On a generalization of signed total dominating functions of graphs *

Huaming Xing^a, Liang Sun^b, Xuegang Chen^c

^aDept. of Mathematics, Langfang Teachers College,
Langfang, Hebei 065000, China;

^bDept. of Mathematics, Beijing Institute of Technology,
Beijing 100081, China;

^cThe College of Info. Sci. & Eng.,
Shandong University of Sci. & Tech.,
Taian 271019, China

June 1, 2005

Abstract

Let G=(V,E) be a simple graph. For any real valued function $f:V\to \mathbf{R}$, the weight of f is defined as $f(V)=\sum f(v)$, over all vertices $v\in V$. For positive integer k, a total k-subdominating function (TkSF) is a function of $f:V\to \{-1,1\}$ such that $f(N(v))\geq 1$ for at least k vertices v of G. The total k-subdomination number $\gamma_{ks}^t(G)$ of a graph G equals the minimum weight of a TkSF on G. In the special case where $k=|V|, \gamma_{ks}^t$ is the signed total domination number [5]. We research total k-subdomination numbers of some graphs and obtain a few lower bounds of $\gamma_{ks}^t(G)$.

1 Introduction

Let G = (V, E) be a simple graph and v be a vertex in V. The open neighborhood of v, denoted by N(v), is the set of vertices adjacent to v, i.e., $N(v) = \{u \in V | uv \in E\}$. The closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. Let $S \subseteq V$, G[S] denotes the subgraph of G induced by S. The degree of v in G is $d_G(v) = |N(v)|$, a vertex v is called even (odd) vertex if $d_G(v)$ is even (odd). A vertex v of a tree T is called a *leaf* of T if

^{*}Research supported by National Natural Science Foundation of China (19871036)

[†]E-mail address: huaming_xing@sohu.com

 $d_T(v) = 1$. $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of the vertices of G. When no ambiguity can occur, we often simply write d(v), δ , Δ instead of $d_G(v)$, $\delta(G)$ and $\Delta(G)$, respectively.

2 Definition of total k-subdomination

For any real-valued function $f: V \to \mathbf{R}$ and $S \subseteq V$, let $f(S) = \sum_{v \in S} f(v)$. The weight of f is defined as f(V). A function $f: V \to \{0, 1\}$ is said to be a total dominating function (TDF) of G if $f(N[v]) \ge 1$ for every $v \in V$. The total domination number $\gamma_t(G) = \min\{f(V)|f \text{ is a TDF on } G\}$.

A signed total dominating function (STDF) of G is defined in [5] as a function $f: V \to \{-1, 1\}$ such that $f(N(v)) \ge 1$ for every $v \in V$. The signed total domination number $\gamma_{st}(G) = \min\{f(V)|f \text{ is a STDF on } G\}$.

A k-subdominating function (kSF) of G is defined in [3] as a function $f: V \to \{-1, 1\}$ such that $f(N[v]) \ge 1$ for at least k vertices v of G. The k-subdomination number, denoted by $\gamma_{ks}(G)$, of G is equal to $\min\{f(V)|f$ is a kSF on G.

In this paper, we develop an analogous theory for total k-subdomination.

Definition. For $k \in \mathbb{Z}^+$, a function $f: V \to \{-1, 1\}$ is said to be a total k-subdominating function (TkSF) on G if $f(N(v)) \geq 1$ for at least k vertices v of G. The total k-subdomination number, denoted by $\gamma_{ks}^t(G)$, of G is equal to $\min\{f(V)|f$ is a TkSF on G}. A TkSF f is minimal if no g < f is also a TkSF on G. The upper total k-subdomination number, denoted by $\Gamma_{ks}^t(G)$, of G is equal to $\max\{f(V)|f$ is a minimal TkSF on G}.

To ensure existence of TkSF, we henceforth restrict our attention to graphs without isolated vertices.

We use the following notation. Let f be a TkSF of G = (V, E), we say $v \in V$ is covered by f if $f(N(v)) \ge 1$ and denote the set of vertices covered by f, by C_f . Let $P_f = \{v \in V | f(v) = 1\}$, $M_f = \{v \in V | f(V) = -1\}$, and $B_f = \{v \in V | f(N(v)) \in \{1, 2\}\}$. For $A, B \subseteq V$, we say A totally dominates B, denoted by $A \succ_t B$, if for each $b \in B$, $N(b) \cap A \ne \emptyset$. If $A \succ_t V$, then A is a total dominating set of G.

Theorem 1. A TkSF f on a graph G is minimal if and only if for each k-subset K of C_f , $K \cap B_f \succ_t P_f$.

