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Abstract: Let £ > 1 be an integer and let G be a graph of order
p. A set S of vertices in a graph is a total k-dominating set if every ver-
tex of G is within distance at most k from some vertex of S other than
itself. The smallest cardinality of such a set of vertices is called the total k-
domination number of the graph and is denoted by v.(G). It is well known
that v£(G) < 2—,?_% for p > 2k + 1. In this paper, we present a character-
ization of connected graphs that achieve the upper bound. Furthermore,
we characterize the connected graph G with v£(G) + vL(C) = —2-%% +2.

Kcywords: total k-domination number, diameter, radius, distance.

1 Introduction

Let G = (V, E) be a simple graph of order p. The degree and neighborhood
of a vertex v in the graph G are denoted by d(v) and N(v) respectively. A
vertex v is called a leafif d(v) = 1. The graph induced by S C V is denoted
by (S). For arbitrary two vertices u,v € V(G), let u — v denote a path
between % and v in G. Further, the distance d(u,v) between two vertices
u and v of G is the length of a shortest © — v path if one exists; otherwise
d(u,v) = oco. Eccentricity e(v) of a vertex v of a connected graph G is
the number maxuecv(c) d(z,v). The radius is defined as min,cv(g) e(v),
while the diameter is defined as maxyev(cy e(v). Let rad(G) and diam(G)
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denote the radius and diameter of G, respectively. A vertex v is a central
vertez if e(v) = rad(G).

Let £k > 1 be an integer. A set S of vertices in a graph G is a k-
dominating set if every vertex of G is within distance at most k from some
vertex of S. The smallest cardinality of such a set of vertices is called the
k-domination number of the graph and is denoted by vx(G). A set S of
vertices in a graph G is a total k-dominating set of G if every vertex of G
is within distance at most k from some vertex of S other than itself. The
smallest cardinality of such a set of vertices is called the total k-domination
number of the graph and is denoted by vf(G). From now on, for a graph
G and a positive integer k we denote by G o k( G o 2k) the graph obtained
by taking one copy of G and |V(G)| copies of the path Py (Pay, resp.) of
length k —1 (2k — 1, resp.), and then joining the ith vertex of G to exactly
one leal in the ith copy of P¢ (Pa, resp.). Henning et al. [1] gave the
following results:

Lemma 1 [1] For an integer k > 1, if G is a connected graph of order
p, then v(G)=14p<k+1 und 'yk(G) < 2 AT ifp>k+1.

Lemma 2 [1] For an integer k > 2, if G is a connected graph of order
p, then v (G) = zf2<p<2k+land'yk(G)<——Eﬁ-zfp>2k+1

Lemma 3 (1] For an integerk > 2, if G and G are connected graphs of
order p, then -yk(G)+7k(G) =4 if p < 2k+1 and v£(G)++L(G) < 2k+1 T +2
ifp>2k+2.

Jerzy Topp and Lutz Volkmann (2] characterize the connected graphs
that achieve the upper bound of Lemma 1. They have the {ollowing results.

Lemma 4 [2] Let G be a connected graph of order (k + 1)n. Then
Yx(G) = n if and only if at least one of the following condition holds:

(1) G is any connecled graph of order k + 1;

(2) G = Caks2;

(8) G = H ok for some connecled graph H of order n.

In this paper, we characterize the connected graphs that achieve the
upper bound of Lemma 2 and Lemma 3.

2 Main results

It follows from the definition that G o2k has exactly (2k+1)|V(G)]| vertices.
If G has no isolated vertices, then G o 2k has cxactly |V(G)| leaves. For a
vertex u of G, we denote by T the only leaf of G 02k which is at distance 2k
from u. In addition, for a vertex v of GG o 2k, we denote by ¢(v) the unique
vertex of G such that v belongs to the ¢(v) — t(v) path.

Theorem 1 For any connected graph H of order n, vi(H o 2k) = 2n.

Proof Assume V (H) = {v,,vo,---,vn} and V(H’) = {v;|v; belongs Lo
the path »; — 7; and d('ui,v;) =k fori=1,2,.--,n}. Let D be a total
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k-dominating set of H o 2k with the smallest cardinality. It follows from
the structure of H o2k that at least two vertices of the v; —7; belong to D.
Thus, |D} > 2n. Since V(H)U V(H') is a total k-dominating set of H o 2k
with cardinality 2n, it follows that y£(H o 2k) = 2n.

Theorem 2 Let T be a tree of order (2k+1)n and n 2 2. IfyL(T) =
2n, then diam(T) > 4k + 1.

Proof If diam(T) < 2k, then rad(T) < k. Hence, a central vertex
of T and any other vertex of T form a total k-dominating set of T. So
v:(T) = 2, which is a contradiction. Hence, diam(T) > 2k + 1. In order to
prove Theorem 2, we only consider the following claims.

