$.

Example 1 The following set of 10 vertices of Q_6 is a one-sided dominating set. (It is not a minimum bipartite dominating set since, by the preceding proposition, Q_6 has a one-sided dominating set of size $2^3 = 8$.) S =

$$\{\emptyset, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{3,4,5,6\}, \{2,4,5,6\}, \{2,3,5,6\}, \{2,3,4,6\}, [6]\}$$

where $[n]$ denotes the set $\{1,2,\ldots,n\}$.

Proof. To see that S is a one-sided dominating set, note that every vertex of weight 1 is adjacent to \emptyset , and every vertex of weight 5 is adjacent to [6]. For $2 \le i < j \le 6$, $\{1, i, j\}$ is adjacent to $\{1, i\} \in S$. Next, there are 4 vertices in S of weight 4, all of which contain the element 6. If 6 is deleted

from these vertices, we get the 4 subsets of $\{2,3,4,5\}$ of weight 3. Thus any vertex $\{i,j,k\}$ of weight 3 which is contained in $\{2,3,4,5\}$ is adjacent to $\{i,j,k,6\} \in S$. Finally, the only remaining vertices of weight 3 are those of the form $\{i,j,6\}$, with $2 \le i < j < 6$. Let k be one of the 2 members of $\{2,3,4,5\} \setminus \{i,j\}$. Then $\{i,j,6\}$ is adjacent to $\{i,j,k,6\} \in S$.

For minimality it suffices to show that for each $s \in S$ there is a vertex of odd weight which is adjacent to s and no other element of S. Now S consists of five elements and their antipodes (set complements). Thus we need only check the condition for \emptyset and the four 2-element subsets containing 1. For \emptyset , that element is $\{6\}$. For $\{1,j\}$, with $2 \le j \le 5$, that element is $\{1,j,6\}$.

Lemma 3 If A and B are adjacent in Q_n , then so are \bar{A} and \bar{B} , where \bar{C} denotes the complement of C in $\{1, 2, ..., n\}$.

Proof. This follows from the fact that taking complements is an automorphism of Q_n . (In fact, it is the antipodal map.)

Proposition 7 Let $n \equiv 0 \pmod{4}$, say n = 4k. Let $A = \{1, 2, ..., 2k\}$. Let

$$S_{j} = \{ C \in Q_{n} \mid \mid C \mid = j, \mid C \cap \mathcal{A} \mid \equiv 0 \pmod{2} \}.$$

$$S = \bigcup_{\substack{j \equiv 0 \pmod{4} \\ 0 \leq j \leq n}} S_{j}$$

Then S is a one-sided dominating set in Q_n .

Proof. Let $D \in Y = Q_n \setminus X$, and let $\mathcal{B} = [n] \setminus \mathcal{A}$. Since |D| is odd, exactly one of $|D \cap \mathcal{A}|$ and $|D \cap \mathcal{B}|$ is odd. Without loss of generality we may assume that $|D \cap \mathcal{A}|$ is odd. First suppose that $|D| \equiv 1 \pmod{4}$. Let $i \in D \cap \mathcal{A}$. Then $D - \{i\} \in \mathcal{S}$, and D is adjacent to $D - \{i\}$. Next, suppose that $|D| \equiv 3 \pmod{4}$. Then $|D| \equiv 1 \pmod{4}$. Thus by the first case, there is a $C \in \mathcal{S}$ such that $D \in \mathcal{S}$ and $D \in \mathcal{S}$ are adjacent. Hence, by Lemma 1, $C \in \mathcal{S}$ and $D \in \mathcal{S}$ are adjacent. It is easy to see that \mathcal{S} is closed under complementation, and so $C \in \mathcal{S}$. Thus \mathcal{S} is a one-sided dominating set. \square

It should be noted that the one-sided dominating set produced by Proposition 4 is *not* minimal. For example, when n = 8 it produces a set of cardinality 40. The following subset of that one-sided dominating set, of cardinality 16, is a minimal one-sided dominating set, i.e. a bipartite dominating set.

Example 2 A bipartite dominating set on Q_8 .

The next two propositions establish a 1-1 correspondence between dominating sets of Q_n and one-sided dominating sets in Q_{n+1} , by means of a parity check bit. Define $\mathcal{F}: Q_n \longrightarrow Q_{n+1}$ by

$$\mathcal{F}(x_1, x_2, \dots, x_n) = \begin{cases} x_0 & \text{if } wt(x) \text{ is even} \\ x_1 & \text{otherwise} \end{cases}$$

This mapping \mathcal{F} is known in the literature as extension (see Pless [8], p. 35.)