Proof. Suppose f is a TkSF satisfying the above condition but f is not minimal. Then there exists a TkSF g < f with k-subset $K' \subseteq C_g \subseteq C_f$. Thus there exists a vertex $v \in V$ with g(v) < f(v), i.e., g(v) = -1 and f(v) = 1. By assumption $B_f \cap K' \succ_t \{v\}$, i.e., there exists $w \in B_f \cap K' \cap N(v)$. Now, $f(N(w)) \in \{1, 2\}$ and $v \in N(w)$, hence g(N(w)) < 1, a contradiction which shows that f is minimal.

Conversely, suppose that f is a minimal TkSF and there exists a k-subset $K \subseteq C_f$ with $B_f \cap K \not\succ_t \{v\}$, where $v \in P_f$. Let $h: V \to \{-1, 1\}$ be

defined by h(v) = -1 and h(w) = f(w) for $w \in V - \{v\}$. If $w \in K \cap B_f$, then $w \notin N(v)$ so that $v \notin N(w)$ and $h(N(w)) = f(N(w)) \ge 1$. For $w \in K - B_f$, $f(N(w)) \ge 3$. It is possible that $v \in N(w)$; However, $h(N(w)) \ge f(N(w)) - 2 \ge 1$. Thus h is a TkSF, contrary to the minimality of f.

3 Total k-subdomination numbers of some graphs

Theorem 2. For any complete graph K_n $(n \ge 2)$,

$$\gamma_{ks}^t(K_n) = \begin{cases} 0 & \text{if } n \text{ is even and } k \leq \frac{n}{2}, \\ 1 & \text{if } n \text{ is odd and } k < \frac{n}{2}, \\ 2 & \text{if } n \text{ is even and } \frac{n}{2} < k \leq n, \\ 3 & \text{if } n \text{ odd and } \frac{n}{2} < k \leq n. \end{cases}$$

Proof. Let f be a minimum TkSF on $K_n = (V, E)$. Case 1. $k \leq \frac{n}{2}$.

Since there exists at least one vertex $v \in V$ with $f(N(v)) = f(V) - f(v) \ge 1$, it follows that $f(V) \ge f(v) + 1 \ge 0$. Especially, if n is odd, then f(V) is odd. Then $f(V) \ge 1$.

On the other hand, define $g: V \to \{-1, 1\}$ by

$$g(x) = \begin{cases} 1 & \text{for } \lceil \frac{n}{2} \rceil \text{ vertices } x \text{ in } V, \\ -1 & \text{otherwise.} \end{cases}$$

Then g is a TkSF of K_n of weight $g(V) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$ So $\gamma_{ks}^t(K_n) \leq g(V)$.

Consequently, $\gamma_{ks}^t(K_n) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$

Case 2. $\frac{n}{2} < k \le n$.

Similar to Case 1, we have $|P_f| - |M_f| = f(V) \ge 0$. Since $|P_f| + |M_f| = n$, then $|P_f| \ge \frac{n}{2}$. Since there exist k vertices $v \in V$ such that $f(N(v)) \ge 1$, and $|C_f| \ge k > \frac{n}{2}$, it follows that there exists at least one vertex $u \in P_f$ such that $f(N(u)) = f(V) - f(u) \ge 1$. Then $f(V) \ge f(u) + 1 = 2$. Especially, if n is odd, then $f(V) \ge 3$.

On the other hand, define $g: V \to \{-1, 1\}$ by $g(x) = \begin{cases} 1 & \text{for } \lceil \frac{n}{2} \rceil + 1 \text{ vertices } x \text{ in } V, \\ -1 & \text{otherwise.} \end{cases}$

Then g is a TkSF of K_n of weight $g(V) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd.} \end{cases}$ So $\gamma_{ks}^t(K_n) \leq g(V)$. Consequently, $\gamma_{ks}^t(K_n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd.} \end{cases}$

Theorem 3. For any complete bipartite graph $K_{m,n}$ $(n \ge m \ge 1)$,

$$\gamma_{ks}^t(K_{m,n}) = \begin{cases} 1-n & \text{if } m \text{ is odd and } k \leq n, \\ 2-n & \text{if } m \text{ is even and } k \leq n, \\ 2 & \text{if } m, n \text{ is odd and } n < k \leq m+n, \\ 3 & \text{if } m+n \text{ is odd and } n < k \leq m+n, \\ 4 & \text{if } m, n \text{ is even and } n < k \leq m+n, \end{cases}$$

Proof. Let $K_{m,n} = (V, E)$ and let U and W be the partite sets of $K_{m,n}$ with |U| = m and |W| = n. Among all the minimum TkSF on $K_{m,n}$, let fbe one that assigns the value -1 to as many vertices of W as possible. Let U^+ and U^- be the sets of vertices in U that are assigned the value +1 and -1 under f, respectively. Let W^+ and W^- be defined analogously. Then $\gamma_{ks}^t(K_{m,n}) = f(V) = f(U) + f(W) = |U^+| - |U^-| + |W^+| - |W^-|.$ Case 1. $k \leq n$.

