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Abstract

Let G = (V, E) be a simple graph. For any real valued function f :

V — R, the weight of f is defined as f(V) = }_ f(), over all vertices
v € V. For positive integer k, a total k-subdominating function
(TkSF) is a function of f: V — {-1,1} such that f(N(v)) > 1 for
at least k vertices v of G. The total k-subdomination number v}, (G)
of a graph G equals the minimum weight of a TkSF on G. In the
special case where k = |V|, 7}, is the signed total domination number
[5]. We research total k-subdomination numbers of some graphs and
obtain a few lower bounds of 4}, (G).

1 Introduction

Let G = (V,E) be a simple graph and v be a vertex in V. The open
neighborhood of v, denoted by N(v), is the set of vertices adjacent to v,
ie, N(w) = {u € Vjuv € E}. The closed neighborhood of v is the set
N{v] = N(v)u{v}. Let S C V, G[S] denotes the subgraph of G induced by
S. The degree of v in G is dg(v) = |[N(v)], a vertex v is called even (odd)
vertex if dg(v) is even (odd). A vertex v of a tree T is called a leaf of T if
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dr(v) = 1. A(G) and §(G) denote the maximum degree and the minimum
degree of the vertices of G. When no ambiguity can occur, we often simply
write d(v), 6, A instead of dg(v), 6(G) and A(G), respectively.

2 Definition of total k-subdomination

For any real-valued function f: V - Rand SC V, let f(S) =), s f(v).
The weight of f is defined as f(V). A function f : V — {0,1} is said to
be a total dominating function (TDF) of G if f(N[v]) > 1 foreveryve V.
The total domination number v,(G) = min{f(V)|f is a TDF on G}.

A signed total dominating function (STDF) of G is defined in [5] as a
function f : V — {-1,1} such that f(N(v)) > 1 for every v € V. The
signed total domination number v5(G) = min{f(V)|f is a STDF on G}.

A k-subdominating funciion (kSF) of G is defined in [3] as a function
f:V — {=1,1} such that f(N[v]) > 1 for at least k vertices v of G. The
k-subdomination number, denoted by ks(G), of G is equal to min{f(V)|f
is a kSF on G}.

In this paper, we develop an analogous theory for total k-subdomination.

Definition. For k € Z*, a function f : V — {—1,1} is said to be a
total k-subdominating function (TkSF) on G if f(N(v)) > 1 for at least k
vertices v of G. The total k-subdomination number, denoted by ~£,(G),
of G is equal to min{f(V)|f is a TkSF on G}. A TkSF f is minimal if
no g < f is also a TkSF on G. The upper total k-subdomination number,
denoted by I'4,(G), of G is equal to max{f(V)|f is a minimal TkSF on G}.

To ensure existence of TkSF, we henceforth restrict our attention to
graphs without isolated vertices.

We use the following notation. Let f be a TkSF of G = (V, E), we say
v € V is covered by f if f(N(v)) > 1 and denote the set of vertices covered
by f, by Cy. Let Py = {v € V|f(v) =1}, My = {v € V|f(V) = —1}, and
By = {v € V|f(N(v)) € {1,2}}. For A,B C V, we say A totally dominates
B, denoted by A >, B, if foreachbe B, Nb)NA#0. If A>,V, then A
is a total dominating set of G.

Theorem 1. A TkSF f on a graph G is minimal if and only if for each
k-subset K of Cy, KN By =, P,

Proof. Suppose f is a TkSF satisfying the above condition but f is not
minimal. Then there exists a TkSF g < f with k-subset K’ C Cy C Cy.
Thus there exists a vertex v € V with g(v) < f(v), i.e,, g(v) = —1 and
f(v) = 1. By assumption By N K’ >, {v}, i.e., there exists w € By N
K'n N(v). Now, f(N(w)) € {1,2} and v € N(w), hence g(N(w)) <1, a
contradiction which shows that f is minimal.