Proposition 8 A subset S of Q_n is a dominating set for $Q_n \Leftrightarrow \mathcal{F}(S)$ is a one-sided dominating set in Q_{n+1} .

Proof. (\Rightarrow) Let $y = y_1, y_2, \ldots, y_{n+1}$ be an odd vertex of Q_{n+1} . If $y_{n+1} = 0$ then y_1, y_2, \ldots, y_n is an odd vertex of Q_n . Suppose first that $y_1, y_2, \ldots, y_n \in S$. Then $y_1, y_2, \ldots, y_n \in F(S)$. Since this vertex is adjacent to y, we have $y \in N(\mathcal{F}(S))$. On the other hand, if $y_1, y_2, \ldots, y_n \notin S$, then since S is a dominating set for $Q_n, y_1, y_2, \ldots, y_n$ is adjacent to some $s_1, s_2, \ldots, s_n \in S$. Hence s_1, s_2, \ldots, s_n is even, and so $\mathcal{F}(s_1, s_2, \ldots, s_n) = s_1, s_2, \ldots, s_n, 0$. Thus $y = y_1, y_2, \ldots, y_n, 0$ is adjacent to an element of $\mathcal{F}(S)$.

Now suppose that $y_{n+1} = 1$. Then y_1, y_2, \ldots, y_n is even. If $y_1, y_2, \ldots, y_n \in S$, then $y_1, y_2, \ldots, y_n, 0 \in \mathcal{F}(S)$ and is adjacent to $y_1, y_2, \ldots, y_n, 1 = y$. If $y_1, y_2, \ldots, y_n \notin S$, then since S dominates Q_n , there is some $s \in S$ which is adjacent to y_1, y_2, \ldots, y_n . In particular, s is therefore odd. Hence $\mathcal{F}(s) = s1$. Since s is adjacent to y_1, y_2, \ldots, y_n , it follows that s1 is adjacent to $y_1, y_2, \ldots, y_n, 1$. So $y_1, y_2, \ldots, y_n \in \mathcal{F}(S)$.

 (\Leftarrow) Assume that $\mathcal{F}(S)$ is a one-sided dominating set in Q_{n+1} . Let $x \in Q_n, x \notin S$.

Case 1: x is even. Then $x1 \in Q_{n+1}$ is odd. Therefore x1 is adjacent to $\mathcal{F}(s)$ for some $s \in S$. If s is even, then $\mathcal{F}(s) = s0$. Since x1 is adjacent to s0, we must have x = s. But then $x \in S$, contrary to our assumption. So s must be odd and therefore $\mathcal{F}(s) = s1$. Hence s1 is adjacent to x1, which implies that s is adjacent to x.

Case 2: x is odd. Then $\mathcal{F}(x) = x1 \notin \mathcal{F}(S)$. Now x0 must also be odd, and so x0 is adjacent to $\mathcal{F}(s)$, for some $s \in S$. If s is odd, then $\mathcal{F}(s) = s1$, and x0 is adjacent to s1. It follows that x = s, contradicting the fact that $s \notin S$. So s must be even. Therefore $\mathcal{F}(s) = s0$, and so x0 is

adjacent to s0. Hence x is adjacent to $s \in S$. Thus S is a dominating set for Q_n .

Now we define a map $\mathcal{G}: Q_{n+1} \longrightarrow Q_n$ by

$$\mathcal{G}(x_1,x_2,\ldots,x_{n+1})=x_1,x_2,\ldots,x_n$$

which is a left inverse to \mathcal{F} , but more importantly, a right inverse to \mathcal{F} when restricted to the even nodes of Q_{n+1} . This mapping is known in the literature as puncturing (see Pless [8], p. 35).

Proposition 9 (i) $\mathcal{F} \circ \mathcal{G}$ is the identity on the set of even nodes of Q_{n+1} . (ii) Let A be any subset of the even weight nodes of Q_{n+1} . Then A is a one-sided dominating set $\Leftrightarrow \mathcal{G}(A)$ is a dominating set in Q_n .

Proof. (i) Let $x = x_1, x_2, \ldots, x_n, x_{n+1}$ be any even node of Q_{n+1} . $\mathcal{G}(x) = x_1, x_2, \ldots, x_n$, whose weight is congruent (mod 2) to x_{n+1} . Hence $\mathcal{F}(\mathcal{G}(x)) = \mathcal{F}(x_1, x_2, \ldots, x_n) = x_1, x_2, \ldots, x_n, x_{n+1} = x$.

