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Abstract

A Jacobi polynomial was introduced by Ozeki. It corresponds
to the codes over 2. Later, Bannai and Ozeki showed how to con-
struct Jacobi forms with various index using a Jacobi polynomial
corresponding to the binary codes. It generalizes Broué-Enguehard
map. In this paper, we study Jacobi polynomial which corresponds
to the codes over F,s. We show how to construct Jacobi forms with
various index over the totally real field. This is one of extension of
Broué-Enguehard map.
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1 Introduction

A Jacobi polynomial was introduced by Ozeki in [11]. It is a generalization
of weight enumerators of codes over Fy. Later, Bannai and Ozeki showed
how to construct Jacobi forms with various index using a Jacobi polynomial
corresponding to the binary codes [1]. It generalizes Broué-Enguehard map
[7, 2, 3]. In this paper, we study Ozeki polynomials as a generalization of
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the Jacobi polynomials which corresponds to the codes over Fp;. We show
how to construct Jacobi forms with various index over a certain totally real
field from Type II codes over Fy,, which is defined as even codes in [12].
This is another extension of Broué-Enguehard map.

2 Diagonalized Clifford-Weil Group and its
Invariant Ring

2.1 Notations and Definitions

In this section we recall the definition of Clifford Weil group. We follow
notations and definitions given in {5, 6, 10].

Let F = Fy; be the finite field of order 2/. Let B = {by,... ,bs} be an
FFo-basis of F such that tr(bib;) := Trg/r, (bibj) = 65, forall 4,5 =1,..., f,
where Trg/r,(a) denotes the trace of a € F over Fp. B is called a self-
complementary basis of F over [Fy. Define wtg: F — Z by

S
wtp()_ajbj|a; €Fa) :=#{j|a; =1,1 <5 < f},
j=1

to be the Lee weight with respect to B.

Now, let us take and fix a self-complementary basis B = {by,...,bs}
of F over Fy. For an element r € I, let h, m, and d, be the C-algebra
endomorphisms of C[z, | a € F] defined by

h(ze) := o4 Z(-—l)“(ab)mb, Me(2a) = Tar, dr(za) 1=1"*80")z,
beF

for any a € F. Similarly for an element r € F, let i), m® and d be
the C-algebra endomorphisms of C[z, ;| e € F, 1< j < g] defined by

RO (z, ;) =274 Y (~1)*gy 5, M (z,5) = Zar,
beF

d9)(za,5) = i8Ny 5
foranyaeFand1<j<g.
Definition 1. The group

Gy = (h,mp,dr | T € FY)
is called the associated Clifford-Weil group. The group

G = (K, m®,d | r € F*)

is called the diagonalized Clifford-Weil group.
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Remark 2.1. 1. One can check that the Clifford-Weil group does not
depend on the choice of basis.

2. The Clifford-Weil group and the diagonalized Clifford- Weil group can
be identified with the following matriz group;

Ruww = 2_4("1)“(1‘”)»

_f1 forrv=u _ [ ivten) fory=1y
(mruy = { 0 otherwise and (dr)uy = { 0 otherwise,

hl9), mS-g ) and d,(-g) are g-multiple diagonalized matrices of h, m, and
d, respectively; :

h 0 my 0
h m,
RO = \m®) = L
0 ' h 0 me
d, 0
o= T
0 d.

Example 2.2. In [4, 5, 10] the group Ggl) has been explicitly given as
Jollows;

11 1 1 1 0 0 0
e _<1 1 1 -1 -1 0 -1 0 0
f7\2|1 -1 -1 1 |'lo 0o - o |
1 -1 1 -1 0 0 0 —i
1 0 0 0 100 0
0 =i 0 0 0i00>
00 —i 0o |'loo1 o
00 0 -1 000 —i

3 Type II codes over Fy; and Invariant Ring
In this subsection we define Ozeki polynomial which is generalization of a
Jacobi polynomial studied in [11]. Its name was already appeared in [8].

A code C of length n over Fy/ is a Fys-subspace of ;. An element of
C is called a codeword. Let v = (v1,%2,...,vs) € {1,2,...,9}" be a vector
of length n.
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Remark 3.1. Note that the number of such vectors v can be identified as
number of partition of a set {1, .., g} into n-sets by the following correspon-
dence;

v = (v3,v2,...,0n) & (W1, w2, ..., Wn),

where for eachk=1,...,9, wx = {j | v; = k}.
The Ozeki polynomial of C masked by v is

n
0Zc(; X) =Y [ zes.us

ceC j=1

which is a polynomial over Z with 2/g variables.
The inner product on [}, is given by the usual Euclidean norm;

[, 0) =Y wjus,u= (u3),v = (v;) € Fy,.
j=1

So, the dual C* of C is defined as C* = {v' € F, | [v/,v] = 0for all v €
C}. A code C is called self-dual if C = C*. The Lee weight of a codeword
is the sum of Lee weights of codeword entries defined in Section 2.1 with
respect to a fixed self-complementary basis.
A self-dual code over Fy, is said to be Type II if the Lee weight of every
codeword is a multiple of 4.