Conversely, suppose that f is a minimal TkSF and there exists a k-
subset K C Cy with BN K ¥, {v}, wherev € P;. Let h: V — {-1,1} be

206



defined by h(v) = -1 and h(w) = f(w) forw e V - {v}. If w € KN By,
then w ¢ N(v) so that v ¢ N(w) and h(N(w)) = f(N(w)) > 1. For
w € K - By, f(N(w)) > 3. It is possible that v € N(w); However,
h(N(w)) > f(N(w))—2 > 1. Thus h is a TkSF, contrary to the minimality

of f. |

3 Total k-subdomination numbers of some
graphs

Theorem 2. For any complete graph K, (n > 2),

ifnisevenand k < %,
ifnisoddand k < %,
ifnisevenand § <k <mn,
ifnoddand § <k <n.

'Y::s(Kn) =

W -0

Proof. Let f be a minimum TkSF on K, = (V, E).
Case 1. k < 3.

Since there exists at least one vertex v € V with f(N(v)) = f(V) -
f(v) 2 1, it follows that f(V) > f(v) + 1 > 0. Especially, if n is odd, then
f(V)isodd. Then f(V) > 1.

On the other hand, define g: V — {-1,1} by

_J 1 for [%] vertices z in V,
9(z) = { —1 otherwise.

0 if niseven,

Then g is a TkSF of K, of weight g(V) = { 1 ifnisodd

So vi,(Kn) < g(V).
0 ifnis even,

Consequently, v{,(Kn) = { 1 ifnis odd.

Case 2. 3 <k<n. .

Similar to Case 1, we have |Ps| — [My| = f(V) > 0. Since |Pf|+|M;| =
n, then | P¢| > 2. Since there exist & vertices v € V such that f(N(v)) > 1,
and |Cy| > k > 3, it follows that there exists at least one vertex u € Py such
that f(N(u)) = f(V) — f(u) 2 1. Then f(V) > f(u) + 1 = 2. Especially,
if n is odd, then f(V) > 3.

On the other hand, define g : V — {-1,1} by

_J 1 for [B]+1 verticesz in V,
9(z) = —1 otherwise.
Then g is a T&SF of K,, of weight g(V) = { g :§ :: :: z;?’

So 7, (Kn) < g(V).
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2 ifniseven, I
3 ifnisodd.
Theorem 3. For any complete bipartite graph Kmn (n 2> m 2 1),

1—n ifmisodd and k <=,

2—-n ifmisevenand k <n,

Consequently, v5,(Kn) =

Yog(Kmmn) =4 2 ifm,nisoddand n < k< m+n,
3 ifm+nisoddandn <k <m+n,
4 ifmnisevenand n <k <m+n,

Proof. Let K, , = (V, E) and let U and W be the partite sets of K, »,
with |[U| = m and |W| = n. Among all the minimum TkSF on Ky, », let f
be one that assigns the value —1 to as many vertices of W as possible. Let
U+ and U~ be the sets of vertices in U that are assigned the value +1 and
—1 under f, respectively. Let W+ and W~ be defined analogously. Then
Yio(Kmn) = F(V) = F(U) + F(W) = |U*| = [U=| + [W*] - [W-|.

Case 1. k <n.

We show that W = W, i.e., each vertex of W is assigned the value —1
under f. Assume, to the contrary, that W+ # 0.

If f(U) > 1, thenlet f, : V — {—1,1} be defined as follows: Let fi(v) =
—1ifve Wt and fi(v) = f(v) if v & W™, Since fi(N(w)) = f(U) > 1
for each w € W, it follows that f; is a TkSF on K., » of weight less than
that of f, a contradiction.

If f(U) <0, then [U*|] < |U~|. Since there exist k vertices v of V
such that f(N(v)) > 1, it follows that f(W) > 1, ie., |[W*| > |WT|,
then |W+| > 3|W| > 3|U|. Let fo : V — {~1,1} be defined as follows:
Let fo(v) = —1 for [ﬁl}l] vertices of v of W*, fo(v) = 1 for ['—‘%i'l'l
vertices u of U and fa(v) = f(v) for all remaining vertices v of V. Since
fo(N(w)) = fo(U) 2 1 for each w € W, it follows that f; is a TkSF
on K, n of weight fo(V) < f(V). However, f, assigns the value —1 to
more vertices of W than does f, contrary to our choice of f. We deduce,
therefore, that W = W~

Now let w be a vertex in W for which f(N(w)) 2 1. Then |U*|-|U"| =
f(U) = f(N(w)) = 1. Note that [Ut| - |[U~| = f(N(w)) > 2 if m is even.

