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Abstract
The point-distinguishing chromatic index of a graph G = (V, E) is the
smallest number of colors assigned to E so that no two different points
are incident with the same color set. In this paper we discuss the bounds
of the point-distinguishing chromatic indices of graphs resulting from the
graph operations. We emphasize that almost all of these bounds are best
possible.

1 Introduction

Let G = (V,E) be a graph, where V is the vertex set of G and E is the
edge set of G. A mapping f from E onto the k-set N = {1,2,--- ,k} is
called an edge k-coloring of G. Suppose that u is a vertex of G with neigh-
borhood {v;,v2,- - ,v,}. The color set of u induced by f is the set m
{f(uv1), f(wv2),- -, f(uvr)}. _We say that an edge k-coloring f is a point-
distinguishing coloring of G if f(u) # f(w) for any two different points u and w.
The point-distinguishing chromatic index, denoted by xo(G), is the minimum
number of colors used in any point-distinguishing coloring of G.

Let’s first indicate which graphs have a point-distinguishing edge coloring.

Lemma 1.1. Let G = (V, E) be a graph. Then G has a point-distinguishing
coloring if and only if G has at most one isolated vertex and no K components .
Proof. We know that for any edge coloring of G,the endpoints of the component
K3 have the same color set and the color set of an isolated point must be an
empty set. So, any graph G = (V, F) which has a point-distinguishing coloring
must have no K, components and at most one isolated point.

On the other hand, if G is a graph which has no K, components and at
most one isolated vertex, coloring each edge with a distinct color, we get an
edge coloring of C. Since any two different points of G are not incident o the
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same set of edges, the coloring is point-distinguishing. O

From now on, we will call a graph G a point-distinguishable graph if G has
no K, components and at most one isolated point.

Corollary 1.2. For any point-distinguishable graph G, the point-distinguishing
chromatic index exists.

In the study of point-distinguishing colorings and chromatic indices, F.
Harary and M. Plantholt[2] obtained bounds for x¢(G) and determined xo(G)
for certain classes of graphs. Later M. Hornak and R. Sotak[3,4] and N. Z.
Salvi[5,6] studied the point-distinguishing chromatic index of Knn. A. C. Bur-
ris and R. H. Schelp[1] proved that xo(G) < C- maz{n:/’|1 < i< A} where C
is a constant depending only on the maximum degree A and n; is the number
of vertices of degree i in G. They also get some results about xo(G) for special
classes of graphs including trees.

Usually, in studying parameters of a graph, it is convenient to consider the
effects caused by applying the graph operations on the graph. We categorize
the graph operations into two types : unitary operations ¥,’s(such as edge-
deletion, vertex-deletion, edge-addition, edge-splitting, vertex-splitting, taking
a subgraph, taking a complement) and binary operations ¥,’s (such as union,
Cartesian product, composition, join). In this paper, we consider the problems
: If xo(G) and xo(H) are known, what are the upper bounds and lower bounds
of xo(¥1(G)) and xo(¥2(G, H))? We get the upper bound and lower bound for
each operation. We emphasize that almost all these bounds that we get here are
best possible, i.e., these bounds can be attained by infinitely many graphs(we
will call these graphs the critical graphs for the operations respectively).

2 Unitary Operations On Graphs

Let G = (V, E) be a graph, and e € E. The edge-deletion graph G — e means the
graph (V, E') where E' = £ — {e}. About this operation, we find the following
property.

Theorem 2.1. Let G = (V, I2) be a graph with xo(G) = n. Suppose thate € I,
and G — ¢ is a point-distinguishable graph. Then n -1 < xo(G —e¢) < n+2
and both bounds are best possible.

Proof. Suppose that xo(C — €)=k < n - 2. Let ¢ be a point-distinguishing k-
coloring of G —e. We can extend ¢ to get a point-distinguishing (k + 1)-coloring
@ of G as follows. For ¢ach edge f € F,

o(f) il [#¢
”’(”={k+| il f=e.