We show that $W = W^-$, i.e., each vertex of W is assigned the value -1under f. Assume, to the contrary, that $W^+ \neq \emptyset$.

If $f(U) \ge 1$, then let $f_1: V \to \{-1, 1\}$ be defined as follows: Let $f_1(v) =$ -1 if $v \in W^+$ and $f_1(v) = f(v)$ if $v \notin W^+$. Since $f_1(N(w)) = f(U) \ge 1$ for each $w \in W$, it follows that f_1 is a TkSF on $K_{m,n}$ of weight less than that of f, a contradiction.

If $f(U) \leq 0$, then $|U^+| \leq |U^-|$. Since there exist k vertices v of V such that $f(N(v)) \geq 1$, it follows that $f(W) \geq 1$, i.e., $|W^+| > |W^-|$, then $|W^+| > \frac{1}{2}|W| \ge \frac{1}{2}|U|$. Let $f_2: V \to \{-1,1\}$ be defined as follows: Let $f_2(v) = -1$ for $\lceil \frac{|\tilde{U}|+1}{2} \rceil$ vertices of v of W^+ , $f_2(v) = 1$ for $\lceil \frac{|U|+1}{2} \rceil$ vertices u of U and $f_2(v) = f(v)$ for all remaining vertices v of V. Since $f_2(N(w)) = f_2(U) \ge 1$ for each $w \in W$, it follows that f_2 is a TkSF on $K_{m,n}$ of weight $f_2(V) \leq f(V)$. However, f_2 assigns the value -1 to more vertices of W than does f, contrary to our choice of f. We deduce, therefore, that $W = W^-$.

Now let w be a vertex in W for which $f(N(w)) \ge 1$. Then $|U^+| - |U^-| =$

$$f(U) = f(N(w)) \ge 1. \text{ Note that } |U^+| - |U^-| = f(N(w)) \ge 2 \text{ if } m \text{ is even.}$$

$$\text{Thus } \gamma_{ks}^t(K_{m,n}) = |U^+| - |U^-| + |W^+| - |W^-| \ge \begin{cases} 1 - n & \text{if } m \text{ is odd,} \\ 2 - n & \text{if } m \text{ is even.} \end{cases}$$

On the other hand, define $g: V \to \{-1, 1\}$ by $g(x) = \left\{ \begin{array}{ll} 1 & \text{for } \lceil \frac{m+1}{2} \rceil + 1 \text{ vertices } x \text{ of } W, \\ -1 & \text{otherwise.} \end{array} \right.$

Then g is a TkSF of K_n of weight $g(V) = \begin{cases} 1-n & \text{if } m \text{ is odd,} \\ 2-n & \text{if } m \text{ is even.} \end{cases}$ So $\gamma_{ks}^t(K_n) \leq g(V)$.

Consequently, if $k \le n$, $\gamma_{ks}^t(K_{m,n}) = \begin{cases} 1-n & \text{if } m \text{ is odd,} \\ 2-n & \text{if } m \text{ is even.} \end{cases}$

Case 2. $n < k \le m + n$.

In this case, there exist $w \in W$, and $u \in U$ such that $f(N(w)) \ge 1$ and $f(N(u)) \ge 1$. Then $f(U) = f(N(w)) \ge 1$ and $f(W) = f(N(u)) \ge 1$. Note that $f(U) \ge 2$ if m is even and $f(W) \ge 2$ if n is even.

that
$$f(U) \ge 2$$
 if m is even and $f(W) \ge 2$ if n is even.

Thus $\gamma_{ks}^t(K_{m,n}) = f(U) + f(W) \ge \begin{cases} 2 & \text{if } m, n \text{ are odd,} \\ 3 & \text{if } m+n \text{ is odd,} \\ 4 & \text{if } m, n \text{ are even.} \end{cases}$

On the other hand, define $g: V \to \{-1, 1\}$ by

$$g(x) = \begin{cases} 1 & \text{for } \lceil \frac{m+1}{2} \rceil \text{ vertices } x \text{ of } W \text{ and } \lceil \frac{n+1}{2} \rceil \text{ vertices } x \text{ of } U, \\ -1 & \text{otherwise.} \end{cases}$$

Then
$$g$$
 is a TkSF of $K_{m,n}$ of weight $g(V) = \begin{cases} 1 & \text{for } \lceil \frac{m+1}{2} \rceil \text{ vertices } x \text{ of } W \text{ and } \lceil \frac{n+1}{2} \rceil \text{ vertices } x \text{ of } U, \\ -1 & \text{otherwise.} \end{cases}$

So
$$\gamma_{ks}^t(K_n) \leq g(V)$$
.