Thus 7%, (Kmn) = (U |-|U™ [ H|W*|-|W-| > 1-n ifmisodd,

2 —-n if miseven.
On the other hand, define g : V — {-1,1} by
_ [ 1 for [BFL] +1 vertices z of W,
9(z) = —1 otherwise.

Then g is a TkSF of K, of weight g(V) = {
So 'Yltcs(Kn) < g(V).

Consequently, if k < n, v5,(Kmn) = {
Case 2. n<k<m+n.

1-n if misodd,
2~-n if miseven.

1-n ifmisodd,
2—n if miseven.
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In this case, there exist w € W, and u € U such that f(N(w)) > 1 and
f(N(w)) 2 1. Then f(U) = f(N(w)) > 1 and f(W) = f(N(u)) > 1. Note
that f(U) > 2 if m is even and f(W) > 2 if n is even.

2 if m,n are odd,
Thus v ,(Kman) = f(U)+ f(W) > < 3 ifm+nisodd,
4 if m,n are even.
On the other hand, define g: V — {-1,1} by
1 for [2F1] vertices = of W and [2§1] vertices z of U,
9(z) = —1 otherwise
2 if m,n are odd,
Then g is a TkSF of K, » of weight g(V)=¢ 3 ifm+ nisodd,
4 if m,n are even.

So 1k, (Kn) < g(V).

2 if m,n are odd,

Consequently, if n <k < m+n, vf,(Kp,)=<{ 3 if m+nisodd,

4 if m,n are even.

The result now follows. l
Corollary 1. For any star Ky n—1 (n 2 2),
2—-n ifk<n-1
Tis(Kin-1) =< 2 if k =n and n is even,
3 if k =n and n is odd. .
Lemma 1. For any tree T = (V, E) on n vertices (n > 2), v5:(T) > 2 with
equality if and only if each vertex v of T is an odd veriex and v is at least
adjacent to M—%’E leaves of T.

Proof. Let f:V — {-1,1} be any minimum signed total dominating
function (STDF) of T. Let Py = {v e V|f(v) =1}, My = {v e V|f(v) =
—1}. If My = 0, then v,(T) = n > 2. Therefore, we may assume there
exists a vertex v € My, else there is nothing left to prove. Let T be rooted
at v. Since f(N(v)) > 1, at least one child z of vertex v is assigned the
value 1 under f. On the other hand, f(N(z)) > 1 and f(v) = -1, at
least two children z,, xo of vertex z are assigned the value 1 under f. If
M = {v}, we have 7,,(T) = |Pp| = |My| >3 -1=2. If My — {v} #0, let
w) € My — {v} and w,; be a child of vertex w. Since f(N(w)) > 1, that is,
[N(w)N Py| — |[N(w) N My| > 1, then there at least exists another child ws
of w with f(wp) = 1, i.e., there at least exists one brother ws of w; that
belongs to the set P;. Hence, we can conclude that |Py| > |My| + 2. Thus
Yat(T) = |Py| = [My] > 2.

It remains for us to show that ,:(T") = 2 if and only if each vertex v of
T is one odd vertex and v is at least adjacent to d—"'(%)—"-‘ leaves of T. If T
is a tree of order n = 2, it is trivial. So, in the following proof we assume
that T is a tree of order n > 3.

Let Th = (W4, E1) be the tree obtained from T removing all the leaves
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of T,let L={veV|dr(V)=1}.
We first prove the sufficiency. For any vertex v € V, the degree dr(v)
of v is odd and v is at least adjacent to d—"'(%)-—l leaves of T. Let g be

a function of T such that for any v € V - L, di%u leaves, which are
adjacent to vertex v, of T are assigned to the value —1 and the else vertices
are assigned the value 1. Therefore, forany v € V-L f(N(v)) = —"'ﬁ’)ﬂ
d—"(!’-t— = 1; for any v € L. Obviously, f(N(v)) =1. Thusgbea STDF of
T, the weight 9(V) = ¥yey L (F(N) — 47, (T)) = Toey_ (N [o)) -
ZvEV—L dry(v) = ZveV—L2 = 2|Ey| = 2(IVi| = |Ea) = 2. So 7(T) <
g(V) = 2. On the other hand, v,:(T") > 2. Thus v, (T) =2