(ii) It suffices to show that if A is any subset of the even nodes of Q_{n+1} , then $A = \mathcal{F}(S)$ for some subset S of the nodes of Q_n . For then $\mathcal{G}(A) = \mathcal{G}(\mathcal{F}(S) = S)$, and so the result follows from the preceding proposition. But if $a = a_1, a_2, \ldots, a_{n+1}$ is any even node in $Q_{n+1}, a = \mathcal{F}(a_1, a_2, \ldots, a_n)$. \square

Corollary 3 There is a 1-1 correspondence between dominating sets in Q_n and one-sided dominating sets in Q_{n+1} . This correspondence is inclusion-preserving, and therefore preserves minimality and maximality.

The one-sided dominating set of Example 2 belongs to a special class of bipartite dominating sets in Q_n which we introduce now.

Definition 2 A set C of even weight vertices of Q_n is a half-perfect single error correcting code if every odd weight vertex is adjacent to exactly one member of C.

Lemma 4 A set C of even weight vertices is a half-perfect single error correcting code in $Q_n \Leftrightarrow \forall x, y \in C, d(x, y) \geq 4$ and $n \cdot |C| = 2^{n-1}$.

Proof. (\Rightarrow) If $x,y\in\mathcal{C}$ and d(x,y)=2, there exists a $z\in\mathcal{Q}_n$ such that z is adjacent to both x and y. Since the weight of z is necessarily odd, this contradicts the assumption that \mathcal{C} is half-perfect. So $d(x,y)\geq 4$. Since each odd vertex is adjacent to a unique $x\in\mathcal{C}$, $\bigcup_{x\in\mathcal{C}}N(x)=\{z\in\mathcal{Q}_n\mid wt(z)\equiv 1\pmod{2}\}$ (where N(x) denotes the set of vertices adjacent to x, and wt(z) denotes the weight of z) and the neighbor sets N(x), for $x\in\mathcal{C}$, are pairwise disjoint. Thus

$$\sum_{x \in \mathcal{C}} \mid N(x) \mid = 2^{n-1}$$

The desired conclusion now follows from the n-regularity of Q_n .

(⇐) If $x, y \in \mathcal{C}$, then since d(x, y) > 2, $N(x) \cap N(y) = \emptyset$. Thus no odd weight vertex can be adjacent to more than one member of \mathcal{C} . Since $n \cdot |\mathcal{C}| = 2^{n-1}$ and the family $\{N(x) \mid x \in \mathcal{C}\}$ consists of pairwise disjoint sets, we have

$$|\bigcup_{x\in\mathcal{C}}N(x)|=2^{n-1}$$

and so $\bigcup_{x \in C} N(x) = \{z \in Q_n \mid wt(z) \equiv 1 \pmod{2}\}$. Thus C is half-perfect and single error correcting.

In particular, if Q_n has a half-perfect single error correcting code, then n must be a power of 2. The next proposition says that by means of an additional parity-check bit, we can convert a perfect single error correcting code on Q_{n-1} to a half-perfect single error correcting code on Q_n .

Proposition 10 Let \mathcal{F} be the extension mapping from codes on Q_{n-1} to codes on Q_n , and let \mathcal{G} be the puncturing mapping which is its right inverse. If \mathcal{S} is a perfect single error correcting code on Q_{n-1} , then $\mathcal{C} = \mathcal{F}(\mathcal{S})$ is a half-perfect single error correcting code on Q_n .

Conversely, if C is a half-perfect single error correcting code on Q_n , then G(C) is a perfect single error correcting code on Q_{n-1} . Moreover, $C = \mathcal{F}(G(C))$.

Proof. Let S be a perfect single error correcting code on Q_{n-1} . Then for all $x, y \in S$, $d(x, y) \geq 3$. If wt(x) and wt(y) have the same parity then d(x, y) must be even. Therefore $d(x, y) \geq 4$ and $d(\mathcal{F}(x), \mathcal{F}(y)) = d(x, y)$. Now suppose that wt(x) and wt(y) have opposite parity, say wt(x) is even and wt(y) is odd. Then $\mathcal{F}(x) = x0$, $\mathcal{F}(y) = y1$. Hence $d(\mathcal{F}(x), \mathcal{F}(y)) = 1 + d(x, y) \geq 4$. Finally, since S is perfect, and each closed neighborhood $\{x\} \cup N(x)$ has cardinality $n, n \mid S \mid = 2^{n-1} >$, and so $n \mid C \mid = 2^{n-1}$. The desired result now follows from Lemma 5.