We now define invariant polynomial ring; let G be a group.

C[X]C := @®e»1{F(X) € C[X] | F is homogeneous with
deg(F)=¢,A-F(X)= F(X),VAe G},
Here the action of a group G on C[X] is defined as
A-F(X):=F(A-X).

Theorem 3.2. 1. Let v = (v1,v2,...,%,) € {1,2,...,9}" and C be a
Type II code of length n over Fos. OZco(v; X) is an element of the
invariant polynomial ring

{(9)
ClzajlaeF, 1<j Sg]Glg
of G,

2. The invariant ring is a graded ring as

. C(Q) . G(IQ)
ClzajlacF, 1<j<g|°f =@Clza;lacF, 1<j<g],’ .

The each homogeneous degree is divisible by 4, i.e. £€=0 (mod 4).
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Proof.
1. It suffices to show that h(® and d') preserve OZc(v; X) for any

rEe Fz!-
n
ICIKDOZo(w; X)) = Y Y [[(-D= )z, ,,
u€F?, ceC j=1
= Z Hmc,,v, Z ( 1 tr(u-c)
ceC j=1 u€F, s
and
(1) = {lCl ifueCt
: L
el 0 ifugC-.
Therefore

n
(CIKP (025w X)) = 16413 T e
cGC‘j

“R(0Zo(v; X)) =) sz,

ceC j=

Hence h{9) preserves O0Zc(v; X).
Moreover it is clear that

d#)(0Zc(v; X)) =) i) Hmc,,u,
cEC
Then result follows.
2. This is clear since the diagonal matrix ¢/ is an element of G(fg) ( [10p).

a

4 Jacobi Forms over the Totally Real Field
K ,

We recall the definition of Jacobi forms over the totally real field X and
theta-functions. Here, K denotes the totally real extension field of Q with
extension degree f and Ok denotes its ring of integers. We follow the
definition given in [5].
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4.1 Jacobi Group
The Jacobi group of the totally real field K will be denoted by

[ (Ok) := SLy(Ok) x O%.

This group acts on H/ x C/, where H denotes the complex upper half
plane. Variables of this space will be listed as,

(r,2) == (71, ..., T 210 .-+, 21).

The action of I'{ (Ok) on the space H/ x C/ are given by,

y 8) 1A= Cmr gy T, 1 6 30, + 60

. S
e 7(f)7',+6(f)
M a)- (1, 2) = (11, 72y 21 4+ A7 4 Mz + A 4 )
for
(: 'f;) € SLy(Ok) and [\, 4 € O%.

Here o) denotes an algebraic conjugate of af?).

Remark 4.1. [t is known that SL2(Ok) is generated by the matrices

(%) (F) eeon

4.2 Jacobi Forms

We first introduce the following notations; for 7 € H/,z € Cf,v,6 € O,
denote

f
N(y7 +6) = H('y(J)Tj + 6,
i=1
X a2 f 2"im(j)ﬁ"(j)‘?
e2m’l‘r(m$,—+-5) = He + ;460 ,
Jj=1
J 2 )
e—21ri'I¥(m(A’T+2a\z)) = H e—2m’m(’)()\(’) r,-+2,\(ﬂz,)_

=1
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Definition 2. Given k € 3Z and m € Ok, a function g: Hf x C/ — C is
said to be a Jacobi forms of weight k and index m for a totally real field K
if it is analytic function satisfying

1.
(@ lom M)(r,2) = N(yr+8) ke~ T2a)5(0 . (7, 2))
= g(Ta Z),
for any
M= (; ;) € SLy(Ox),
2.

(9 Im D\ )7, 2) 1= e 2 TMAE T4 (0 (4] - 2)
= g(T) z), V[)‘a ﬂ] € Ok,

and
8. it has a Fourier expansion:

g(‘r, z) - Z C(Tl, r)621ri Tr(n'r+rz).

n,r€6x' n>0

Here 6,_(‘ is the inverse different of K.

