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Abstract

A conver hull of a set of points X is the minimal convex set
containing X. A boz B is an interval B = {x|x € [a,b],a,b € R"}.
A boz hull of a set of points X is defined to be the minimal box
containing X. Because both convex hulls and box hulls are closure
operations of points, classical results for convex sets can naturally be
extended for box hulls. We consider here the extensions of theorems
by Carathéodory, Helly and Radon to box hulls and obtain exact
results.

Let A4 be a family of closed sets in R which is closed under intersection.
We can associate to such an intersection closed family a natural closure
operation by defining the Ag4-hull of a subset X C R? as the intersection of
all subsets A € A% which contain X. In other words, the Ag-hull of X is
the unique minimal set A € A, containing X.

We define the Helly number of an intersection closed family A4 as the
least positive integer h = h(A4) such that all sets of a subfamily F C Ag4
have a common point whenever every h sets of F have one. The Radon
number of A is defined as the least positive integer r = r(44) such that for
any set X C R? with at least r points there exists a partition of X into two
subsets, the Ag-hulls of which intersect. The Carathéodory number of Ay is
defined as the least positive integer ¢ = ¢(.A4) such that for any set X C R¢
and any point p from the Ag-hull of X, there exists a subset Y C X of at
most ¢ points, the 43-hull of which also contains p.

A well-known example for an intersection closed family is the family Cy4
of convex sets in R?. Let us recall that a set of points S C R? is called con-
vez if for any two points y,z € S, all the points on the line segment between
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y and z belong to S. Clearly, the intersection of two convex sets is convex.
It is customary to denote the Cg4-hull of a set X C R?® by conv(X) and call
it the convex hull of X. The classical theorems of Helly[13], Radon[17], and
Carathéodory[5, 6] on convex sets are fundamental theorems of combinato-
rial geometry and convex analysis, which were discovered in the beginning
of twentieth century. Using the notations introduced above, these results
can be stated as: h(Cg) =d+1,r(Cg) =d+2, and ¢(Cg) =d + 1.

In this paper we would like to determine the same parameters for an-
other intersection closed family, the family of boxes. A boz B is an interval
B = boz(a,b) = {x|a < x < b} C R?, where a < b are vectors in R¢, and
the inequalities are componentwise. We denote by By the family of boxes
in R4, It is easy to see that this family is also closed under intersection.
Let us denote the Bg-hull of a subset X C R¥ by boz(X) and call it the boz
hull of X. It is easy to see that boz(X) = boz(min X, max X) where min X
and max X are the componentwise minimum and maximum of the points
in X. We call a box B spanned by X if B = box(X).

Since two boxes intersect each other if and only if their projections
on each axis intersect, and since the set of intervals on the real line has
Helly number 2, it is easy to see that the Helly number of boxes in R? is
h(Bg) = 2. This fact is used for the recognition of intersection graphs of
boxes (see [16]).

Determining the Radon and Carathéodory numbers for the family By
is not that immediate, and is the subject of this short paper. We show
in Section 2.1 that r(By) = ©(logd), and in Section 2.2 that ¢(By) = d.
Finally in Section 3 we consider further analogies between convex sets and
box families.

1 Radon and Carathéodory numbers for the
families of boxes

1.1 Radon number of the family of boxes

Given a finite set X of = points, let us define the ith level set of X (for
1< i< n) as the family X* = {S | |S| =4, S C X} consisting of all subsets
of size i. A set family F is called Sperner if no two sets of it contain one
another. It is known that such a system on n points can contain at most
m= (l;-: J) sets, and that X% is such a largest Sperner family (see [18]).
Given a box B spanned by the set of points X = {p1,P2,--.,Pt}, let us
denote by P; = (pi,, Piz»-- -, Pi;) the permutation of these points arranged
in the increasing order of their jth coordinates. We shall call P; the j-order
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of X. For a permutation P of X we write P = (X, X>) if X; and X, form
a partition of X and all elements in X, precede all elements of X5 in P.

Let us finally call a partition X; U X; of a subset X C R? a Radon
partition if box(X,) N boz(Xs) # 0.