Then xo(C) < k+ 1 € n—1 and it contradicts the assumption xo(G) = n.
Henee we have xo(G —¢) >n -1,
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On the other hand, suppose that # is a point-distinguishing n-coloring of G,
and e = uv. Let H = G —e. If 9|y is still a point-distinguishing n-coloring
of H, then xo(H) < n < n+2. If Y|y is not a point-distinguishing n-coloring
of f, then let us consider first the case degy(u) = 0 or degy(v) = 0 but not
both degy () and degy(v) equal to O(otherwise H is not point-distinguishable).
Without loss of generality, we may assume that degy(u) = 0. Then there
is exactly one vertex, say w, such that ¥|4(v) = 9(w). If vw ¢ E(H) or
degy(v) # 1, then color an edge f(# vw) incident to v with the color n + 1
and we have a point-distinguishing (n + 1)-coloring of H. If vw € E(H) and
degn(v) =1, then degy(w) # 1(otherwise H is not point-distinguishable). And
then if we color an edge g(# vw) incident to w with the color n + 1, then we
have a point-distinguishing (n + 1)-coloring of H. Before considering the other
cases, let us note that: if degy(u) = 1(or degy(v) = 1), and Ny (u) = {z}(or
Ni(v) = {y}), then degy(z) > 2(or degn(y) > 2)(otherwise H is not a point-
distinguishable graph). If |Ny(u)| = 1, then hen we take r to be the only vertex
in Nu(u) and y € Ny(v) with %(y) # ¥(0) - {¥(e)}; if |INg(v)| = 1 then
we take y to be the only vertex in Ny(v) and z to be a vertex in Ny(u)
such that ﬂ_bé wgi {¥(e)}; otherwise we take z to be a vertex in Ny(u)
such that ¥(z) # ¥(u) — {¥(e)} and y to be a vertex in Ny (v) such that
P(y) # ¥(v) — {w#(e)}. Define a (n + 2)-coloring A of H as following.

¥(f) i f#uz and fH#owy;
M) ={ n+1  if f = uz;
n+2 if f=wvy.
Then it is clear that A is a point-distinguishing (n 4 2)-coloring of 4. Hence no
matter what case it is, we have xo(H) < n+2.

¢, G \iel) = n=! e 6 \Me}) =n+2
@) ©)

IFigure 1: The critical graphs for the edge delotion

For cach n > 3, Figure 1(a) illustrates a graph ¢ with xo(CG) = n and
xo(G = ¢) = n — 1 and Figurc 1(b) illustrates a graph G with xo(C) = n and
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x0(G — €) = n + 2 respectively. Hence all the bounds in Theorem 2.1 are best
possible. O

Let G = (V, E) be a graph, and v be a vertex of G. The vertex-deletion graph
G —vis a graph (V', E'), where V' = V\ {v} and E’' = E\ {vu;|v; € N(v)}.

Theorem 2.2. Let G = (V, E) be a graph with xo(G) = n, and v € V with
degg(v) = k. If G —v is a point-distinguishable graph, then n—1 < x0(G —v) <
n + k and both bounds are best possible.
Proof.First of all, we assume that the neighborhood of v are vy, vs, ..., v.

By contrary suppose that xo(G—v)=! < n—2. Let  be a point-distinguishing
l-coloring of G —v. We can extend ¢ to be a point-distinguishing (!4 1)-coloring
¢ of G as follows.

L+1 il f=wvvy,vvs,...,0r vy,

Then xo(G) £ I+ 1 < n—1, and it contradicts the assumption xo(G) = n.
Hence we have xo(G —v) >n—1.

On the other hand, let 1 be a point-distinguishing n-coloring of G. We can
get a point-distinguishing (n + k)-coloring A of G — v as follows. Since G — v
is point-distinguishable, at most one point is isolated(in this case the isolated
point has no incident edge to color). Without loss of generality we may assume
" that mv], vavy,. .. , vy € E(G). Defined A to be

w(f) il feBC)\{uvl:i=1,2...,k);

n+1 if f=wvy;
AJf) = n+2 if f = vau);
n+k if J = wevg.

Then A is a point-distinguishing (n + k)-coloring of G — ». Hence xo(G —v) <
n+k

In Figure 2(a) we give an example for xo(G) = n and xo(G —v) = n -1
for n > 2, while in PFigurc 2(b) we give an example for xo(G) = n and
x0(G—v) =n+k where 3 < k < (3) for all » > 3. These show that the
bounds in Theorem 2.2 are best possible. O

Let G = (V,I5) be a graph, and ¢ = wv € [, where u,v € V. The graph
cdge-addition graph G Je is the graph (V, '), where 157 = [ {e}.

Theorem 2.3. Let G = (V, ) be a graph with xo(C) = n, and e = uv € [,
where v, v € V. Then n— 2 < xo(GJe) € n+ 1, and both bounds are best
possible.