Claim 1 diam(T) > 3k + 1.

Otherwise, 2k+1 < diam(T) < 3k. Let diam(T') = d and let uw and v be
two vertices of T such that d(u,v) = d. Denote by P : u = ug,uy, -, ug =
v the v — v path in T. Denote by Ty, T and T3 the components of T —
{vktk+1, Ud—k—1uq—k} that contain u,v and uky; respectively. Since 2k +
1 £ diam(T) < 3k, d(uk,ud—x) = d — 2k < k. Moreover, since P is the
longest path in T, ukx (ug—s, respectively) is at distance at most k from
every vertex in Ty (T3, respectively).

case 1|V(T5)| > 2k+1. By Lemma 2, 4(T3) < ¥ Hence, there is

a total k-dominating set D3 of T3 with | D3} < —I%fé%)l So, D3 U {uk, ug—x}
is a total k-dominating set of T. Thus,

'y,‘c(T) < |Ds}+2

< M4 g

- ! V!T) —IV! I’]“—IV!TQN! +2

- 'ZIV(T)I ror 2V
2} (2k+2

< —&le' +2- —mz
2 v{T

< 2k+1

= 2n

which is a contradiction.

case 2 |V(T3)| < 2k. Then diam(T3) < 2k—1 and rad(T3) < k. Hence,
there is a central vertex w (say) of T3 such that it is at distance at most
k from at least one of ui or ug—, and from each vertex of T3. Otherwise,
if d(w,ux) = d(w,ug—x) = k + 1, either w is on P and d(uk+1,ug—k-1) =
2(k+1)—2=2k > |V(T3)] -1 or wis not on P and |V(T3)| > 2k +
1, both contradictions. Thus, vi(T) < |{uk,w,ua—xk}| = 3, which is a
contradiction.

Claim 2 If » > 3 and for each edge e of T at least one component of
T — e is of order less than 2k + 1, then diam(T) > 4k + 1.

Otherwise, 3k + 1 < diam(T) < 4k by Claim 1. Let diam(T) = d and
let u,v be two vertices of T such that d(u,v) = d. Denote by P : = =
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ug, U1, +,ug = v the u — v path in T. Necessarily there exists an integer
i, 1 <1< d -1, such that the components of T — u;_ju; and T — w;u;4
containing u are, respectively, of order less than 2k +1 and of order at least
2k +1.

Let Tl and Tz be the components of T' — u; containing v and v, respec-
tively. Then T} and T, are of order less than 2k + 1.

Since i € 2k, d—i < 2k and 3k+1 < d < 4k, it follows that ¢ > d—2k >
k+1andi+1<2k+1<d-k. It is obvious that {ux} and {uq_x} are
k-dominating set of Tl and T2, respectively and d(ux,u;) =i—k < k and
d(ud—k, u,) =d—-k—1 S k.

Case 1 d(u;) = 2. The set {uk, ui, ua—«} is a total k-dominating set of
T and ~4;(T) < 3, which is a contradiction.

Case 2 d(u;) > 2. Denote by T,, T21 . T' the components of T —u;
and by w; the vertex in T. adjacent to u; for i=1,2,--.,r. We note that

= u;—1 and wy = u;4;. For j € {3,4,---,7}, since the component of
T u;w; containing P is of order at least 3k + 2, the component T is of
order at most 2k.

Let I be the set of all indices j € {3,4,--,7} such that TJ' contains a

vertex at distance at least k+1 form »;. If j € I, then since |V(T')U{u,}| <

2k+1, T contains a vertex z; such that {z;}is a k-dominating set of T and
d(u;, 25) < <k Hence, D = {uk, uq-k, ui}U{z;|7 € I} is a total k—dommatmg
set of T with 4£(T) < |D| =3+ |I]. Since |V(T)| 2 d+ 1+ (k+1)|I| and
d > 3k + 1, we have

2AV(T)| | 23k +2+ (k+ DI
2k+1 = 2%k + 1

1+|1|

=3+ ]| + >3+
which is a contradiction.

Claim 3 If n = 2, then diam(T) > 4k + 1.

Otherwise, 3k + 1 < diam(T) < 4k. Let i, Ty and T, be defined as
in Claim 2. If IV(T2 | < 2k + 1, then, with a similar way as Claim 2,
{uk, ua—x,u:} is a total k dominating set of T since |V(T)| - |V(P)] <
4k +2 — (3k + 2) = k, which is a contradiction. If |V(T,)| = 2k +1, let T}
denote the component of T — {u;u;4,} containing u, then |V(T,)| = 2k +1.
Hence, {ux} and {uq-«} are k-dominating set of Ty and T; respectively.
Since 3k + 1 < diam(T) < 4k, either d(uk,u;) < k or d(ug_k, uis1) < k.
Assume d(ug,u;) < k. Then {uk,ud—k,ui+1} is a total k dominating set of
T, which is a contradiction.