Lemma 1. A partition X, UX, of X C R is not a Radon partition if and
only if there exists an azis i such that for the i-order of X we have either
P; = (X11X2) or P; = (XZsXI)-

Proof. Let us observe that two boxes intersect if and only if their projections

on each axis intersect. Then bozx(X;) N boz(X2) = # implies the existence

of an axis i such that the projections of boz(X;) and boz(X2) on axis i do

not intersect. This readily implies the claim. O
Now we are ready to prove the following:

Lemma 2. For positive integers n and d < 3 ( lg J) we have r(By) < n.

Proof. To prove the statement we show a somewhat stronger claim, namely
that ifd < (l’-‘ J) then any set X C R? of n points has a Radon partition
into roughly equal cardinality parts.

For this let us consider a subset X C R? and the Sperner family x1%)
consisting of all subsets of X of cardinality |%].

Let us first observe that if the box hulls of @ and X \ @ are disjoint
for a subset @ € XL%J, then there exists an axis i, by Lemma 1, for which
either P; = (Q, X\ Q) or P, = (X \Q,Q). Let us call in such a case the
set @ a half segment of the i-order P;.

Since an i-order can have at most 2 different half segments, whenever
(12)) > 2d there must exist a subset Z € X12J which is not a half segment

of any of the i-orders of X, i =1, ...,d. Thus, Z and X\ Z provide a Radon
partition for X, from which the lemma follows. a

To be able to show a lower bound on the Radon number of box families,
we need a technical lemma first. Given a positive integer n, let k = | 3]
and let us consider the k-th level family X’* of an n-element base set X. Let
us further order the elements in each of the sets K € X*, independently of
each other. For such an ordered set X = {iy,i2,...,ix} and asubset SC X,
|S| < k we say that S is an initial segment in K if § = {iy, ..., 45/}.

Lemma 3. There exists an ordering of the elements in each of the k-sets
K € X* such that every subset S C X, |S| < k is an initial segment in
some of these k-sets.

Proof. Let us consider the subsets of X of size at most & as vertices of a
graph G, in which two sets S and S’ are connected by an edge if § C 5’
and [S'| = |S| + 1. In this graph the sets X? and X**! induce a regular
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bipartite subgraph in which the vertices in X**! have smaller degrees than
those in X*. Then a result of Kénig [14] implies the existence of a matching
in this bipartite graph, such that all vertices of X* are matched to a vertex
in X*+1. Let M; denote the set of these matching edges, fori =1,...,k—1.

Then the union of these edges form a set of disjoint paths in G, such
that one endpoint of each of these paths belong to X*, and all sets of size
less than k are covered by them.

Let us consider such a path $; C S2 C --- C S; with |Sj| = k. Let
us then order the elements of S; by listing first the elements of S; (in an
arbitrary order), then putting the unique element of S, \ S; next, followed
by the unique element of S3 \ Sz, etc. Let us order the elements of the
k-sets which do not belong to such a path arbitrarily.

We claim that the constructed ordering of the elements of k-sets have
the stated property: Clearly, any subset S of size smaller than & belong
to such a path, the endpoint K of which is a k-set, and by the above
construction S appears as an initial segment in K. 0

Let us illustrate the above lemma on a small example. Let n = 6,k = 3,
and X = {1,2,3,4,5,6}. By choosing the matchings as in the proof above,
we can arrive to the following system of paths, where we write each set in
the order induced by these paths, as in the above proof.

1212123
2 23— 236
3= 35354
4 — 41 — 416
5— 52 — 523
6 — 65 — 654
13- 134
15— 154
16 — 165
24 — 241
26 — 264
34 — 342
36 — 365
45 — 452
46 — 463

This way we obtained an ordering for 15 of the 20 3-sets of X, such that
all subsets of size 2 or 1 appears as an initial segment in one of these. The
ordering of the elements of the remaining 5 3-sets can be arbitrary.

Now, we are ready to state a lower bound for the Radon number of box
families.
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Lemma 4. For positive integers n and d > 3(|3 ) we have r(Bs) > n+1.