Proof. Supposc that xo(GJe) = k. Then by Theorem 2.1, we have k — 1 <
x0{C) =n < k+2. llence we have n — 2 < xo(CU{e}) =k <n+ 1.
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Figure 3(a) and (b) illustrate the graphs G’s such that xo(G) = n and
xo(GUJe) = n— 2 and n + 1 respectively.(In fact edge-addition is an inverse
operation of edge-deletion, so Figure 3 is just another expression of Figure 2)
This shows that both bounds in Theorem 2.3 are best possible.

Fi-gure 3: The critical graphs for cdge-additions

Let G = (V, /) be a graph, ¢ = 2y be an edge of ¢, and v ¢ V. The
edge splitting graph is the graph C% = (V’, 1) where V! = V(J{v} and I =
(&5 = {e}) U{zv, vy}.
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Theorem 2.4. Let G = (V, E) be a graph with xo(G) = n, and e = zy be an
edgeof G. Then n—1 < x0(G%) < n+1, and the upper bound is best possible.
Proof. Since G is a point-distinguishable graph, we have deggs(x) > 2 or
deggs (y) > 2.

By contrary, suppose that xo(G2) = k < n—2. Let ¢ be a point-distinguishing
k-coloring of G3.
Case 1. One of degg:(z) and degg: (y) is 1.

Without loss of generality, suppose that deg(z) > 2 and deg(y) = 1. We can
get a point-distinguishing (k + 1)-coloring ¢ of G as follows.

k+1 if f=azxy
#f) = { w(f) otherwise.

Then ¢ is a point-distinguishing (k+1)-coloring of G which contradicts xo(G) =
n.
Case 2. Both degg:(z) and degg:(y) are greater or equal to 2.

Let z € N(y) such that o(z) # o(¥) — {p(¥v)} U{e(zv)}. We can get a
point-distinguishing (k + 1)-coloring ¢ of G as follows.

p(zv) il [ = zy;
o(f)=4 k+1 il f=yz
¢(f) otherwise.

Then ¢ is a point-distinguishing (k+-1)-coloring of G which contradicts xo(G) =
n. So xo(G:) 2n—1.

c,Gl=n ¢y G UV)=ntl

Figure 4: The critical graphs for edge-splittings

On the other hand, suppose that ¥ is a point-distinguishing n-coloring of G.
We can get a point-distinguishing (n + 1)-coloring A of % as follows.

v(zy) i ] =zv;
M= n+1 if [ =wy;
W(f) otherwise.

Then A is a point-distinguishing (n + 1)-coloring of G%. Hence xo(G4) < n+ 1.
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For each n > 3, Figure 4 illustrates a graph G such that x0(G) = n and
Xo(G¢e) = n+ 1. This shows that the upper bound in Theorem 2.4 is best pos-
sible. )

Unfortunately we can neither improve the lower bound in Theorem 2.4 nor
find an example to attain the lower bound.

Let G = (V, E) be a graph, and v be a vertex of G. The vertex-splitting graph
is the graph G = (V', E') where V' = V| J{v'} and E' = E|J{v'ulvu € E}.

Theorem 2.5. Let G = (V, E) be a graph with xo(G) = =, and v be a vertex
of G with degree k. Then n — k < x0(G%) < n+ 1 and both bounds are best
possible. )

Proof. By Theorem 2.2, xo(G3) =1 < x0(G) = n < x0(G$) + k. Hence
n—k<xo(Gy) Sn+1.

v’

Q) o)

Figure 5: The critical graphs for vertex-splittings

Figure 5(a) is an example for xo(G) = n and xo(G%) = n+ 1. While F igure
5(b) is an example for xo(C) = n and xo(C%) = n — k where k < (7%) and
n~k—1 2> 3. These show that both hounds in Theorem 2.5 are best. possible. ¢

As for the subgraphs, we need some more preparations.
Lemma 2.6. Let G = (V, £) be a point-distinguishable graph. Then xo(C) >
loga|V(G)|.
Proof. The total number of distinct. subsets of k colors is 2%, so that if
x0(C) = k then 2% > [V(€))], and xo(C) > log,|V(C)]. %
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Note that if G is a point-distinguishable graph not only a single isolated vertex,
then 2 < xo(G).

