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Abstract

Let a, 8 be any numbers. Given an initial sequence agm (m =
0,1,2,-.-), define the sequences an,m (n > 1) recursively by

Gn,m = QBn-1,m + Ban-1,m+1, forn>1,m>0.

We call the matrix (@n,m)n,m>0 8 a generalized Seidel matrix with a
parameter pair (a, 8). If @ = @ = 1, then this matrix is the classical
Seidel matrix. For various different parameter pairs (a, ) we will
impose some evenness or oddness conditions on the exponential gen-
erating functions of the initial sequence ao,» and the final sequence
Gn,0 of a genaralized Seidel matrix (i.e., we require that these gener-
ating functions or certain related functions are even or odd). These
conditions imply that the initial sequences and final sequences are
equal to well-known classical sequences such as those of the Euler
numbers, the Genocchi numbers, and the Springer numbers.

As applications, we give a straightforward proof of the contin-
ued fraction representations of the ordinary generating functions of
the sequence of Genocchi numbers. And we also get the continued
fractions representations of the ordinary generating functions of the
Genocchi polynomials, Bernoulli polynomials, and Euler polynomi-
als. Lastly, we give some applications of congruences for the Euler
polynomials.
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1 Introduction to Generalized Seidel
Matrices
Let a, B be any complex numbers. Given an initial sequence aom (m =
0,1,2,---), define the sequences an,m (n > 1) recursively by
Apnm = QOn_1,m + Ben—-1,m+1, forn>1,m>0.

We call the matrix (@n,m)n,m>0 & generalized Seidel matrix with a parame-
ter pair (a, 8). If @ = 8 = 1, then this matrix is the classical Seidel matrix
(ref. [3]).

Proposition 1. Given an initial sequence apm (m = 0,1,2,---), define
the sequences an,m (n > 1) recursively by

Gnm = Qpn—1,m + Ban—1,m+1, (n 21lm2> 0)- (1)
Then the sequences an m can be expressed as

n

Anm = Z (:) an-kﬂkao,m+k- (2)

k=0

The sequence ayp is called a final sequence. From Eq. 2 the final
sequence ay o has the relation with the initial sequnece ap,n:

o= (:)a"'kﬁkao,k- @)

k=0

oo n
Proposition 2. Let A(z) = 2 2'%’2— be the exponential generating func-

tion (egf) of ao,n and A(z) tzzoegf of ano. Then
A(z) = e**A(Bz), or Alz)= e-“/ﬂfi(%). (4)

[o <]
Proposition 3. Let a(z) = Zao,,,m"'“ be the ordinary generating func-

=0
tion (ogf) of ap,n and a(z) be the ogf of anp. Then

=) o a(a) = gal br_y. 5)

Remark 1. The ogf a(z) (resp. a(z)) is, in a formal sense, the Laplace
transform of A(z) (resp. A(z)), that is,

/ " At)e**dt = a(z).
0

a(z) = fa(

l—-ax
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When we impose certain evenness or oddness conditions on the egf A(z)
and A(z) of some generalized Seidel matrix, its initial and final sequence
will be equal to some classical sequnece such as that of the Euler numbers,
tangent numbers, Genocchi numbers, etc..

Case A: For o = § = 1, Dumont [2] imposed the following conditions on
the egf A(z) and A(z)

Al. A(z) is an even function and A(0) = 1.
A2. A(z) —1is an odd function.

These conditions determine uniquely the initial sequence ag,, = E, and
the final sequence a, 0 = Tp, i.e. the egf are

o~ E,2"
Alx) = sechz=z -, (6)
& !
- _ _ 2\ Taz™
A(z) = l+tanhz=) - (7
n=0 )

where the numbers E,, and T, is the classical Euler numbers and tangent
numbers.
This resulting Seidel matrix is the “Euler-Bernoulli triangle” (ref. [2],

)

1 0 -1 0 5 0 -61
1 -1 -1 5 5 -61
0 -2 4 10 -56
-2 2 14 -—46
0 16 =32
16 -16
0

Case B: For a = —1/2 and B = 1/2, we impose the following conditions
on the egf A(z) and A(z):

B1. A(z) is an odd function.
B2. A(z) — z is an even function.

Then we have
o 9 o n
A(x) = 2zsechz = ZnEn*!w, and (8)
n=1
—_ 2x x anﬂ
i) = =51 = Lo (©)
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where G,, is the classical sequence of Genocchi numbers.

In section 2, we use the above conditions B1 and B2 to give a straight-
forward proof of the continued fraction representations of the ogf of the
Genocchi numbers.