To prove the necessity, suppose v;(T) = 2, then |Ps| = |[My| + 2. Let
f:V = {~1,1} be any minimum STDF of T. Since n > 3, hence My # 0.
We show that My C L, i.e., dr(v) = 1 for every v € M;. Assume the
contrary, there exists one vertex v € My with dr(v) > 2, let T be rooted at
v, since f(N(v)) > 1, at least two children z, y of v are assigned the value 1
under f. Furthermore, since f(N(z)) > 1, f(N(y)) > 1 and f(v) = ~1, at
least two children z,,z; of = and two children y;, 32 of y are assigned the
value 1 under f, i.e., there at least exist two children and four grandchildren
of v in set Py. Now consider any vertex w € My — {v}. If w is adjacent to
v, similarly, it follows that at least two children and four grandchildren of
w in set Py. If w is adjacent to another vertex u(u # v), since f(N(u)) > 1,
at least one child w; of u are assigned the value 1 under f, i.e., there exists
one brother w; of w with f(w;) = 1. So |Py| > |M[| + 5, it contradicts the
fact that |Py| = |M/| + 2.

Therefore, we have V — L C Py, ie., foranyveV - L, f(v)=1.

Now we prove that f(N(v)) =1 for every v € V. If v € L, obviously,
f(N(v)) = 1. Thus assume that there exists one vertex v € V — L with
S(N(u)) >.1, ie,, f(N[u]) > 2. Furthermore, we have f(N[v]) > 2 for
any v € V — L. Thus 75(T) = f(V) = Loev_ (F(N[W)) = dr, (T)) =
Ywev-r J(NW) =L yev_p dri(v) > Ty 22| B1| = 2(IVi| - |E4]) =
2, a contradiction.

Since f(N(v)) =1 for every v € V, it follows that dr(V) is odd and v
is adjacent to Ml’z-u vertices in M. Further, since M, C L, thus v is at
least adjacent to d—"'(%)"'—l leaves of T'. This completes the proof. |
Corollary 2. For any tree T = (V, E) on n vertices (n > 2),

2 ifniseven,

Y%e(T) 2 {3 ifnis odd.

Proof. By Lemma 1, v, (T) > 2. Especially, if n is odd, note that
there exists at least one even vertex in T, then v,,(T') > 3.

By Corollary 1 and Corollary 2, we have
Theorem 4. For any tree T on n vertices (n 2 2),
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2-n ifk<n-1,
1%, (T) >4 2 if k = n and n is even,
3 if kK =n and n is odd.
with equality for T = Ky ;.
Theorem 5. For any cycle Cy, (n > 3),
0 ifniseven and k = %,
'y,';a(Cn) =< n ifk=mn,
2k —n+2 otherwise.

Proof. Let C, : vv2...v,v; be a cycle on n vertices and f be a
minimum TkSF on C,, = (V, E). Let I denote the set of all isolated vertices
in Cn[C!].

If k = n, it is obvious that v{,(Cn) = n.

If k < n -1, clearly, for any v € Cy, N(v) C Py and |N(v)| = 2. Thus
Pfl 2 ICsl 2 K, IMy| < n—k, e %y(Cn) = |Pf| — IM[] > 2 — .
Especially, if there exists i(i > 2) consecutive vertices in Cy,[Cy], without
loss of generality, let v1,vs,...,v; € Cf, then v,,v1,vs,...,v;,vi41 € P.
In this case, |Pf| > k+1, [Mf| <n—k -1, ie, v,(Cn) = |Ps| — [My| >
2k -n+2.

From the above analysis, we have the conclusions as follows:

Case 1. nis even and k = %.

Then ~;,(Crn) > 2k —n=0.
Case 2. k < “—;—l
Case 2.1. I = Cy.

This is to say, all vertices in C,[Cy] are the isolated vertices. Since
N(v) C Py and [N(v)| = 2 for any v € Cy, and k < 231, it follows that
|Pf| 2 |Csl+1 > k+1. Then |[My| < n—k—1. Thus v{,(Cn) > 2k —n+2.
Case 2.2. I C Cy.

