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Abstract

The paper contains two main results. First, we obtain the chro-
matic polynomial on the n x m section of the square lattice solving
a problem propose by Read and Tutte [5], the chromatic polynomial
of the bracelet square lattice and we find a recurrent- constructive
process for the matrices of the k — colourings. The key concept for
obtaining the inductive method is the compatible matriz.

Our second main result deals with the compatible matrix as the
adjacency matrix of a graph. This represents a family of graphs,
which is described.

1 Introduction

For positive integer k, a k — colouring of a graph G is a mapping of the
vertex set V(G) into the set Iy = {1,2,...,k} such that if e = (4, j) is any
edge of G, ¢(¢) # ¢(j). The members of I} are the k colours. The number
of such mappings ¢ is now commonly known as the chromatic polynomial
of G and it is denoted by x(G; k) . Therefore the chromatic polynomial is
a function which gives the number of ways of colouring a graph G when k
colours are available.
Let L(n,m) be a graph having as vertices the set

{,j)€Z* xZ*:1<i<n,1<j<m}
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Figure 1: L(8,5)

such that the vertices (i,j), (¢',7') are adjacent if and only if | —i/| +
|7 — 47t = 1. L(n,m) is an n x m section of the square lattice (see Figure
1). We will say that L(n,n), denoted by simplicity like L,, is the square
lattice having n? vertices and 2n(n — 1) edges. Let x(Ly; k) be the number
of k — colourings of the square lattice L,,.

Let LT be the graph obtained from the square lattice L, by identi-
fying the boundary vertices (,1) and (i,n+1), for 1 <i <n 41, and the
vertices (1,7) and (n + 1,5), for 1 < j < n+ 1, and deleting any parallel
edge. So LT can be embedded in the torus and every vertex has degree
four. This is often referred to as the toroidal square lattice. Let x(LZ; k) be
the number of k — colourings of LT. It is known [1] that for a fixed mteger
k > 3 the limits of the sequences {(x(Lz:, k))/7*} and {(x(Ln; k))/"} are
equal and this limit is denoted by ¥(k). Besides its intrinsic mathematical
interest, the importance in computing %(k) is mainly because of the signif-
icance of the square lattice in statistical physics. Biggs and Meredith in 3]
obtained the estimate

2(k) ~ -21-(k—-3+\/k2—2k+5 :

where g(k) ~ h(k) has its usual meaning that the limit as k& — oo of
g(k)/h(k) is 1.

Lower and upper bounds for x(k) were given by Biggs in [2]. He used
the transfer matrix technique to obtain

2 _
%ﬂgi(k)s%(k—2+\/k2—4k+8).

This paper contains two main results. First, we obtain the chromatic
polynomial on the n X m section of the square lattice solving the Problem
8.1 propose by Read and Tutte in [5], the chromatic polynomial of the
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Figure 2: a) L(1,m) b) L(n,m)

bracelet square lattice proving in addition that the behavior of chromatic
polynomial on the square lattice is the same that on the cylindrical square
lattice. The key concept for obtaining the chromatic polynomial on the
square lattice is the compatible matriz finding a recurrent- constructive
process for the matrices of the k — colourings.

Our second main result has to do with the compatible matrix as the
adjacency matrix of a graph. This represents a family of graphs, which is
described in the last section.

We conclude the paper with some remarks and open problems.

2 Compatible matrix of k—colourings on square
lattice

We consider the problem of counting k — colourings on the n x m section
of the square lattice denoted by L(n,m).

If we want to obtain the number of colourings of L(n,m) from the
number of colourings of L(n—1,m), then it is sufficient to study how many
colourings of L(1,m) we can add to L(n — 1,m) such that a colouring of
L(n,m) will be obtained. The fact that we can add or not a colouring
to L(n — 1,m) will depend only of its end pattern of colouring, i.e. the
colouring of a graph of type L(1,m) which it is obtaining if we take in
L(n — 1,m) the points {(n — 1,7) : 1 < i < m}. Therefore, we have to
study the compatibility between colourings of L(1,m), solving in this way
the problem (see Figure 2).