Now suppose that C is a half-perfect single-error correcting code on Q_n . Then for all $x, y \in C$, $d(x, y) \geq 4$. We must show that $d(\mathcal{G}(x), \mathcal{G}(y)) \geq 3$. Now $d(\mathcal{G}(x), \mathcal{G}(y)) = wt(\mathcal{G}(x) + \mathcal{G}(y))$. Since \mathcal{G} is a group homomorphism, the latter is $wt(\mathcal{G}(x+y))$. Now for any $z \in Q_n$, $wt(z) \leq 1 + wt(\mathcal{G}(z))$. So if $wt(\mathcal{G}(x+y)) \leq 2$, then $wt(x+y) \leq 3$, contrary to our assumption. Thus $\mathcal{G}(\mathcal{C})$ is a single-error correcting code on Q_{n-1} .

Next, we must show that the single-error correcting code $\mathcal{G}(\mathcal{C})$ on Q_{n-1} is perfect. Thus we must show that for $x,y\in\mathcal{G}(\mathcal{C}),\ n|\mathcal{G}(\mathcal{C})|=2^{n-1}$. By Lemma 5, $n|\mathcal{C}|=2^{n-1}$. Hence it suffices to show that $|\mathcal{G}(\mathcal{C})|=|\mathcal{C}|$. For this, it suffices to show that on \mathcal{C} , the map \mathcal{G} is one-to-one. But if $\mathcal{G}(x)=\mathcal{G}(y)$, then $x_1x_2\cdots x_{n-1}=y_1y_2\cdots y_{n-1}$. Call this (n-1)-tuple $z_1z_2\cdots z_{n-1}$. Then $x=z_1z_2\cdots z_{n-1}0$ and $y=z_1z_2\cdots z_{n-1}1$, or vice versa.

Either way, this implies that d(x, y) = 2, contradicting the fact that for $x, y \in \mathcal{C}, d(x, y) \geq 4$. Finally, it is easy to see that $\mathcal{F} \circ \mathcal{G}$ is the identity map on the even weight vertices of Q_n , and so $\mathcal{C} = \mathcal{F}(\mathcal{G}(\mathcal{C}))$.

Definition 3 For a graph G, subsets S and S' of V(G) will be said to be isomorphic if there is an automorphism of G which carries S to S'.

Lemma 5 If \mathcal{T} is an independent subset in Q_n , then $Q_n - \mathcal{T}$ contains an independent set isomorphic to \mathcal{T} .

Proof. Let $u \in Q_n$ be any vertex of weight one. We claim that the set $u + \mathcal{T}$ has the desired properties. It is clearly isomorphic to \mathcal{T} since the map $x \mapsto u + x$ is an automorphism of Q_n . We must show that it is disjoint from \mathcal{T} . If not, then for some $t_1, t_2 \in \mathcal{T}, t_2 = u + t_1$. But then since $wt(u) = 1, t_2$ is adjacent to t_1 , contradicting the independence of \mathcal{T} .

For a perfect single error correcting group code, and for the half-perfect single error correcting code obtained from it, we can say a good deal more.

Proposition 11 Let C be a perfect single error correcting group code on Q_n . Then $V(Q_n)$ has a partition into isomorphic copies of C.

Proof. C is a subgroup of Q_n . Thus the cosets of C in Q_n partition C. Each coset is of the form x+C and is thus the image of C under the automorphism $z \mapsto x+z$.

Proposition 12 Let C be a perfect single error correcting group code on Q_n and let S be the half-perfect single error correcting code on Q_{n+1} derived from C. Then $V(Q_{n+1})$ has a partition into isomorphic copies of S.

Proof. The map extension mapping \mathcal{F} is a group homomorphism. So $\mathcal{S} = \mathcal{F}(\mathcal{C})$ is a subgroup of Q_{n+1} , and just as in the lemma, the cosets of \mathcal{S} in Q_{n+1} yield the desired partition.

Proposition 13 Suppose S is a subset of the even weight vertices of Q_{n-1} . Define $S^* = S_0 \cup S_1$, where

$$S_0 = \{x0 \mid x \in S\} \text{ and } S_1 = \{x1 + \vec{e_1} \mid x \in S\}.$$

Then S is a minimal one-sided dominating set on $Q_{n-1} \Leftrightarrow S^*$ is a minimal one-sided dominating set on Q_n .