In this case, there exist i(i > 2) consecutive vertices in C»[Cy]. Thus
7ltca(cn) 2 2k—-n +2.

Case 3. 5 <k<n-1

Then there exist i(i > 2) consecutive vertices in C,[Cy]. Thus v%,(Cn) >
2k —n+2.

On the other hand, define the function g: V — {-1,1} as follows:
Case 1. niseven and k = %.

1 if 7 is odd,

Define g(v:) = { —1 otherwise.

Then g is a TkSF of C;, of weight g(V) = 0. So v£,(Cr) < g(V) = 0.
Case 2. k < 27
1 ifiisoddandi<2k+1,

—1 otherwise.

Then g is a TkSF of C, of weight g(V) = 2k —n +2. So v£,(Cn) <
g(V)=2k —n+2.
Case 3. 3 <k<n-2

Define g(v;) = {
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_[1 ifiisoddori<2(k-[3])+2,
Define g(v;) = { —1 otherwise. z

Then g is a TkSF of C,, of weight g(V) = 2k —n + 2. So 7£,(Cp) <
g(V)=2k—n+2.
Cased. k=n-1.

Define g(v;) = 1 for 1 < ¢ < n. Then g is a TkSF of C, of weight
g(V)=n. So9;,(Cn) <g(V)=n=2k—n+2.

The result now follows. [ |
Theorem 6. For any path P, (n 2 2),

-1 ifnisodd and k =

7’“’(P")_{ 2k —n otherwise.

Proof. Let P, : vv;...v, be a path on n vertices, and f be a minimum
TkSF on P, = (V, E). Thus vf,(Pn) = |Ps| — |My|. Let I denote the set
of all isolated vertices in P,[Cy].

Case 1. I =Cj.

This is to say, all vertices in P,[Cy] are the isolated vertices. If n is
odd, k < |Cy| < l‘{—‘-; If n is even, k < |Cf| < 3. Clearly, for any v € Cy,
N(‘U) g Pf and 'N(’U)I = { ; lOft-:el'W'li);eor o

Case 1.1 n is even.

Obviously, |Pf| > |Cy| 2 k, then |My| < n—k. Thus v, (P) > 2k —n.

Case 1.2. n is odd.

Ifk——i'—then|lf|>|C’f|—l>k—1thenlM,l < k. Thus
vE,(Pn) > —1; If k < 22, then |Pf| > [Cy| 2 k, then |[M[j| < n — k. Thus
Yis(Pn) 2 2k —n.

Case 2. I C Cy.

Clearly, Cy —IC P;. (1)

Furthermore, for every vertex v € I, N(v) C Py and |N(v)| € {1,2}.
(2)

It follows from (1) and (2) that |Pf| > |Cy| > k. Then |[M;| < n —k.
Thus 4%, (Pn) 2 2k — n.

-1 if n is odd and k = 2t!,

Consequently, v5,(Pn) 2 % —n  otherwise. 2
On the other hand, define a function g : V — {~1,1} as follows:

Case 1. k< 3.
1 ifiiseven and 2 <1 < 2k,
—1 otherwise.
Then g is a TKSF of P, with weight g(V) = 2k—n. So vL,(Ps) < 2k—n.
Case 2. n is odd and k = 231,
1 if 7 is even,
Define g(v:) ={ —1 otherwise.
Then g is a TkSF of P, with weight g(V) = —1. So ~},(P.) < —1.
Case 3. nisevenand § < k <n.

Define g(v;) = {
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1 iftisodd or i < 2k — n,

—1 otherwise. '
Then g is a TkSF of P,, with weight g(V) = 2k—n. So v{,(P.) < 2k—n.
Case 4. nisodd and 2! <k <n.

1 if{iseven or i <2k — n,

-1 otherwise.

Then g is a TkSF of P, with weight g(V) = 2k—n. So v, (P,) < 2k—n.
-1 if n is odd and k = 21,

2k —n  otherwise.

The result now follows. [ |
On the upper bounds of a tree T, we have the following conjecture.
Conjecture 1. For any tree T of order n(n > 2),
-1 if nis odd and k = 22
¢ ¢ = 7
Voo (T) < Veo(Pn) = { 2k —n otherwise.