For m = 1 the problem is easy due to each k-colouring of L(1,1) is
compatible with (k — 1) k-colourings of L(1,1). Hence, x(L(1,m);k) =
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k(k — 1)™!. The same situation is repeated for m = 2, each k-colouring
of L(1,2) is compatible with k2 — 3k + 3 k-colourings of L(1,2). Therefore
x(L(2,m); k) = k(k — 1)(k® — 3k + 3)™~1. For m = 3 the situation is
different. If we hope to obtain the chromatic polynomial of L(3,m), with
a direct method of counting, then the situation becomes much harder.
Therefore, we will use the compatible matrix technique (see[4]).

Two k — colourings, a; and a; with i # j of L(1,m) are compatible
if ai(v) # a;j(v) for each vertex v of L(1,m). We denote by Cn(k) to
a compatible matriz, whose rows and columns correspond to the k —
colourings of L(1,m), in the following way:

1 if a; and a; are compatible
(Com(k))s s ={ 0 ' otixerwise P }

Firstly, we will see a particular case of 3-colourings, to help the reader
to understand the process better:

Let a7!,al! and a]*"! be all proper 3-colourings of L(1,m — 1)
such that its end patterns (i.e. the colour assigned to the finish vertex of
L(1,m — 1)) are a,, a2, a3 respectively.

It is easy to see that the following expression is verified:

m-1 -1
a® a; ) + a3 . a3
ot | =| ol +alt | =01 @
al a4 ap! a3

011
where C = | 1 0 1 | is the compatible matrix of L(1,m) for 3-
110
colourings.
Let us see the general case now for k-colourings:

Theorem 1 The chromatic polynomial of L(n,m) is given by
X(L(n,m); k) = (Cm (k)75 -
i,j

Proof. Let a7,a},...,a? be all proper k — colourings of the graph
L(n,m) such that its end patterns are a,, a, ..., ar respectively.
We denote by C = Cn(k).

a? a{"i a1
a? a3~ az
Wehave:| . | =C . =C" 1|
a® an—l a,
T r
1

1
Since, (a?) =C™ ! | . | due to a} =1 for each .
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then,
x(L(n,m); k) = E(a, )= Z)(C')""1

Thus, we obtain the result l

We obtain next the number of 3 — colourings of the graph L(1,m)

which can not be closed. It is denoted by bracelet. Let )?(L(l,m);k) be
the number of k — colourings of the graph L(1,m) = {v,, v2, ..., v} where
the colour associate to v; is the same to the colour associate to v,.

Theorem 2 Q(L(l,m);k) =2m~1 _2(-1)™.

al |
Proof. First, we consider | a}
[ a3 _ [ }
011
and the compatible matrix C=| 1 0 1 ]
110

Using elementary tools for the compute of the m-th power of a matrix
an bm bnm
we obtain the following: C™ = | b, am bpn
' b bm am
= z(2™ +2(-1)™) }
h m = g
where { b = 32" — (—1)™)
trace(C™) = 2™ 4 2(-1)™ ,
and
2(C™ )i = 3am—1 + 6bp1 = (2™ + 2(-1)™"1) + 61(2™1 -
l]
(-1)m"1) =3 x 2m-1,
Thus,

LA,m);3) = z(cm-l),,-tmce(om) =3x2m-1-(2m42(—1)™) =

=gm-1_9(— 1)m. "

We can generalize the previous result for L(n,m), obtaining the chro-
matic polynomial on the nxm section of the bracelet, denoted by ;lé(L(n, m); k).

Theorem 3 )lé(L(n, m); k) = Y (C™ 1), ; — trace(C™)
1

Proof. It is clear that the number of k& — colourings on the n x m
section of the square lattice which can not be closed will be equal to the
sum of all elements of the matrix C*~!(ie. Y} (C™!);; = k(k — 1)*71)

i
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minus the number of proper k — colourings on the n x m section of the
square lattice when we identify the boundary vertices (i,1) and (i,n), for
1 < i < n, and deleting any parallel edge, i.e. trace(C"). m

It is well-known that the behavior of chromatic polynomial on the infi-
nite square lattice is the same that on the toroidal square lattice (see [1]).
We show now that the behavior of chromatic polynomial on the cylindrical
square lattice is the same to both.