Consequently, if
$$n < k \le m+n$$
, $\gamma_{ks}^t(K_n) = \begin{cases} 2 & \text{if } m, n \text{ are odd,} \\ 3 & \text{if } m+n \text{ is odd,} \\ 4 & \text{if } m, n \text{ are even.} \end{cases}$

The result now follows.

Corollary 1. For any star $K_{1,n-1}$ $(n \ge 2)$,

$$\gamma_{ks}^{t}(K_{1,n-1}) = \begin{cases} 2-n & \text{if } k \leq n-1\\ 2 & \text{if } k = n \text{ and } n \text{ is even,} \\ 3 & \text{if } k = n \text{ and } n \text{ is odd.} \end{cases}$$

Lemma 1. For any tree T = (V, E) on n vertices $(n \ge 2)$, $\gamma_{st}(T) \ge 2$ with equality if and only if each vertex v of T is an odd vertex and v is at least adjacent to $\frac{d_T(v)-1}{2}$ leaves of T.

Proof. Let $f: V \to \{-1, 1\}$ be any minimum signed total dominating function (STDF) of T. Let $P_f = \{v \in V | f(v) = 1\}, M_f = \{v \in V | f(v) = 1\}$ -1]. If $M_f = \emptyset$, then $\gamma_{st}(T) = n \ge 2$. Therefore, we may assume there exists a vertex $v \in M_f$, else there is nothing left to prove. Let T be rooted at v. Since $f(N(v)) \geq 1$, at least one child x of vertex v is assigned the value 1 under f. On the other hand, $f(N(x)) \ge 1$ and f(v) = -1, at least two children x_1 , x_2 of vertex x are assigned the value 1 under f. If $M_f = \{v\}$, we have $\gamma_{st}(T) = |P_f| - |M_f| \ge 3 - 1 = 2$. If $M_f - \{v\} \ne \emptyset$, let $w_1 \in M_f - \{v\}$ and w_1 be a child of vertex w. Since $f(N(w)) \ge 1$, that is, $|N(w) \cap P_f| - |N(w) \cap M_f| \ge 1$, then there at least exists another child w_2 of w with $f(w_2) = 1$, i.e., there at least exists one brother w_2 of w_1 that belongs to the set P_f . Hence, we can conclude that $|P_f| \ge |M_f| + 2$. Thus $\gamma_{st}(T) = |P_f| - |M_f| \ge 2.$

It remains for us to show that $\gamma_{st}(T) = 2$ if and only if each vertex v of T is one odd vertex and v is at least adjacent to $\frac{d_T(v)-1}{2}$ leaves of T. If T is a tree of order n = 2, it is trivial. So, in the following proof we assume that T is a tree of order $n \geq 3$.

Let $T_1 = (V_1, E_1)$ be the tree obtained from T removing all the leaves

of T, let $L = \{v \in V | d_T(V) = 1\}.$

We first prove the sufficiency. For any vertex $v \in V$, the degree $d_T(v)$ of v is odd and v is at least adjacent to $\frac{d_T(v)-1}{2}$ leaves of T. Let g be a function of T such that for any $v \in V - L$, $\frac{d_T(v)-1}{2}$ leaves, which are adjacent to vertex v, of T are assigned to the value -1 and the else vertices are assigned the value 1. Therefore, for any $v \in V - L$ $f(N(v)) = \frac{d_T(v)+1}{2} - \frac{d_T(v)-1}{2} = 1$; for any $v \in L$. Obviously, f(N(v)) = 1. Thus g be a STDF of T, the weight $g(V) = \sum_{v \in V - L} (f(N[v]) - d_{T_1}(T)) = \sum_{v \in V - L} (f(N[v]) - \sum_{v \in V - L} d_{T_1}(v) = \sum_{v \in V - L} 2 - 2|E_1| = 2(|V_1| - |E_1|) = 2$. So $\gamma_{st}(T) \leq g(V) = 2$. On the other hand, $\gamma_{st}(T) \geq 2$. Thus $\gamma_{st}(T) = 2$.