The Springer numbers (ref. [2]) are defined by

- X\ Spz™
S(z)=e sech2:z:=z l

n=0

(10)

The even (resp. odd) part of the Springer numbers is what Glaisher (ref.
[2]) called the numbers P, (resp. Qn). That is to say,

coshz Sanz?" sichz _ Szn_,.la: +1
cosh 2z z (2n)!’ cosh 2z Z @2n+1) - (11)

Springer introduced these numbers for a problem about root systems, and
Arnold showed these numbers as counting various types of snakes (ref. [6]).
In the following we give some generalized Seidel matrices related to these
numbers.

Case C: For o = —1 and § = 2, we impose the following conditions on
the egf A(z) and A(z):

C1. A(z) — tanh is an even function.
C2. A(z) is an odd function.

2sinhz

Then we have A(z) = 1 + tanhz — sechz and A(z) = p

Case D: For a = l_and B = 2, we impose the following conditions on the
egf A(z) and A(z):

D1. A(z) + tanhz is an even function.
D2. A(z) is an even function.

2coshz

Then we have A(z) = 1 — tanhz + sechz and A(z) = P

Case E: Fora=0=1 /2, we impose the following conditions on the egf
A(z) and A(z):

El. A(z) — Ec—::%% is an odd function.

E2. A(z) is an even function.

264



€

Then we have A(z) = “oshm

= S(—=z) and A(z) = sechz.

Case F: For o = f = 1/2, we impose the following conditions on the egf
A(z) and A(z):

F1. e *A(z) is an even function.

F2. A(z) — 1 is an odd function.
Then we have A(z) = S(z) and A(z) =1 + tanhz.

Case G: For a =1 and 8 = 2, we impose the following conditions on the

egf A(z) and A(z):
G1. A(z) is an even function.
G2. e*A(z) — 1 is an odd function.

Then we have A(z) = sechz and A(z) = S(z).

In section 3-5, we give the continued fraction representations of the ogf
of the Genocchi polynomials, Bernolli polynomials, and Euler polynomi-
als. In section 6, we give some applications of congruences for the Euler
polynomials.

2 The continued fractions of the ogf of the
Genocchi numbers

In the following we discuss some applications on the continued fraction
representation of the corresponding ordinary generating functions.
We need a lemma from [2]

Lemma 1. The following representations of a series f(z) are eguivalent:

=TI ar 6T oz
f(m)_1+ 1 +1 41477
_ oz c1coz? cacaz? (12)
T l+tar-1l+4(czt+e)z—1+(cates)z—~ 7’
_ c;z? cocaz? cacsx> ...(13)

=T 1+(cr+co)z—1+(ca+ca)zr—1+ (c5+ )z —

Here we use the notation

a2 4 on
bi+ba+bs+ T Hb 4+
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to represent
a1
a2
as

by +
bo +

'.'bn-l'*“a_ﬂ

Theorem 1. The continued fraction representations for the ogf of the
Genocchi numbers are

o0

Zann+l

n=0

-2z zzz nz nz o nz ng (14)
14+1-141-14+""4+41-14+1-1+4+""

_ 2 fi z2 (nz)? (n:c)"’ (1)
l+z+ 1 +14+24+ "+ 1 +1+4z4+ "

T O ) L Ch T

T+1+ 1+ "+ 1 + 1 +
Proof. Consider the above Case B, i.e. the matrix GS(-1/2,1/2) with
conditions B1, B2. Since A(z) is the egf of Gn, @(z) is the ogf of Gi.
Assume

2

i(z) = T azr &z
T 14+ 1414+
2 oz cocsz?

Tt —
1+ (cr+c2)z— 1+ (cs+ca)z —

Since @(z) — 2 is an odd function,

Con—1 + Can =0, forn>1. (17)
From Proposition 3 and Equation 12 we have
_, =2z
a(z) = ~a(3)
-2z ., -2z ., -2z 4
— (x+2) c1C2(z+2) csc4(x+2)
- -2z — -2z | — -2z "
1 1
1+01(w+2) +(C2+Cs)(x+2) +(C4+Cs)(z+2)
_ —4z2 4cycox?
T (1-2a)2+(4—4a)z+4— —2z
1+ (c2+ 63)(:3 T 2)
403641:2

—(1-2c4—2c5)22 + (4 —4deqg —4cs)z+4—
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Since a(z) is an even function, this gives

l—¢ = 0,
Cin-2 + C4n—1 =0, 1—c4n—Con+1=0, forn2>1. (18)

Combining with Eq. 17 we obtain
Cin-3 =Cin-1 =N, Cin-2=C4n =-n, forn>1

This completes our proof (M}

3 The continued fractions of the ogf of the
Genocchi polynomials

Let the initial sequence be the Genocchi numbers Gy, in a generalized Seidel
matrix with @ = and 8 = 1. Then the egf of the final sequence becomes

- 2ze% X\ Gp(8)z
= %% == = ek el
A(z) =" Alg) = 2 ; T (19)
Here G,(4) is a polynomial in §, the so-called n-th Genocchi polynomial
(ref. [4]).