The C-vector space of Jacobi forms of weight k and ivndex m for the
field K is denoted by Ji m(SL2(Ok)).

4.3 Theta series

To state the main theorem, we need the transformation formula for theta
series. In this section we state, without proof, the useful properties of theta
series studied in [5].

Let us assume that a field K is totally real with an inert ideal (2). Then,
the reduction map

h : OK and ]FQI

is an homomorphism with Ker(h) = (2). So, each element a € O modulo
the ideal (2) can be regarded as an element a € F,,. Now, consider the
following theta series ; for each a,

: r2r
08(7_, z) = Z e2miTe(55T+r2) (1)
re&,‘(',rew-‘(a)

Then, by the Poisson summation formula, the theta-series satisfies the fol-
lowing transformation formula[5];
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Lemma 4.2. 1.

Oy (5 5 =@ ™0, (n),  for any e O

-_— 1 — . o
0ulis (§ TP =2x () F) T e

vEOK /20K
with x4((‘1’ ‘01)) =1.
3. (0.1 [Nk (7,2) = 0,(7, 2).

The following result is known in [5).

Theorem 4.3. For each ﬁ € Ok, define the diagonal malriz Ag, indezed
by Far xFos, (Ag)uv = D 8u,v. Then the Clifford group is generated
by

Gy=<h,Ap|VYB € Ok >,

and so the diagonalized Clifford group is
G =< b9, AP |VB e Ok >

5 Main Theorem and Example

The following theorem gives a relation between the invariant polynomial
space of Clifford group and that of Jacobi forms with various index.

Theorem 5.1. For nonnegalive inlegers 1,12, .., ig, with Z’}:, i =¢
. G(ﬂ)
let ClzajlaeF,1<5< Q]s‘fi,,..,i,
G(lﬂ)

9le

as the subspace of Clza jla€ F,1 <j <
consisting of the polynomials
h(xa, 1, Zag, 1y zﬂ,f,l‘l Ta,,2)Tagz,2) 3827,2, -y Lay,gy -‘:xa,r,g)

whose degrees with respecl t0 Ta, 1, Tag,1) Taa,1; s Tage, 1, GT€ 11, degrees with
respect t0 Ta,,2,Zaz,2)Tas,2) - Layr,2 OTE i, 80 on. In general, degrees
with respect Lo Ta, j, Taz,j) Tag,jr -1 Tagr,j OT€ ij. Now, take an arbitrary
m1, My, .., Mg € Ok. Then, the map

G(D)
. )
V: @¢Clza;,1, Tag,1s -y Zage,1> Tay,2) Taz,2s -» Tai,g» "'-'”a,r.g]il,i-,,..,i,

—_ ®£J’§‘T"'(Z:=| i,-(m,-)’)(SLQ(OK))
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given by, for any
G(’n)
h € C[xal,lbzaz.lr .y 3a,r.l,1‘a1,2, ZTaz,2) -y xa;.g: 13} zaar,g]ihiz,,,_ig: the fOI'
lowing substitution map
Za,,1 — 0a, (27,2m12), 20,1 — 0a, (27,2m,2), ces Tage,1 = Oa, (27,2m, 2),
Tay,2 = Oa, (27,2m22), Tag,2 = 0ay(27,2m22), ..., Taye 2 — 04y (27, 2ma2),
Tay,g = 0ay (27,2my2), Tay,g — 0,y (27, 2my2), s Tage,g = az,.(2‘1', 2mgyz)
is an algebra homomorphism.
Proof. Let

H(r,2) = h(0a,,1(27,2m12),...,.., Ba,e,1(27, 2m) 2), 04, 2(27,2m22), ...,
w1 0a,¢,2(27,2m22), ..., 0a, (27, 2my2), .., Baye,9(27,2my2)).

Since SL2(Ok) is generated by two types of elements, say, S}, := ( (l) ? ) ,
0

1
L. H(T-i-ﬂ,z):H(T,Z),VﬁG Ok,

for each b € Ok, and T := ( _01 ) , it is enough to check that

2. Ni(r)-$e-2mT(TE, i;m,’-)'—f)H(_%, ) = H(r,z),
3 e—ZwiTr((Z;,’:l i,-mg)(,\21'+2,\z))H(,r’ (A ) 2) = H(T, 2).

The first relation follows from the transformation formula of theta series
given in Lemma4.2 and Theormd.3. Next, note that

22

1 mz 0 -1 R
0[-‘(_— _)= X(l 0 )N(%)%CTRSTT( )

T r

.Tr(Fu!
{ZuEOKNOK e?m 0,(r, mz)}.