To prove the necessity, suppose $\gamma_{st}(T)=2$, then $|P_f|=|M_f|+2$. Let $f:V\to \{-1,1\}$ be any minimum STDF of T. Since $n\geq 3$, hence $M_f\neq\emptyset$. We show that $M_f\subseteq L$, i.e., $d_T(v)=1$ for every $v\in M_f$. Assume the contrary, there exists one vertex $v\in M_f$ with $d_T(v)\geq 2$, let T be rooted at v, since $f(N(v))\geq 1$, at least two children x,y of v are assigned the value 1 under f. Furthermore, since $f(N(x))\geq 1$, $f(N(y))\geq 1$ and f(v)=-1, at least two children x_1,x_2 of x and two children y_1,y_2 of y are assigned the value 1 under f, i.e., there at least exist two children and four grandchildren of v in set P_f . Now consider any vertex $w\in M_f-\{v\}$. If w is adjacent to v, similarly, it follows that at least two children and four grandchildren of v in set v. If v is adjacent to another vertex v is adjacent to v, since v is adjacent to another vertex v is adjacent to v in set v in set v in v is adjacent to another vertex v in v

Therefore, we have $V - L \subseteq P_f$, i.e., for any $v \in V - L$, f(v) = 1.

Now we prove that f(N(v)) = 1 for every $v \in V$. If $v \in L$, obviously, f(N(v)) = 1. Thus assume that there exists one vertex $u \in V - L$ with f(N(u)) > 1, i.e., f(N[u]) > 2. Furthermore, we have $f(N[v]) \ge 2$ for any $v \in V - L$. Thus $\gamma_{st}(T) = f(V) = \sum_{v \in V - L} (f(N[v]) - d_{T_1}(T)) = \sum_{v \in V - L} f(N[v]) - \sum_{v \in V - L} d_{T_1}(v) > \sum_{v \in V - L} 2 - 2|E_1| = 2(|V_1| - |E_1|) = 2$, a contradiction.

Since f(N(v)) = 1 for every $v \in V$, it follows that $d_T(V)$ is odd and v is adjacent to $\frac{d_T(v)-1}{2}$ vertices in M_f . Further, since $M_f \subseteq L$, thus v is at least adjacent to $\frac{d_T(v)-1}{2}$ leaves of T. This completes the proof.

Corollary 2. For any tree T = (V, E) on n vertices $(n \ge 2)$,

 $\gamma_{ks}(T) \ge \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd.} \end{cases}$

Proof. By Lemma 1, $\gamma_{st}(T) \geq 2$. Especially, if n is odd, note that there exists at least one even vertex in T, then $\gamma_{st}(T) \geq 3$.

By Corollary 1 and Corollary 2, we have **Theorem 4.** For any tree T on n vertices $(n \ge 2)$,

$$\gamma_{ks}^t(T) \geq \begin{cases} 2-n & \text{if } k \leq n-1, \\ 2 & \text{if } k=n \text{ and } n \text{ is even,} \\ 3 & \text{if } k=n \text{ and } n \text{ is odd.} \end{cases}$$

with equality for $T = K_{1,n-1}$.

Theorem 5. For any cycle C_n $(n \geq 3)$,

$$\gamma_{ks}^t(C_n) = \left\{ egin{array}{ll} 0 & ext{if n is even and $k=rac{n}{2}$,} \\ n & ext{if $k=n$,} \\ 2k-n+2 & ext{otherwise.} \end{array}
ight.$$

Proof. Let $C_n: v_1v_2...v_nv_1$ be a cycle on n vertices and f be a minimum TkSF on $C_n = (V, E)$. Let I denote the set of all isolated vertices in $C_n[C_f]$.

If k = n, it is obvious that $\gamma_{ks}^i(C_n) = n$.

If $k \leq n-1$, clearly, for any $v \in C_f$, $N(v) \subseteq P_f$ and |N(v)| = 2. Thus $|P_f| \ge |C_f| \ge k$, $|M_f| \le n - k$, i.e., $\gamma_{ks}^t(C_n) = |P_f| - |M_f| \ge 2k - n$. Especially, if there exists $i(i \ge 2)$ consecutive vertices in $C_n[C_f]$, without loss of generality, let $v_1, v_2, \ldots, v_i \in C_f$, then $v_n, v_1, v_2, \ldots, v_i, v_{i+1} \in P_f$. In this case, $|P_f| \ge k+1$, $|M_f| \le n-k-1$, i.e., $\gamma_{ks}^t(C_n) = |P_f| - |M_f| \ge 1$ 2k - n + 2.

From the above analysis, we have the conclusions as follows:

Case 1. n is even and $k = \frac{n}{2}$.

Then $\gamma_{ks}^t(C_n) \geq 2k - n = 0$.

Case 2. $k \leq \frac{n-1}{2}$.

Case 2.1. $I = C_f$.