Claim 4 If T be a tree of order (2k + 1)n (n > 3) with v;(T) = 2n,
then there exists a subgraph satisfying Claim 2 or Claim 3.

If n > 3 and there exists an edge e such that both components of T — e
are of order at least 2k + 1. Denote by T, T the components of T — e.
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Assume |V(T1)| = (2k+1)m +1¢,0 <t < 2k. If t # 0, then by Lemma 2,
vL(T) lmJ + | XN

TR+l Tk+1
2m+[2k 1J+2(n m—1)+[2 2k+1-|
2n — 2+|—2k+1-|+'»2 2k+l
= 2n-1

2AV(T
< T3RFT

which is a contradiction. Hence, t = 0, 7((T1) = %ﬂ and v5(T2) =

%‘."%M, If 71 or T; satisfy Claim 2 or Claim 3, then the result is true.
Otherwise, we replaced T with 77 and continue until Claim 2 or Claim 3
holds. Since, the number of vertices is limit, it is possible to do so.

By Claim 2-4, the result holds.

Corollary 1 Let T be a tree of order dk + 2. IfvE(T) =4, then T is
isomorphic to P4k+2

Theorem 3 Let T be a tree of order (2k + 1)n and k > 2. Then
¥i(T) = 2n if and only if ot least one of the following conditions holds:

(1) T is a tree of order 2k + 1;

(2) T = H o 2k for some tree H of order n > 2.

Proof By Lemma 2 and Theorem 1, the sufficiency is obvious. Now
we only consider the necessity.

The result is clear for n = 1. If n = 2, T = Pyx4o by Corollary 1.
Thus T = P2 o 2k. Suppose the result is true for tree of order (2k + 1)n
with y5(T) = 2n and n > 2. Let T be a tree of order (2k + 1)(n + 1)
with v5(T) = 2(n + 1). Assume d(u,v) = diam(T) = d. Denote by
P:u=ug,uy, -,ug =v the u —v path in T. By Theorem 2, d > 4k +1.
Let Ty (T2, resp.) be the component of T — uggugr4+ Which contains (does
not contain resp.) the vertex ug. Since |V(Ty)| > 2k + 1 and |V(T3)| >
2k + 1, with a similar way as Claim 4 of Theorem 2, it is casy to prove that
[V(Th)| = (2k+1)m and |V(T2)| = (2k+1)(n+1—m) forsome 1 < m < n.
Furthermore, v;(T1) = 2m and v£(T2) = 2(n+ 1 — m).

If m > 2, by induction, then T} is isomorphic to Ro2k for some tree R of
order m. If ugg belongs to R, then there exists an other vertex w € R such
that w is adjacent to ugy since m > 2. It follows that the length of the path
(W — w) U {wugk} U (ugx — uy) is greater than d, which is a contradiction.
If uax belongs to some path v; — T3 of R and ugix # v;, then ug belongs
to some path v; — 75 and 4 # j Since d(up) = 1. Let P;; denote one path
between v; and v; in R. It follows that (v; —75)U (ug —uak) U(v; —T5) U P,
contains a cycle, which is a contradiction.

So, m = 1. Then |V(T})| = 2k+1 and T} is isomorphic to Pyi;. Since
|[V(T2)] = (2k + 1) and n > 2, by induction, T2 = R o 2k for some tree of
order n. Let V(R) = {v1,v2, -+, vn} and V(R') = {v;,vy,---,v,} where
v belongs to the path v; — 77 and d(vi,v;)=kfori=1,2,---,n

I INIA

13



If 4ok, belongs to some path »; — %7 and ugeq1 # vi, then V(R)U
V(R') U {ug,uzx} — {v:} is a total k-dominating set of T with cardinality
2n + 1, which is a contradiction. Hence ugx+1 belongs to V(R). Then let
H = (RU {ug}). It follows that T = H o 2k, where H is a tree of order
n+1.

Theorem 4 Let G be a connected graph of order (2k+ 1)n and k > 2.
Then v;(G) = 2n if and only if at least one of the following conditions
holds:

(1) G is any connected graph of order 2k +1;

(2) G = Cyiq2

(8) G = H o2k for some connected graph H of order n.

Proof The sufficiency is obvious. Now, we only consider the necessity.