Proof. To prove this statement, we need to show that whenever d > %(13 J)

there exists an n element point set X C R? for which a Radon partition
does not exist. In other words, for which for every partition X; UX; = X
we have boz(X,) N boz(X3) = @. By Lemma 1 this latter is equivalent
with the fact that the i-order of X for some axis i must have the form
P; = (X,,X3) or P; = (X3, X,).

Thus, to prove the statement it is enough to construct an n-set X of
points in R? for which any subset S C X of size at most k = | 2] appears as
an initial segment or as a tail segment in one of the i-ordersof X,i =1, ...,d.

Let us also observe that given d permutations P;, i = 1,...,d it is easy
to construct a set of points X C R? for which P; is the i-th order of X, for
i=1,...,d.

Therefore, to prove the lemma it is enough to construct d permutations
of an n-element abstract set X for which every subset $ C X of size at
most k appears as an initial or tail segment in one of these permutations.

To construct such permutations, let us consider first a graph G, the
vertex set of which is X*, and in which two k-sets are connected by an edge
iff they are disjoint. It is immediate to see that relabelling the elements
of X induces an automorphism of this graph, moreover any vertex of G
can be transformed to any other vertex by such an automorphism. This
transitivity implies that there is a matching in G which is perfect if |X*| is
even, or missing only one vertex, if |X'*| is odd. This follows easily by the
Edmonds-Gallai structure theorem (see [9, 10, 11]), as stated for instance
in Exercise 3.2.5 in [15]. Let M denote the set of edges in such a maximum
matching.

Let us also consider an ordering of the elements of the sets of X* satis-
fying the claim of Lemma 3, and let us associate to every edge e = (K, K')
of M a permutation P, of X constructed in the following way: Let us first
list the elements of K, in the order obtained by Lemma 3. If n is odd, then
let us place next the unique element of X \ (K U K’). Let us finally place
the elements of K’ in reverse order of the ordering obtained from Lemma
3. Furthermore, if |¥*| is odd, then to the unique set K* not covered by
the matching M we also associate a permutation Px. by listing first the
elements of K* in the order obtained by Lemma 3, followed by the rest of
the elements in an arbitrary order.

We claim that the set of permutations we obtain in this way satisfy our
claim: For an arbitrary subset S C X, |S| < k we have by Lemma 3 a k-set
K in which S is an initial segment. If e = (X, K') € M for some K’, then
S will be an initial segment in the permutation P,. If ¢’ = (K", K) € M
for some K, then S will appear as a tail segment in the corresponding
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permutation P.. Finally, if K = K*, then S is an initial segment in Pg..
Since the number of these permutations is [% (lg J)'I < d, the statement
follows by simply adding d— [ ( l% J)] arbitrary permutations to this family.
a

For example, by Lemma 4, in R®, there exist four points py, P2, P3, P4
such that any partition of them is not a Radon partition. Let us con-
struct these four points by the method of the proof in Lemma 4. Let

X = {plsp2a p3:p4}- Then

X = {{;},{p2},{ps}, {Pa}},
X% = {{pip2},{p1ps}, {P1Pa}, {P2P3}, {P2P4}, {Psp4}}-

We can use the following paths X! — X? as in Lemma 3: p; = pi1p2,
P2 — P2P3, P3 — P3P1, and ps — pep1. Since |X¥?| = 6 = 2 x 3,
we have a matching of size 3 in X2, and thus we obtain the following
three permutations of X: P, = (p1p2P3pP4), P> = (Psp1PaP2), B3 =
(PaP1P3P2)- These permutations have the property that for any subset Y C
X, (Y, X\Y) is one of these permutations, after appropriately ordering the
elements in Y and separately in X\Y. Therefore, from these 3 permutations
of X we can construct four points such that their projections on the three
axes are in the order of these permutations, and consequently no partition
of X is a Radon partition.

As a consequence, by Lemma 2 and Lemma 4 we obtain the following
Radon-type theorem for the family of boxes:

Corollary 1. For any positive integer n > 2, and dimension d, if
1 (n - 1) 1 ( )
4 <d< ¢
2\[251) 2\13)

Proof. By Lemma 2, if d < 3(j})), then r(Ba) < n. On the other hand,
by Lemma 4 we get that 7(B3) > n whenever d > 35 (l" 1 J) Therefore, we
must have r(Bg) = n. a

then r(Bq4) = n.