This is to say, all vertices in $C_n[C_f]$ are the isolated vertices. Since $N(v) \subseteq P_f$ and |N(v)| = 2 for any $v \in C_f$, and $k \le \frac{n-1}{2}$, it follows that $|P_f| \ge |C_f| + 1 \ge k + 1$. Then $|M_f| \le n - k - 1$. Thus $\gamma_{ks}^t(C_n) \ge 2k - n + 2$. Case 2.2. $I \subset C_f$.

In this case, there exist $i(i \geq 2)$ consecutive vertices in $C_n[C_f]$. Thus $\gamma_{ks}^t(C_n) \ge 2k - n + 2.$

Case 3. $\frac{n}{2} < k \le n - 1$.

Then there exist $i(i \ge 2)$ consecutive vertices in $C_n[C_f]$. Thus $\gamma_{ks}^t(C_n) \ge$ 2k-n+2.

On the other hand, define the function $g: V \to \{-1,1\}$ as follows: Case 1. n is even and $k = \frac{n}{2}$

Define
$$g(v_i) = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ -1 & \text{otherwise.} \end{cases}$$

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ -1 & \text{otherwise.} \end{cases}$ Then g is a TkSF of C_n of weight g(V) = 0. So $\gamma_{ks}^t(C_n) \leq g(V) = 0$. Case 2. $k \leq \frac{n-1}{2}$.

Define
$$g(v_i) = \begin{cases} 1 & \text{if } i \text{ is odd and } i \leq 2k+1, \\ -1 & \text{otherwise.} \end{cases}$$
Then g is a TkSF of C_n of weight $g(V) = 2k - n + 2$. So $\gamma_{ks}^t(C_n) \leq C_n^t$

g(V) = 2k - n + 2.

Case 3. $\frac{n}{2} < k \le n - 2$.

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is odd or } i \leq 2(k - \lceil \frac{n}{2} \rceil) + 2, \\ -1 & \text{otherwise.} \end{cases}$

Then g is a TkSF of C_n of weight g(V) = 2k - n + 2. So $\gamma_{ks}^t(C_n) \le$ g(V) = 2k - n + 2.

Case 4. k = n - 1.

Define $g(v_i) = 1$ for $1 \le i \le n$. Then g is a TkSF of C_n of weight g(V) = n. So $\gamma_{ks}^t(C_n) \le g(V) = n = 2k - n + 2$.

The result now follows.

Theorem 6. For any path P_n $(n \ge 2)$,

 $\gamma_{ks}^t(P_n) = \begin{cases} -1 & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ 2k - n & \text{otherwise.} \end{cases}$ $\text{Proof. Let } P_n : v_1 v_2 \dots v_n \text{ be a path on } n \text{ vertices, and } f \text{ be a minimum}$

TkSF on $P_n = (V, E)$. Thus $\gamma_{ks}^t(P_n) = |P_f| - |M_f|$. Let I denote the set of all isolated vertices in $P_n[C_f]$.

Case 1. $I = C_f$.

This is to say, all vertices in $P_n[C_f]$ are the isolated vertices. If n is odd, $k \leq |C_f| \leq \frac{n+1}{2}$; If n is even, $k \leq |C_f| \leq \frac{n}{2}$. Clearly, for any $v \in C_f$, $N(v) \subseteq P_f$ and $|N(v)| = \begin{cases} 1 & \text{if } v = v_1 \text{ or } v_n, \\ 2 & \text{otherwise.} \end{cases}$

Case 1.1 n is even.

Obviously, $|P_f| \ge |C_f| \ge k$, then $|M_f| \le n - k$. Thus $\gamma_{ks}^t(P_n) \ge 2k - n$. Case 1.2. n is odd.

If $k=\frac{n+1}{2}$, then $|P_f|\geq |C_f|-1\geq k-1$, then $|M_f|\leq k$. Thus $\gamma_{ks}^t(P_n) \geq -1$; If $k < \frac{n+1}{2}$, then $|P_f| \geq |C_f| \geq k$, then $|M_f| \leq n - k$. Thus $\gamma_{ks}^t(P_n) \ge 2k - n.$

Case 2. $I \subset C_f$.

Clearly, $C_f - I \subset P_f$. (1)

Furthermore, for every vertex $v \in I$, $N(v) \subseteq P_f$ and $|N(v)| \in \{1, 2\}$.

It follows from (1) and (2) that $|P_f| \ge |C_f| \ge k$. Then $|M_f| \le n - k$. Thus $\gamma_{ks}^t(P_n) \geq 2k - n$.

Consequently, $\gamma_{ks}^t(P_n) \ge \begin{cases} -1 & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ 2k-n & \text{otherwise.} \end{cases}$

On the other hand, define a function $g: V \to \{-1, 1\}$ as follows:

Case 1. $k \leq \frac{n}{2}$.