Let LS be the graph obtained from the square lattice L, by identify-
ing the boundary vertices (%,1) and (¢,n+1), for 1 <7 < n+1, and deleting
any parallel edge. So LS will be referred to as the cylindrical square lattice.
Let x(LC; k) be the number of k — colourings of LS.

Proposition 4 lim x(LC;k))V/** = lim x(Ln; k)™
n—00 n—oo

Proof. Clearly, x(Ln; k) > x(LS; k) > x(LT; k).
It is know (see [1]) that lingox(Ln;k))l/"z = JLH;OX(LZ;’C))I/"2-

Therefore, we have lim x(Ln; k))/"" = lim x(LS;k))/~*
n—00 n—oo

= I T. 1.y\1/n?
Jim x(Ly; k)™
n

3 Construction of the compatible matrix

In this section, we give a constructive process to obtain a compatible ma-
trix. We begin with 3 — colourings to better follow the method and after
that, we generalize the inductive method for the construction of the com-
. patible matrix of k — colourings on the n x m section of the square lattice.
Between L(1,m — 1) and L(1,m), the compatible matrix for the 3 —
colourings is given by:

a | ax | as
al 0 1 1
/2] 1 0 1
as 1 1 0

In L(2,m) the patterns of colours used in the ends are the following:
a)a2,a103, 6201, 203,30 and azas.

Therefore, between L(2,m—1) and L(2,m), the compatible matrix is given
by:
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Q102 Q1083 | G201 Gaa3 | @gza; azas
a1ay 00 11 10
a1a3 00 10 11
azay 11 00 01
aza3 10 00 11
agay 11 01 00
azas 10 11 00

Surprisingly, we can obtain a relationship between the compatible ma-
trices on L(1,m) and L(2,m) and the most important is that this relation
gives an inductive method for the construction of the compatible matrix
on the L(n,m). For instance, the submatrix 2 x 2 in the position (1,2)
of the compatible matrix on L(2,m) is the submatrix obtained eliminating
the 1 —th row and the 2 — nd column in the compatible matrix on L(1,m).
This process can be generalized except for the diagonal elements where it
is clear that submatrices 2 x 2 with zeros are obtained. In general, we can
describe the process in the following way:

0 = 7
Cn=| 2 0 z
ytitﬁ
{gg T Z 0
0 0 7 0 A
T 7 0 0 0 =
Omi1=| |2t 0| [0 0| |g¢_zt
z g [0 y| [TO
\ [0 _= ¢z 00 :
[ | 00 0 0 T ¥ 0 = T y 0 0
00 00 7t 0 7z 0 0 0
006 00 Z g 0 0 Z g 0 7
0 0 00 0 =z 00 0 z w® z
= z 0 0 0 0 0 0 0 Tt z
|| T8 72 80 070 50 70
m+2 = 0 7 0 0 0 0 00 T Y 0 7
g z 00 0 0 00 0z =F %
ng z 0 0 0 F 0 0 0 0 0
7 0 7t o 00 7 = 00 00
00 0 = ZE g 0 = 00 00
\ L 0 D o 2 0 il 00 0 0

All the results described previously are generalizable for k-colourings.
For them, the compatible matrix of the k — colourings on the 1 x m section
of the square lattice is given by:
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ag | 0 1 1
az 1 1 0 1
- T S PP
a 1+ 1 1 --- 0

Following an inductive method as previous process defined, we can ob-
tain the compatible matrices of the k — colourings on the n x m section of
the square lattice.

Bounds for the eigenvalues of C,, (k)

We obtain next the same bounds for the eigenvalues of Cr,(k) that
Biggs in [2]. But, it is important to remark that we can prove that with
our inductive process of construction of compatible matrix. This fact, can
be relevant and from now on, due to the compatible matrices are known
and these can be constructed, we will be able to try to find better bounds
for the eigenvalues or exact formula for them in a future work.