Let us remark that there is a one to one correspondence between the
values of 7(8B4) and the intervals of integers, as determined by the lower
and upper bounds in Theorem 1. Clearly, these intervals form a partition
of all positive integers. For example, r(Bg) =3 for1 <d < 2; r(Bag) =4
for2<d < 3;7(Bg) =51for 3<d<5;7(Bg) =6 for 5 < d <10, etc.
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Corollary 2. r(B;) = O(logd).

Proof. This follows by elementary computations from the inequalities in
Theorem 1 by using Sterling’s formula n! ~ v27n(2)". a

1.2 Carathéodory number of the family of boxes

In this section we prove the following statement.

Theorem 1. Let X C R? be a finite set of cardinality m > d > 1. Then
Jor any point x € box(X), there ezists a subset Y C X of size at most d
such that x € boz(Y').

Proof. For any point X = (21,22,...,24) € boz(X), we need to prove that
there exists a box containing it, which is spanned by at most d points of
X. We shall prove this statement by construction. A set Y C X spanning
such a box, containing x can be constructed as follows:

Preprocessing: Choose two points a = (a1,...,a4) and b = (by,...,ba)
from X, such that @; < z; < b;. Such points must exist, since we have
X € boz(X). If either ap < 22 < be or b2 < 72 < ay hold, then we set
Y « {a,b}. Otherwise, we have both a2 and b2 on one side of z2. Assume,
without any loss of generality that as < bs < 2. Since x € box(X), there
must exist a point ¢ = (¢1,-..,¢q4) € X such that z; < ¢;. If 27 < ¢1, then
we set Y « {a,c}, and otherwise we set ¥ + {b,c}.

As a result, we have [Y| = 2 and min,ey a; < z; < maxgey a; for
1=1,2.

Main Loop: For i = 3,4, ...,d we repeat the following:

If there is no two points p = (p1,...,ps), and q = (g1,-.-,¢4) in
Y for which p; < z; < g;, then the ith coordinates of all the points
in Y are on the same side of z;. Suppose for instance, without any
loss of generality, that they are all smaller than 2;. Then, because
X € boz(X), there must exist a point u = (uy,...,uq) € X such
that z; < w;. Let us increment the set ¥ with u in this case, i.e.
Y « Y U {u}.

After each step, for i = 3,...,d, we have a set Y of size at most i (since
we add at most one point to Y in every step) such that
ina; <z; < S | = .
Lrél‘r}a,_z,_x;lea}),ca, for j 1,2,...,%
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Thus, at the end, the a set Y C X is produced such that x € boz(Y")
and |Y]| < d. ]

Let us remark that Theorem 1 was announced in [12] without proof.

Let us also note that this theorem implies that for every finite set X C
R? (d > 1) of cardinality m > d the box boz(min X, max X) is the union of
a set of boxes, each of which is spanned by at most d points of X, i.e.,

boz(min X, max X) = U boz(min X', max X').
xX'cx
1x'1<da
Even though this statement is quite simple, it maybe useful in data analy-
sis [4].

Theorem 1 above shows that ¢(By) < d. The following easy example
demonstrates that ¢(Bg) = d.
Example: Let us consider the set X of d unit vectors in R¢. Then the box
hull of X contains the point e = (1,1,...,1), however e is not contained in
the box hull of any proper subset of X.

2 Dual boundedness of box families and con-
vex sets

In this section we consider a further analogy between convex sets and boxes.

Let us consider two sets R and B of points of R?, called the sets of red
and blue points. A subset $ C B is called homogeneous if box(S) N R =
#. Let us denote by A, = Au(B, R) the family of maximal homogeneous
subsets of B, and let a, = |A4|. Similarly, if boz(S) N R # 0, then S is
called non-homogeneous, and we denote by By = By(B,R) the family of
minimal non-homogeneous subsets of B, and set 8, = [By|.