So, again, the second relation follows from Lemma4.3 and Theorem3.2.
Last transformation formula is immediate from an elliptic property of theta
series given in Lemma4.2. Finally, the property of Fourier expansion can be
derived directly from theta series expansion. This completes the proof. O

Remark 5.2. Banni and Ozeki first studied Ozeki polynomial to construct
Jacobi forms of various index, which can be realized as the special case, i.e.,
f =1 in Theorems5. 1.
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5.1 Example; case when f =2 and g =2

Let Ok be the ring of integer of the field K = Q(v/5). One can check that
O=Za+72c%a?-a-1=0.
So, the reduction map modulo (2)
h:0 —Fa
given by h(aja + aza?) = a; (mod (2))a +az (mod (2))a? is a homomor-
g‘};:sm with Ker(h) = (2). We present each element a in Fy2 as a = (a;a2) €

Example 5.3. (Theta series)
In this case we have the following four types of theta series;

302 +7b%+8ab2a+6b
Brooy(T,2) = ) q°@ 70 ¥Babc2ateh,
a,beZ

810)(7, 2) = qg Z q3a’+7b’+806+30+4bc2a+6b+1

a,bEZ
k3 3a? +7b% +8ab+4a+6b~2a+6b+3
Bo1y(7,2) = ¢ Z q ¢ )
a,beZ
2 362 +76%+ 14ab+7a+10b »2a+6b+4
Bony(r.2)=q% > _ g ¢ )
a,bEZ

It turns out that we have three distinct Ozeki polynomial for every possible
v e {1,2}%

Example 5.4. (Ozeki Polynomial) Let C be a code given
C= 111 1
T\ 01 w W
1. Forve {(1,1,2,2),(22,1,1),(1,2,1,2),(2,1,2,1),(1,2,2,1),(2,1,1,2)},

O0Z¢c(v;Zoy, Z02, T11, 12, Twl, Tw2, T2 1) Ly22)

2,2 2,2
= 27013()24'210111lszxw32+2301xwlzl2$w72+22012w21312$w2+$11$12
+2Z11Zw1Z02Zy22 + 2211Z21202Tw2

2 2 2 .2
+Ty,1 Ty + 2Tw1 Tu2 1202T12 + Tyy21 Ty29
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In this case, for instance,
OZc(v; 0(00)(7, T, 2, 2), 6(0,0)(7,7,0,0), 0u1y(7,7,2,2),0(11)(7,7,0,0),

0(1,0) (T’ T, %, Z), 0(10) (T, 7,0, O)a 0(0])(7-1 T, %, z), 0(01)(7-: 7,0, 0))

is an elliptic Jacobi form of weight 4 with indez 4.
2. Forve{(1,1,1,2),(1,1,2,1),(1,2,1,1),(2,1,1,1)}
OZC'(”; Z01, 02, 11, 12y Twi, Tw2, Tw?1, $w22)

3
= T, To2 + 3T01T11Tw1Tw22 + 3Z01211Z421 T2

+3T01Tw1Zy21Z12 + x?1x12 + 3T11Tw1Ty21Z02 + x?,,lzuﬂ + x‘zﬂ 1Zw22
In this case, for instance,
OZC(’U; 6(00)(71 T, 0’ 0)) 0(0,0) (T’ 7;a Z, Z), 0(11) (T: 7, Ov 0)1 6(1 1) (T: T, 2, Z),

0(1,0)(Ti 7,0, 0): 0(10) (TI T2, z)r 0(01)(7’ 7,0, 0): 0(01) (T: Ty 2, Z))

Here, E4 5(, 2) is an elliptic Jacobi Eisenstein series of weight 4 with
index 2 studied in [9].

3. Forve{(2,2,2,1),(221,2),(2,1,2,2), (1,2,2,2)},
OZ¢(v; o1, 202, Z11) 1,2, T, 1, Tw?2, Tw?], Tey22)

3
= Zp1Zpy + 3T01Z12Tw2Tw22 + 3T11T02Tw2T w22

+211%59 + 3Tuw1202Z12T w22 + TwiZog + 3Tw21202T12T w2 -+ Tw?1T29

In this case, for instance,

OZc(v; 000)(T, 7, 2, 2), 6(0,0)(7,7,0,0),0011)(7, 7, 2, 2), 60(1,0)(7, T, 2, 2),
801,0)(7,7,0,0), 0(01)(7, 7, 2, 2), (01)(7,7,0,0)) = 16 B4 2(7, 2),
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