By Theorem 2 and Corollary 1, it {ollows that G 22 Cygq0 Or G =2 Pyiyo
for n = 2. The proof will be completed by showing that G = H o2k for some
connected graph H of order » > 3. In order to get this, let T be a spanning
tree of G. Since Y£(G) < 74(T) < 5227, it lollows that v£(T) = 2n. By
Theorem 3, T = Ro 2k for some trce IR of order n. Let H be the subgraph
of G induced by V(R). We claim that G = /{ 02k. Suppose on the contrary
that G ¢ H o 2k.

Let V(H) = {v1,2, -+, vn}, and let V(R}) = {w: = 00,95, V2, , Uy o) =
7;} denote the set of vertices that belong to the path v; — %; in T for
i=1,2,---,n Let V(H') = {v1x,Vgk, -, Up;}. Then G contain two ver-
tices v € V(G) — V(H) and u € V(G) such that vu € E(G) — E(H o 2k).
Since v and u belong to the t(v) — t(v) path and the t(u) —t(u) pathin T,
there are two cases to consider.

Case 1 t(v) = L(u). Without loss of generality, assume ¢(v) = t(u) = v;.
Since k > 2, it follows that vu is a chord of the v; — 7; path.

Case 1.1 either v = v, or u = v,,. Without loss of generality, assume
v= v;k.

If u € {vi0, %1, ", U9y}, then V(H) U V(H') = {vjg} is a total -
dominating set of G yvith carding.lit.y 2n -1, whichis a contradic'tion.

Il u € {v4 ) Vikrzy " 1 Vigaiy}» then V(H)U V(H) U {vi-1y} -
{vip,v;} is a total k-dominating set of G with cardinality 2n — 1, which is
a contradiction.

Case 1.2v € {v;l,-- ~,v;(k_1)}.

If u € {vi0, %y, %)} then V(H)UV(H') = {v;g} is a total k-
dominating set of G with cardinality 2n -1, which is a contradict.io'n. ,

IFu € {v;(k 41y Vigrazyr "> Vicaiy }» then V(H)UV(H')U {v} —{vi0, v}
is a total k-dominating set of G with cardinality 2n — 1, which is a contra-
diction. , ,

Case 1.3 v € {v‘.(kﬂ), e ,v‘.(zk)}.
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If u € {v;0, v, "’v;(k—l)}’ then V(II)UV(H') U {u} — {v0,v;,.} is a
total k-domin'ating set of G with gardinality 2n—1, whichis a contl;adiction.

If u € {v;4 1), Vihr2)r " "1 Vigary}» then V(H)UV(H') U {Vie—1y} —
{vi0, v;ic} is a total k-dominating set of G with cardinality 2n — 1, which is
a contradiction.

Case 2 t(v) # t(u). Without loss of generality, assume ¢(v) = v; and
t(U) = 7.

Case 2.1 v # ”;(zk)- Then V(H)UV(H')U {u} - {v;o,v;o} is a total
k-dominating set of G with cardinality at most 2n — 1, which is a contra-
diction.

Case 2.2v = '";(2;;)

Case 2.2.1 u # vj, and u # vjp,). Then V(H)UV(H')U {v;,,} -
{vi0s v;-o} is a total k-dominating set of G with cardinality 2n — 1, which is
a contradiction.

Case 2.2.2 u = vjo. Then V(H)UV(H')—{v;,} is a total k-dominating
set of G with cardinality 2n — 1, which is a contradiction.

Case 2.2.3u = v;.(2k). Since |V (II)] = n > 3, without loss of generality,
we can assume v;.o is adjacent to at least onc vertex of H other than v
Then V(H)UV(H')U{v;5)} — {vi0, v;} is a total k-dominating set of G
with cardinality 2n — 1, which is a contradiction.

Since both Case 1 and Casc 2 lead to a contradiction, it follows that
G = H o 2k, which completes the proof.

Theorem 5 Let G and G be connected graphs of order p = (2k + 1)n
and k > 2 Then v£(G)+~L(G) = 'TI?-ZFI +2 if and only if at least one of the
following conditions holds:

(1) Both G and G are connected graphs of order 2k + 1;

(2) G = Cypyr or G = Cypyr

(8) G = Ho2k or G = H o2k for some connected graph H of order n.

Proof The sufficiency is obvious by Theorem 4. Now, we only consider
the necessity.

If either diam(G) > 3 or diam(C) > 3, say diam(G) > 3, then it is
obvious that £ (G) = 2. So, vL(C) = 2—3% By Theorem 4, it follows that
at least one of the three conditions of the theorem holds.

If both diam(G) < 2 and diam(G) < 2, then v4(G) = +L(C) = 2.
Hence, %ﬁ:—l = 2. That is p = 2k + 1. So, the condition 1 of the theorem
holds.
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