The problem of generating the family A, is arising in data analysis (see
e.g., [3, 8, 12]). Following the approach of [2], an incrementally efficient
generation algorithm can be constructed to produce the sets in Ap U B;.
This procedure is an efficient way to generate A alone if

Bs < poly(|RU B, d, as)

holds for some polynomial poly(-). If the above inequality holds, the family
Ay is called dual bounded (see [2]). Analogously, the family By is called dual
bounded if oy, < poly(|RU B, d, By) holds for some polynomial poly(-).
Replacing boz(S) by conu(S) in the above definitions, we can introduce
A, and B, as the maximal (resp. minimnal) subsets of B the convex hull of
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which is homogeneous (resp. non-homogeneous). It was shown recently in
(7] that if [R| = 1 and the points in RU B C R? are in general position,
then . < (d + 1)a.. On the other hand, it was shown in [1] that neither
A nor B, are dual bounded, in general (i.e. if the points are not in general
position).

In this paper we show that .4; and By are not dual bounded, either.

2.1 Dual Boundedness of Box Families

We shall illustrate by an example that 8, cannot be bounded polynomially
by ay.

Let us denote by e; € R? the jth unit vector, for j = 1,...,d, and let
e= Z?=1 ej.

Example 1: Let us define R = {e} as a one element set, and let B =
{2e;,3e; | =1, ...,d} consisting of two blue points at value 2 and 3 along
each axes, i.e., |[R| =1 and |B| = 2d.

Then any minimal set of blue points whose box hull contains e is an
arbitrary set of d points of B from d different axes, implying £, = 2¢. On
the other hand a, = d, since all the blue points on any d — 1 axes span a
homogeneous box.

Thus, B, = 2¢ cannot be bound by a polynomial of ay = d and |[RUB| =
2d+1.

This example is shown for d = 2 in Figure 1: The only red point is
represented by an empty circle and the four blue points are represented by
dark circles. More precisely, the only red point is at (1,1) and the four blue
points are (2,0), (3,0), (0,2), and (0, 3).

Conversely, we shall demonstrate by an example that B, is not dual
bounded either.

Example 2: Let us assume that d = 2k, consider the points p* € RY,
fori=1,...,kand | = 1,...,4 defined by p¥! = es;_; + e, p*? = 3e,; — e,
p®® = —3esi_1+e,and p* = —ey;—e,and define B = {p¥ |i=1,....k, | =
1,...,4}.

Let us also consider the points g € R?, fori = 1,...,k and [l = 1,2
defined by q“ = %(egi_l + e-_»,-) and Cli2 = -%(eg.-_l + e3;),and let R =
{d* |i=1,...,k 1 =1,2}).

We claim that in this case the minimal sets of non-homogeneous blue
point sets are

By = {{p™, P}, {P* P} li=1,..,k}
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Figure 1: 2 dimensional case of Example 1

since any box hull of blue points containing the red point q*! has to contain
the both points p*!, and p*2, and any box hull of blue points containing the
red point g2 has to contain both blue points p3, and p*, fori =1,2,...,k.

It is also easy to see that in this case the maximal sets of homogeneous
blue point sets are

k
Ap = {U {Pia‘,pib‘} | (ai1 bt) € {(11 4)) (2’ 3)1 (1’ 3)) (2, 4)}7 i=1,.., k}
i=1
since, similarly to the above, it is easy to check that the box hull of each
of these sets do not contain any red point and that these sets are maximal
for this property.
Thus, we have for this example 8 = |By| = d and oy = |A4y| = 4F = 24.

This construction is shown in Figure 2 for d = 2.
For d = 4 the set of blue points are:

( 21 1) 1: 1), ( _11 2’ _11 _l)s
( —21 1, 1, 1)1 ( —11 -2, _13 _1)3
( 1, 1, 2, 1), ( -1, -1, -1, 2),
( 1, 1, -2, 1), ( -1, -1, -1, -=2),

and the set of red points are:

( 15 15 0, 0, ( -15 -15 0, 0,
( 0 0 15 15, ( 0 0 -15 -15).
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Figure 2: 2 dimmensional case of Example 2
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