Lemma 2.7. Let G = (V, E) be a point-distinguishable graph. Then xo(G) <
V(G-
Proof. We prove it by induction on |V(G)|.

(1). If [V(G)| = 3, all of the point-distinguishable graphs are in Fig.6 and
the point-distinguishing chromatic indices of these graphs are less than 3.

Figure 6: Point-distinguishable graphs of order 3

(2). Suppose that the theorem holds for all graphs of order k. Let G = (V, E)
be a graph of order k + 1. Take a vertex v of G. Let H = G — v. Suppose
E(G) = E(H)J{vvili = 1,2,--- ,m}. If ¢ is the point-distinguishing xo(H)-
coloring of /. We can extend ¢ to be a point-distinguishing (xo(H )+ 1)-coloring
of G as follows.

— o(f) il [ € E(H);
¢(f)_{ XO(H)+1 if fE‘U‘U,',i:],2'...‘"L_

Then ¢ is a point-distinguishing (xo(H)+1)-coloring of G and xo(G)} < xo(H)+
1<k+1.
Hence by induction, xo(G) < |V(G)| for all point-distinguishable graph G. ¢

Figure 7: A fully colored point-distinguishing graph of order 27

Let X = {1,2,--- ,n}. Defineagraph G = (V, ), where V = ($)HUU---U
(X), and £ =J7 WUy ol e (}) and i € P’}) where (£) s the st of all

188



J-subset of X. Since |[V| = 2", by Lemma 2.6 we know that xo(G) > n. Define
a point-distinguishing n-coloring ¢ of G as ¢({i}P) =1 for all {i}P € E. Then
@(s) = s for all s € V. Hence ¥ is a point-distinguishing n-coloring of G and
X0(G) = n. We call G a fully colored point-distinguishing graph of order 27(See
Figure 7).

Theorem 2.8. If G is a point distinguishable graph, then loga|V(G)| <
x0(G) < |V(G)| and both bounds are best possible.

Proof. The lower bound can be attained by the fully colored point-distinguishing
graphs and the upper bound can be attained by the disjoint union of k 3-cycles
fork=1,2,-... ¢

Corollary 2.9. Let G = (V,E) be a graph. Suppose that H is a point-
distinguishable subgraph of G with xo(G) = n. Then xo(H) < 2.

Proof. Since xo(G) = n, by Lemma 2.6 we know that |V(G)| < 2". Then by
Lemma 2.7 we know that xo( H) < |V(H)| < 2™ o

_ Let G = (V,E) be a graph. The complement graph of G is the graph
G =(V',E'), where V' =V and E’ = {uv|u,v € V and uv ¢ E}.

Corollary 2.10. Let G = (V, E) be a graph with xo(G) = n. Then log,|V(G)| <
xo(G) < [V(G)].

3 Binary Operations On Graphs

Let G = (W1, £)) and H = (Vp, I53) be two graphs such that V, N Va = ¢. The
union graph of G and H is a graph GUH = (V, IJ) where V = Vy |J V4, and
E=EE,.

Theorem 3.1. Lev G = (W), [5y), H = (Va, I22) be two point-distinguishable
graphs with xo(C) = m and xo(#/) = n and not both ¢ and H having an
isolated vertex. If ViV, = ¢, then maez{m,n} < xo(GCUH) < m +n.
Proof. Without lost of generality, we may assume that m > n. It is clear
that G|J H is point-distinguishable. let f be a point-distinguishing coloring
of G| H using xo(GJ H) colors. Then flg and f|y are point-distinguishing
colorings of G respectively. Hence xo(GU H) 2 maz{m,n} = m.

On the other hand, since xo(G) = m and xo(H) = n, therc is a point-
distinguishing coloring f of H using colors 1,2,...,7, and a point-distinguish
coloring g of ¢ using colors n + 1,n 4+ 2,....,n + m. Then using f and ¢
together, we gel a point-distinguishing eoloring of ¢ U #H using m + n colors.
So xo(GUH) < m+n.