Since Cn (k) is a matrix with non-negative entries, the classical theory
of Perron and Frobenius may be applied. Therefore, there is a unique one
eigenvalue, A, (k) with greatest absolute value of the Cy, (k) and such that:

1. It is real.

2. It has multiplicity one.

3. It is not greater than the maximum row sum My, (k) of Cr (k).

4. Tt is not less than the mean row sum mm(k) of Crm (k).
Lemma 5 M,,1(k) < (k — 2)Mp(k) + Mpm—1(k).

Proof. By the construction of the compatible matrices, we obtain that
each block row in Cy,+1(k) may be considered in the following way:

Let B;, be i — th block row in the matrix Cy,41(k), where

B; =B;;+..+ Bk

Let f be i — th block row in Cin(k), let c* be j — th block column in
Crm(k) and let €]; be the block element in the position (i, ) in the matrix
Cm(k). Hence, we have:

Bi, = Cpu(k) — f" — " + €73

Bip =Cn(k) — f" — 5" + €3

B{3 = Cm(k) — fI" — o + €l

................................................
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4 Cp(k) as the adjacency matrix of a family
of graphs

It is convenient to regard Cy,(k) as the adjacency matrix of a graph whose
vertices are the k — colourings of L(1,m).

For instance, we can see, from the point of view of geometry, the fol-
lowing;:

For k = 3, the compatible matrix of the 1 x m section of the square
lattice represents the adjacency matrix of a complete graph K3,

1 a1 a2 ag
- - - - - 011
a | 0 1 1 =2 K= 1 01 .
aa 1+ 1 0 1 110
as | 1 1 0

For k = 4, the compatible matrix of the 1 x m section of the square
lattice represents the adjacency matrix of a complete graph Ky.

In general, for k = n, the compatible matrix of the 1 x m section of the
square lattice represents the adjacency matrix of a complete graph Kp.

Definition 7 We consider the adjacency matriz of a complete graph K.
We define the adjoint matriz associate to K, and its will be denoted by
A(K,) in the following way: Each element (i,5) of the adjoin matriz is ob-
tained as the submatriz when we eliminate the i-th row and the j-th column
in the adjacency matriz of K.

0]

Example:

Al
RN
K4=
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(lo1r1|]111]]l1o1]|[101])
101 101 111 110
110 110 110 111
111 011 011 01 1
101 101 111 110
AKD 110 110 110 111
YSlT111l[o11l]o1z1l[0o11
011 111 101 101
110 110 110 111
111 011 01 1 01 1
01 1 111 101 101
\|1 01 1 01 111 110)

The adjoint matrices are the compatible matrices except by one little
different, in the diagonal boxes, in the compatible matrices, we have boxes
of zeros. We will use the adjoin matrices for the proof the following result:

Theorem 8 The compatible matrices of the n — colourings are (n — 1)-
power of K,,.

Before of begin the proof of the Theorem 8, we can see barticular cases.

1. k=3
The compatible matrix of L(1,m):
I a, a2 a3

a 1 0 1 1
a 1 1 0 1
a3 1+ 1 1 0
represents as adjacency matrix to

011
K3E 1 01

110
The compatible matrix of L(2,m):
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a,ay

a,a, / aza,
a;a, / a,a,
a;4,
a G
a,a, a,a,
. /\
A’ ! M a,a,
a4, a,a,
b G

Figure 3: o) G, graph associate to the compatible matrix of L(2,m) b)
Other representation of G

1 aiaz ai1a3 a201 @203 Qaz0) a3za2

a1as 00 11 10
a183 00 10 11
aza) 11 00 01
azas 10 00 11
aza; 11 01 00
asas 10 11 00

represents as adjacency matrix to two K3. One of them is {a1a3, a2a1, azaz}
and the other is {a;a2, a2a3,a3a:} (see Figure 3).

2. k=4
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1] 0111
2] 1011
K“‘3|1101
4 | 1110
i |
Using the adjoint matrix we obtain the following matrix denoted by
A(Ky4) )
@] s 1@ 4 12[@ [©] s
011 111 1 01 1 01
2(1) 1 01 1 01 111 1 10
3(2) 1 10 1 10 110 111
4(3
2@« 13 [@ [@] 24 1 [P s
1 11 011 011 011
163 1 01 1 01 111 110
30 1 10 1 10 1 10 111
4@
23[4@] [1©] 34 1[2® 4 12 [3®]
111 011 011 011
1@ 0 11 111 1 01 1 01
o® [1 1 0 110 10 111
41)
2 3 4 1 3 4 1 2 4 1 2 3
1 11 01 1 011 011
1 10 11 1 11 1 01 1 01
22 {1 0 1 1 01 111 1 10
33
L .