Define g(v;) = {

Define g(v;) = {

Consequently, v%,(P,) =

4 Lower bounds on total k-subdomination num-
ber

Theorem 7. For any graph G of order n and marimum A, minimum
degree 6 > 1,

. (6 - 38)n +2(A + 1)k
Yis(G) 2 Ats n.

Proof. Let f be a minimum TkSF on G = (V,E). Let Py and M,
be the sets of vertices in G that are assigned the values +1 and —1 under
f, respectively. Let Py = Pp U Ps; U Pg where P5 and Pj are sets of all
vertices of Py with degree equal to A and §, respectively, and Pg contains
all other vertices in Py, if any. Let My = M U Mz U Mg where Py, P
and Pg are defined similarly. Further, for i € {A, §,0}, let V; be defined
by V; = ;U M;. Thus n = |Va| + |V5| + |Ve|.

Since for at least k vertices v € V, f(N(v)) > 1, we have

Y F(N@) 2 k= An—k) = (A +1)k — An.
veV
The sum 3 ., f(N(v)) counts the value f(v) exactly d(v) times for each
vertex v € V, e, 3 ey f(N()) = 3 ey f(v)d(v). Thus
> f(v)d(v) > (A + 1)k - An.

vev

Breaking the sum up into the six summations and replacing f(v) with the
corresponding value of 1 or —1 yields
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d(v)'*'ZvEPa d('u) +ZUGP9 d(v) ZuGMA d('l)) ZveMa d(v)
veM 'v) > (A+ 1)k -

We know that d(v) = A for all v in Pa or Ma, and d(v) = 6 for all v
in Ps or M;s. For any vertex v in either Pg or Mg, §+1 <d(v) < A-1.
Therefore, we have

A|Pa[+8|Ps|+(A—-1)|Pe|—A|Ma| -8 Ms|—-(6+1)|Me| 2 (A+1)k—An.

For i € {A, 6,0}, we replace | P;| with |V;|—|M;| in the above inequality.
Therefore, we have

AlVal + 6]Vs] + (A — 1)|Ve|
> (A + 1)k — An+ 2A|Ma| + 26| Ms| + (A + 6)|Me|.

It follows that

2An - (A +1)k
> 2A|Ma| + 26|M;5| + (A + 8)|Me| + (A — 8)|Vs| + Vel
= 2A|Ma| + 26|Ms| + (A + 6)|Me| + (A — 8)(IPs| + | Ms]) + (| Pe| + | Me])
= 2A|Ma|+ (A + 8)|Ms]| + (A + 6 +1)|Mg| + (A — 6)|Ps| + |Ps|
> (A + 8)|Ma| + (A + 8)|Ms| + (A + 8)|Me|

= (A + 8)|My|.

Therefore,

2An - (A + 1)k
< n.
M < —K+5

> 2An—(A+1)k

1o(G) = |Py| — |My| = n — 2|My| 2 n —228n(Cr 1k

_ (6=38)n+2(A+1)k 1

3 :
Theorem 8. If a graph G has no isolated vertices and every vertex in G
is an even vertez, then

(6 - 3A)n + 2(A + 2k
A+o

Proof. If every vertex in G is an even vertex, then there exist k vertices
in V such that f(N(v)) > 2. Then }_ .y f(N(v)) 2 2k - A(n-k) =
(A + 2)k — An. Similar to the proof of Theorem 7, we can finish the proof
of Theorem 8.

Theorem 9. For every r-regular graph G of order n,
frelk=rn it 1 s odd
L G > )
ks (G) 2 i—L”:—"‘ if r is even.

Proof. If r is odd, by Theorem 7, we have ~f,(G) > gll),"_J Ifkis

even, by Theorem 8, we have v, (G) > fﬁ—z-&- |
Corollary 3. [5] For every r-regular graph G of order n,
2 if r is odd,
ks (G) 2 { I if  is even.
We have recently learned from the referee that some of the results of this
paper have been obtained independently by Harris, Hattingh, and Henning

Yks(G) 2
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in [6] and by Henning in [7]. Lemma 1 appears in [7] in a slightly different
form. Theorems 5, 6, and 7 appear in [6]. Conjecture 1 is proved in [6)].
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