Proof. (\Rightarrow) It is easy to check that φ preserves adjacency, and also the parity of the weight of a vertex. Note that by construction, every vertex in S^* has even weight. First we shall show that S^* is an one-sided dominating

set in Q_n . So let $u \in Q_n$ be any vertex of odd weight. Then $\varphi(u)$ has odd weight, and so it is adjacent to some $x_1, x_2, \ldots, x_{n-1} \in \mathcal{S}$. If $u_n = 0$ then $u = u_1, u_2, \ldots, u_{n-1}, 0$ is adjacent to $x = x_1, x_2, \ldots, x_{n-1}, 0 \in \mathcal{S}_0 \subset \mathcal{S}^*$. On the other hand, if $u_n = 1$, then $u_1, u_2, \ldots, u_{n-1} = \varphi(u)$ is adjacent to x and so $u_1, u_2, \ldots, u_{n-1}, 1$ is adjacent to x. Hence $x_1, x_2, \ldots, x_{n-1}, 1 \in \mathcal{S}_1 \subset \mathcal{S}^*$. So in either case, $x_n = u_n$ is adjacent to some $x_n \in \mathcal{S}^*$, and so $x_n = u_n$ is an one-sided dominating set.

To prove the minimality of S^* , suppose that $T \subset S^*$, where T is an one-sided dominating set. Then $\varphi(T) \subset \varphi(S^*) = S$ and $\varphi(T)$ is an one-sided dominating set. So, by the assumed minimality of S, $\varphi(T) = S$. Now suppose $y \in S^* - T$. If $y_n = 0$, then $\varphi(y) = y_1, y_2, \ldots, y_{n-1}$, so $y_1, y_2, \ldots, y_{n-1} \in S$, and therefore $y = y_1, y_2, \ldots, y_{n-1}, 0 \in S^*$. On the other hand, if $y_n = 1$, then $\varphi(y) = \bar{y_1}, y_2, \ldots, y_{n-1} \in S$. Therefore $y_1, y_2, \ldots, y_{n-1}, 1 \in S^*$, i.e. $y \in S^*$, which is a contradiction. Thus $T = S^*$, and so S^* is minimal.

(\Leftarrow) Suppose \mathcal{S}^* is a minimal one-sided dominating set in Q_n . Let $x \in Q_{n-1}$ be any odd weight vertex. Then $x0 \in Q_n$ has odd weight and thus is adjacent to some $s^* \in \mathcal{S}^*$. If $s^* = y0$ then $y \in \mathcal{S}$ and x is adjacent to y. If $s^* = y1$ then $y + \vec{e_1} \in \mathcal{S}$ and x = y. But x is adjacent to $x + \vec{e_1} = y + \vec{e_1}$. Thus \mathcal{S} is a one-sided dominating set.

Now let $\mathcal{T} \subset \mathcal{S}$ be a bipartite dominating set. Then by the first half of this proof, \mathcal{T}^* is a bipartite dominating set in Q_n . Since $\mathcal{T}^* \subset \mathcal{S}^*$, and by hypothesis \mathcal{S}^* is minimal, $\mathcal{T}^* = \mathcal{S}^*$. Now let $z \in \mathcal{S}$. Then $z \in \mathcal{S}^* = \mathcal{T}^*$. Hence $z \in \mathcal{T}$. Thus $\mathcal{S} = \mathcal{T}$, and so \mathcal{S} is minimal.

Definition 4 A subset S of a graph G is irredundant if for all proper subsets S' of S, $N(S') \neq N(S)$.

Lemma 6 Let G be a bipartite graph with bipartition (X,Y), and assume that G has a perfect matching. Let S be a subset of X. Then S is a minimal one-sided dominating set $\Leftrightarrow S$ is irredundant and maximal among the irredundant subsets of X.

Proof. (\Rightarrow) Assume that S is a bipartite dominating set. Suppose that $T \subset S$ and N(T) = N(S). Then T is also a one-sided dominating set and so, by the minimality of S, T = S. So S is irredundant. Now suppose that $S \subset W \subset X$. Then $Y = N(S) \subset N(W) \subset N(X) = Y$, and so N(S) = N(W). So if $S \neq W$ then W is not irredundant. Hence S is maximal among the irredundant subsets of X.