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is even and } 2 \leq i \leq 2k, \\ -1 & \text{otherwise.} \end{cases}$ Then g is a TkSF of P_n with weight g(V) = 2k - n. So $\gamma_{ks}^t(P_n) \leq 2k - n$.

Case 2. n is odd and $k = \frac{n+1}{2}$.

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is even,} \\ -1 & \text{otherwise.} \end{cases}$ Then g is a TkSF of P_n with weight g(V) = -1. So $\gamma_{ks}^t(P_n) \leq -1$. Case 3. n is even and $\frac{n}{2} < k \le n$.

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is odd or } i \leq 2k - n, \\ -1 & \text{otherwise.} \end{cases}$

Then g is a TkSF of P_n with weight g(V) = 2k - n. So $\gamma_{ks}^t(P_n) \le 2k - n$. Then g is a 1-kSF of P_n with weight g(V) = 2k - n.

Case 4. n is odd and $\frac{n+1}{2} < k \le n$.

Define $g(v_i) = \begin{cases} 1 & \text{if } i \text{ is even or } i \le 2k - n, \\ -1 & \text{otherwise.} \end{cases}$ Then g is a TkSF of P_n with weight g(V) = 2k - n. So $\gamma_{ks}^t(P_n) \le 2k - n$. Consequently, $\gamma_{ks}^t(P_n) \ge \begin{cases} -1 & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ 2k - n & \text{otherwise.} \end{cases}$

The result now follows.

On the upper bounds of a tree T, we have the following conjecture.

Conjecture 1. For any tree
$$T$$
 of order $n(n \ge 2)$,
$$\gamma_{ks}^t(T) \le \gamma_{ks}^t(P_n) = \begin{cases} -1 & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ 2k-n & \text{otherwise.} \end{cases}$$

Lower bounds on total k-subdomination num-4 ber

Theorem 7. For any graph G of order n and maximum Δ , minimum degree $\delta \geq 1$,

$$\gamma_{ks}^t(G) \ge \frac{(\delta - 3\Delta)n + 2(\Delta + 1)k}{\Delta + \delta}n.$$

Proof. Let f be a minimum TkSF on G = (V, E). Let P_f and M_f be the sets of vertices in G that are assigned the values +1 and -1 under f, respectively. Let $P_f = P_{\Delta} \cup P_{\delta} \cup P_{\Theta}$ where P_{Δ} and P_{δ} are sets of all vertices of P_f with degree equal to Δ and δ , respectively, and P_Θ contains all other vertices in P_f , if any. Let $M_f = M_\Delta \cup M_\delta \cup M_\Theta$ where P_Δ , P_δ and P_{Θ} are defined similarly. Further, for $i \in \{\Delta, \delta, \Theta\}$, let V_i be defined by $V_i = P_i \cup M_i$. Thus $n = |V_{\Delta}| + |V_{\theta}| + |V_{\Theta}|$.

Since for at least k vertices $v \in V$, $f(N(v)) \ge 1$, we have

$$\sum_{v \in V} f(N(v)) \ge k - \Delta(n-k) = (\Delta+1)k - \Delta n.$$

The sum $\sum_{v \in V} f(N(v))$ counts the value f(v) exactly d(v) times for each vertex $v \in V$, i.e., $\sum_{v \in V} f(N(v)) = \sum_{v \in V} f(v)d(v)$. Thus

$$\sum_{v \in V} f(v)d(v) \ge (\Delta + 1)k - \Delta n.$$

Breaking the sum up into the six summations and replacing f(v) with the corresponding value of 1 or -1 yields

 $\begin{array}{l} \sum_{v \in P_{\Delta}} d(v) + \sum_{v \in P_{\delta}} d(v) + \sum_{v \in P_{\Theta}} d(v) - \sum_{v \in M_{\Delta}} d(v) - \sum_$

We know that $d(v) = \Delta$ for all v in P_{Δ} or M_{Δ} , and $d(v) = \delta$ for all vin P_{δ} or M_{δ} . For any vertex v in either P_{Θ} or M_{Θ} , $\delta+1 \leq d(v) \leq \Delta-1$. Therefore, we have

 $\Delta |P_{\Delta}| + \delta |P_{\delta}| + (\Delta - 1)|P_{\Theta}| - \Delta |M_{\Delta}| - \delta |M_{\delta}| - (\delta + 1)|M_{\Theta}| \ge (\Delta + 1)k - \Delta n.$ For $i \in \{\Delta, \delta, \Theta\}$, we replace $|P_i|$ with $|V_i| - |M_i|$ in the above inequality. Therefore, we have

$$\Delta |V_{\Delta}| + \delta |V_{\delta}| + (\Delta - 1)|V_{\Theta}|$$

 $\geq (\Delta+1)k - \Delta n + 2\Delta |M_{\Delta}| + 2\delta |M_{\delta}| + (\Delta+\delta)|M_{\Theta}|.$