If we take G = Ky, and Il = Ky where { < (5*), then it is clear that
Xo{G) = m > xo(11) and xo(GJ ) = w for all m > 3. Henece the lower
bound is best possible. In Figure 8 we take G = K, and /] = (V, I£) where
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V = {M,N,U],"' Yy UL VL, - yvn} and £ = {MuJ IJ = 1'”' ‘[} U{NuJIJ =
L2, JJU{Mwv;|i =1,2,--- ,n} where n < m and | < (3). Then it is clear
that for n > 3, xo(G) = m, xo(H) = n and xo(G{J H) = m + n. Hence the
upper bound is also best possible. o

Figure 8: The critical graphs for Union of G and H

Let G, = (W1, B,) and G2 = (V,, ) be two graphs. The Cartesian Product
of Gy and G2 is a graph Gy x G2 = (V,E) where V = V|, x V, and F =
{(x,z)(v,y)|lx = y and uv € E, or u=v and zy € E»}.

Theorem 3.2. Let G, = (W, E)) and Gy = (Vs, E») be two graphs with
x0(Gi) = m, and xo(G2) = n. Then xo(G; x G2) < m + n and this bound is
best possible.

Proof. Let ¢, be a point-distinguishing m-coloring of G, using colors 1,2,...,m.
And let ¢, be a point-distinguishing n-coloring of Gy using colors m + 1,m +
2,...,m + n. Define a point-distinguishing (m + n)-coloring o of G| x Gy as
follows.

(e) = pi(zy) if e=(z,u)(y,u) wherez,y € Vj,u € V, and zy € Ey;
e = wo(uv) il e = (z,u)(z,v) wheren,v € Vo, uv € ISy and z € V.

Let X = (u,v1), Y = (ug,m)€ V(Ci x G3). Then o(X) = oy(u1) (1)
and o(Y) = p1(u2) U pa(va). Since pi(w1), p1(u2)C {1,2,--- ,m} and pa(v1),
p2(v2)C {m+1,mm+2,-- ,;m+n}, o(X)=a(Y) implics that @) (u1) = ) (ua)
and go(v1) = wa(ve); and then implies uy = up and v| = v, i¢; X = Y. So that
a is a poinl-distinguishing (m + n)-coloring. Hence xo(G, x Gy) < m +n.
Suppose that Gy and Gy are fully colored point-distinguishing graphs of or-
ders 2 and 2™ respectively. Then [V(Gy x Go)l = 2™ 7, so that xo(G) x Gy) >
m+n. On the other hand, by the inequality above, we have xo(Gy xCy) < m4n.
Henee xo(Gy x G2) = m + n and this shows that the bound in Theorem 3.2 is
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best possible. o

Let G, = (W, Ey) and G = (Va, E2) be two graphs. The composition
graph of G, and G, is a graph G,[G2] = (V,E) where V = V| x V, and
E = {(u,z)(v,y)luv € E) or u=v and zy € Ey}.

Theorem 3.3. Let G, = (W, E,;) and Gy = (V,, E3) be two graphs with
x0(G1) = m, and xo(G2) = n. Then x0(G1[G2]) < m + n and this bound is
best possible.

Proof. The proof of this theorem is highly similar to the proof of Theorem
3.2. 1f we take G and G to be two fully colored point-distinguishing graphs of
orders 2™ and 2" respectively. Then xo(G1[G2]) = m + n for the same reason
as in Theorem 3.2, and this shows that the bound is best possible. ¢

Let Gy = (W, E1) and G, = (Va, E2) be two graphs with V; [V, = ¢. The
join graph of Gy and Gy is a graph G, V G2 = (V, E) where V = V;|JV, and
E = E U {uvlue Vi,ve Vo).

Theorem 3.4. Let Gy = (W, £;) and Gy = (Vy, [5) be two graphs with
VifiVa = ¢. Il xo(G)) = m, and xo(G2) = =, then [logo(|Vi| + |Va])] <
x0(G1 V G2) < [loga(maz{|V1], [V2|})] + 3.

Proof. By [4], we know that [logz(m+n)] < xo(Km.a) < [loga(maz{m,n})]+
2. And by the definition we know E(G; V Ga) = E(Kv,,va)) U E1U Eo.
Suppose that ¢ is a point-distinguishing k-coloring of Kiv,i,\vo) Where k =
Xo(Kjv,1,vy1) < [(logamaz{m,n})]+2. Weextend ¢ to be a point-distinguishing
(k + 1)-coloring of G, v G5 as follows.

_ [ o) il J€ E(Kv,| vy); and
‘b(n_{k-i-l it Je BB

Hence xo(G v G2) < [loge(maz{jVy], |V2I})] + 3.
On the other hand, by Theorem 2.8 we know that [log:(|Vi| + |V2|)] <
x0(Ch V Gy).
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