(\Leftarrow) Assume that S is maximal among the irredundant subsets of X. First we show that S is a one-sided dominating set, i.e. that N(S) = Y. Suppose not. Then $V = Y - N(S) \neq \emptyset$. By hypothesis, G has some perfect matching, say M. Let U be the subset of X matched with V under M. Then N(U) = V and U is minimal among subsets with this

property. Let $W = S \cup U$. Then $S \subset W \subset X$ and $S \neq W$. Note that $N(W) = N(S) \cup N(U) = N(S) \cup V = Y$. We claim that W is irredundant. For suppose $W' \subset W$ and N(W') = N(W) = Y. Since $W' = (W' \cap S) \cup (W' \cap U)$, we have

$$Y = N(W') = N(W' \cap S) \cup N(W' \cap U). \tag{1}$$

Now $N(W'\cap S)\subset N(S)$, and $V\cap N(S)=\emptyset$, so $V\subset N(W'\cap U)$. But $N(W'\cap U)\subset N(W)=V$, and so we have $N(W'\cap U)=V$. By the minimality of U, we get $W'\cap U=U$, and so $U\subset W'$. Next, since $N(W'\cap S)\subset N(S)$ and $N(S)\cap V=\emptyset$, it follows from Equation 1 that $N(W'\cap S)=N(S)$. Since S is irredundant it follows that $W'\cap S=S$. Hence $S\subset W'$. Since we also have $U\subset W'$, it follows that $W=S\cup U\subset W'$. Hence W'=W. Thus W is irredundant. But by hypothesis, S is maximal among irredundant subsets of X, so we have a contradiction. Therefore N(S)=Y, i.e. S is a one-sided dominating set.

Finally, if $S' \subset S$ is a one-sided dominating set, then N(S') = N(S) = Y. But since S is irredundant, we must have S' = S. Thus S is a bipartite dominating set.

Lemma 7 Let G be an irredundant subset of the even weight vertices of Q_n and suppose that G is a subgroup of Q_n . If G is a one-sided dominating set, then G is a bipartite dominating set. Otherwise, there exists a subgroup H consisting of even weight vertices, $H \supset G$, which is also irredundant.

Proof. First suppose that G is an one-sided dominating set. If $S \subset G$ and S is also a one-sided dominating set, then $N(S) = \{\text{odd vertices of } Q_n\} = N(G)$. Since G is irredundant, it follows that S = G. Thus G is a bipartite dominating set.

Now suppose that G is not a one-sided dominating set and that no H of the desired form exists. Let x be a vertex of odd weight such that $x \notin N(G)$. For $1 \le i \le n$ let $y_i = x + \vec{e_i}$. So y_i is adjacent to x. Then $wt(y_i)$ is even and $y_i \notin G$. Let $H_i = G + y_i = \{g + y_i \mid g \in G\}$. Then H_i is a subgroup of the group of vertices of even weight, and $H_i \supset G$. So by our assumption, H_i is not irredundant and therefore for some $g \in G$, $N(H_i - (g + y_i)) = N(H_i)$. Thus $N(g + y_i) \subset N(H_i - (g + y_i))$. Now since x is adjacent to $y_i, y_i + x$ is adjacent to $y_i, y_i +$

Proposition 14 Let G be an irredundant subset of the even weight vertices of Q_n and suppose that G is a subgroup of Q_n . Then there exists a subgroup $G' \supset G$ which is a bipartite dominating set.

Proof. Let G' be maximal among those subgroups of the group of even weight vertices which contain G and are irredundant. It follows from the preceding lemma that G' is a one-sided dominating set and hence a bipartite dominating set.

References

- [1] K. Arumugam, Domination parameters of hypercubes, J. Indian Math. Soc. (N.S.) 65 (1998) 31-38.
- [2] R.W. Hamming, Error detecting and error correcting codes, Bell System Tech. J. 29 (1950), 147-160.
- [3] J. Harant and A. Pruchnewski, A Note on the Domination Number of a Bipartite Graph, Ann. Comb. 5 (2001), 175-178.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, Inc., New York, 1998.
- [5] S.T. Hedetniemi and R.C. Laskar, A bipartite theory of graphs: I. Congr. Numer., 55 (1986) 5-14.
- [6] S.T. Hedetniemi and R.C. Laskar, A bipartite theory of graphs: II. Congr. Numer., 64 (1988) 137-146.
- [7] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
- [8] V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc. 1998.
- [9] F.S. Roberts, Applied Combinatorics, Prentice-Hall (1984).