It follows that

 $2\Delta n - (\Delta + 1)k$

$$\geq 2\Delta |M_{\Delta}| + 2\delta |M_{\delta}| + (\Delta + \delta)|M_{\Theta}| + (\Delta - \delta)|V_{\delta}| + |V_{\Theta}|$$

$$=2\Delta|M_{\Delta}|+2\delta|M_{\delta}|+(\Delta+\delta)|M_{\Theta}|+(\Delta-\delta)(|P_{\delta}|+|M_{\delta}|)+(|P_{\Theta}|+|M_{\Theta}|)$$

$$=2\Delta|M_{\Delta}|+(\Delta+\delta)|M_{\delta}|+(\Delta+\delta+1)|M_{\Theta}|+(\Delta-\delta)|P_{\delta}|+|P_{\Theta}|$$

$$\geq (\Delta + \delta)|M_{\Delta}| + (\Delta + \delta)|M_{\delta}| + (\Delta + \delta)|M_{\Theta}|$$

 $= (\Delta + \delta)|M_f|.$

Therefore,

$$|M_f| \leq \frac{2\Delta n - (\Delta+1)k}{\Delta+\delta}n.$$

So

$$\begin{aligned} \gamma_{ks}^t(G) &= |P_f| - |M_f| = n - 2|M_f| \ge n - 2\frac{2\Delta n - (\Delta + 1)k}{\Delta + \delta} \\ &= \frac{(\delta - 3\Delta)n + 2(\Delta + 1)k}{\Delta + \delta}. \end{aligned}$$

Theorem 8. If a graph G has no isolated vertices and every vertex in G is an even vertex, then

$$\gamma_{ks}^t(G) \ge \frac{(\delta - 3\Delta)n + 2(\Delta + 2)k}{\Delta + \delta}.$$

Proof. If every vertex in G is an even vertex, then there exist k vertices in V such that $f(N(v)) \geq 2$. Then $\sum_{v \in V} f(N(v)) \geq 2k - \Delta(n-k) =$ $(\Delta + 2)k - \Delta n$. Similar to the proof of Theorem 7, we can finish the proof of Theorem 8.

Theorem 9. For every r-regular graph G of order n,
$$\gamma_{ks}^t(G) \ge \begin{cases} \frac{(r+1)k-rn}{r} & \text{if } r \text{ is odd,} \\ \frac{(r+2)k-rn}{r} & \text{if } r \text{ is even.} \end{cases}$$

Proof. If r is odd, by Theorem 7, we have $\gamma_{ks}^t(G) \geq \frac{(r+1)k-rn}{r}$. If k is even, by Theorem 8, we have $\gamma_{ks}^t(G) \ge \frac{(r+2)k-rn}{r}$. Corollary 3. [5] For every r-regular graph G of order n,

$$\gamma_{ks}^t(G) \ge \begin{cases} \frac{n}{2n} & \text{if } r \text{ is odd,} \\ \frac{n}{2n} & \text{if } r \text{ is even.} \end{cases}$$

 $\gamma_{ks}^t(G) \geq \left\{ \begin{array}{ll} \frac{n}{\underline{t}} & \text{if } r \text{ is odd,} \\ \frac{\underline{t}n}{\underline{t}} & \text{if } r \text{ is even.} \end{array} \right.$ We have recently learned from the referee that some of the results of this paper have been obtained independently by Harris, Hattingh, and Henning

in [6] and by Henning in [7]. Lemma 1 appears in [7] in a slightly different form. Theorems 5, 6, and 7 appear in [6]. Conjecture 1 is proved in [6].

References

- [1] I. Broere, J.H. Hattingh, M.A. Henning, and A.A. McRae, Majority domination in graphs, *Discrete Math.* 138 (1995), 125-135.
- [2] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, *Networks* 10 (1980), 211-219.
- [3] E.J. Cockayne, C.M. Mynhardt, On a generalization of signed dominating functions of graphs, *Ars Combin.* 43 (1996), 235-245.
- [4] J.H. Hattingh, Majority domination and its generalizations. In T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors, Domination in graphs: Advanced Topics, chapter 4. Marcel Dekker, Inc. 1998.
- [5] B. Zelinka, Signed total domination number of a graph, Czechoslovak Mathematical Journal 51(2) (2001), 225-229.
- [6] L. Harris, J.H. Hattingh, and M.A. Henning, Total k-dominating function in graphs, Submitted to Discrete Appl. Math.
- [7] M.A. Henning, Signed total domination number of a graph, To appear in *Discrete Math*.