In A(K}), as an adjacency matrix, we have 12 vertices: vy, ..., 712, but
only 4 different types, due to we have in the matrix 4 independent rows and
4 independent columns. We must observe that we obtain 3 different K,
joint between themselves. If we eliminate the diagonal boxes, which in the
compatible matrix are null blocks, only we are eliminating edges between
the 3 different K. Therefore, in the compatible matrix we have 3 different
K4. Following the inductive process for the construction the compatible
matrices we will obtain 32 different K.
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Proof. For simplicity of notation, we will denote the matrices by its
rows and its_ columns.
Let 12...7...n be n columns in a matrix minus the ¢ — th column.

1
2

Let 3 be n rows in a matrix minus the j — th row.

n

We consider now,

| 1 2 n

1 ] 01 1
Kn=|2 ] 1 0 1
S R SO

n | 1 1 .- 0

Using the adjoint matrix we obtain the following matrix denoted by
A(Ky)
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i|:|a4---(n—1) n 13 4. (n-1)n |:|234---(n—1)a
1 1 1
2 2 2
3 3 3
(n—1) (n-1) (n-1)
n n n
i2 4. (n=1)n 133 e{n=1) n 1 | : |3 4. (n-1) A
1 1 1
3 3 2
3 3 3
(n=1) (n=1) (=1
n n n
i234---(n-1)|:| |:|§34---(n-1)n 1234---ﬁ
1 1
2 2 2
3 3 3
G-D -1 ")

n ” n
1234.(n-Dn 1334.(n-Yn 1234 ---(n-1)#A
1 1 1
2 2 2
3 3 3
(n=1) (n=1) (n=1)

13 A A

\

In A(K,), as an adjacency matrix, we have (n—1)n vertices: vy, ..., VU(n-1)ns
but only n different types, because we have in the matrix n independent
rows and n independent columns. Clearly, we can see that we obtain (n—1)
different K, joint between themselves. If we eliminate the diagonal boxes,
which in the compatible matrix are null blocks, only we are eliminating
edges between the (n — 1) different K,,. Therefore, in the compatible ma-
trix we have (n — 1) different K,,. Following the inductive process for the
construction the compatible matrices we will obtain (n — 1)? different K,.
-

5 Conclusion and Open problems

We have obtained the chromatic polynomial on the m x n section of the
square lattice and the bracelet square lattice and we have found a recurrent-
constructive process for the matrices of the k— colourings. In addition, the
compatible matrix as the adjacency matrix of a graph, represents a family
of graphs, which is described.

As it was mentioned previously, we will work to find exact formulas
for the eigenvalues of the compatible matrix. On the other hand, it is
well-known that if G is a planar graph then the Flow Polynomial of G is
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essentially the Chromatic Polynomial of a dual graph of G. Therefore, in
the future work we will try to get the flow polynomial on square lattice
through compatible matrix and obtain a relation between the compatible
matrices to the chromatic and the flow polynomials, so that a relationship
between the family of graphs which are represented by compatible matrices.

Acknowledgements

We are very grateful to an anonymous referee for carefully reviewing
the manuscript and for making useful suggestions.

References

[1] N.L. Biggs, Chromatic and thermodynamic limits, J. Phys. A 8 (1975) L
110-112.

[2] N.L.Biggs, Colouring square lattice graphs, Bull. London Math. Soc. 9 (1977)
54-56.

[3] N.L. Biggs and G.H.J. Meredith, Approximations for chromatic polynomials,
J. Comb. Theory, Ser. B 20 (1) (1976) 5-19.

[4] N.L. Biggs, A matrix method for chromatic polynomials, LSE Report LSE-
CDAM-99-03 http://www.cdam.Ise.ac.uk/Reports/

[5] R-C. Read and W.T. Tutte, Chromatic Polynomials, Selected Topics in Graph
Theory 3 (edited by L.W. Beineke and R.J. Wilson). Academic Press, London,
1988.

232