Now since the continued fraction representation for the ogf of the Genoc-
chi numbers is (see Eq.14)

a(@) = ) Gnz"*!
n=0

2

T nr nr nNr nr

rzzz nr nr nr nT
1+41-14+1-14+""4+1-1+4+1-1+4+"""

From Proposition 3

o0
z
a(z) = ) Gu(0)z™! = o(1=5;)
n=0
z2 z(1 — 0z) z z z 2z 2z
(1-4z)2+ 1 ~1-0z+1-1-96z+ 1 -1-4z
2z 2z nT ne nc nx

+1-1—6z+ "+ 1-1-dz+1 -1—oz+" """ (20)

Hence we get the continued fraction representation for the ogf of the Genoc-
chi polynomials.
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4 Analogies with Bernoulli polynomials

The Bernoulli polynomials B,(X) are defined by

teX t oo "
=2 BX) (21)
n=0
the Bernoulli numbers can be defined by B,, = B,(0).
Let the initial sequence be the Bernoulli numbers B,, in a generalized

Seidel matrix with & = § and 8 = 1. Then the egf of the final sequence
becomes

- Sz e B, (6)z"
A@) =A@ = 2 =y B0
n=0 )

that is, the final sequence is By (0).
Now since the continued fraction representation for the ogf of the Bernoulli
numbers is (ref. [1] Eq. A6, Al12)

n’z n’z

[ o]
= nt1 _ 2 ﬂ z/6 2n-1) 20@2n+1)
a(iv) ;an 1+ 1 _ 1 +...+ 1 _ 1 +..'.
(22)
From Proposition 3
S T
a(z) = ZB"(J)”’"H — a’(l_‘;z)
n=0
n?z nz
_ _z_ =2 /6 neD)  Foni1) 23)
1-6z+ 1 —1-6z+ "+ 1 —1-6z+ "

Hence we get the continued fraction representation for the ogf of the Bernoulli
polynomials.

5 Analogies with Euler polynomials

Let the initial sequence be the Euler numbers E,, in a generalized Seidel
matrix with @ = 26 — 1 and 8 = 1. Then the egf of the final sequence
becomes

- 2%z 2\ E,(6)2"z"
_ (286-1) — o(26-1) —_— — E :L.__
A(x) =e zA(z) =e % sechz = pon T1 = ! B (24)

n=0

that is, the final sequence is 2" E,(4).
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Now since the continued fraction representation for the ogf of the Euler
numbers is (ref. Corollary 3.1 of [2])
z?  22g2 n’z

oz X . (%)

o0
= "+1=£
a(z) =3 Bns 1+1+ 1 + 7+ 1 +

n=0

From Proposition 3

= — - n n+1 __ T
a(z) = §2 E,(0)z" " = a(———1 @i l)x)
z 2 n2z?

1-(20-1)z+1—-(20—V)z+"""+1-(20-1)z+" "

Hence we get the continued fraction representation for the ogf of the Euler
polynomials:

— 2t 12 nt?
n+l _ —_—
ZE"(W T 2—-(20-1)t+2-(20—1)t+ T +2-(20-1)t+ """

n=0

(26)
Remark 2. Using the same trick as above we can get the continued fraction
representations for the ogf of some of the other classical sequences that
appeared in Section 1. In case A, we can use Eq. 25 to get the continued
fraction representation for the ogf of the sequence of tangent numbers. In
case B, we can use Eq. 14 to get the continued fraction representations for
the ogf of (n+1)Ey,. In case E, F, and G, we can use Eq. 25 or the continued
fraction representation for the ogf of the sequence of tangent numbers to
get the continued fraction representations for the ogf of the sequence of
Springer numbers.

Remark 3. The continued fraction representations of the ogf of B,, G,
and E, are not unique (see e.g. Eq. 14, 15, 16). When we change the rep-
resentations in the above statements, the corresponding continued fraction
representations of the ogf of B,(z), Gn(z), and E, () are changed, simulta-
neously. For example, the corresponding continued fraction representation
of the ogf of G,(z), with Eq. 15, is

f: Gn (z)tn+1

n=0
2 2 t2
1+(1-2z)t+a(z—-1)2+ 1 +1+ (1 —2a)t+a(@ - )2+
(nt)? (nt)? e
+ 1 +14+(1-2z)t+z(z—-1)24+" """
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6 Congruences for Euler polynomials
Let p be an odd prime and 4 an integer. Let f(t) = ), ant” and g(t) =
3=, bat™ (n > 0) be two formal power series with integral coefficients. For
a non-negative integer m we write
fit)=g(t) (modm) if an=b, (modm) foralln>0. (28)
It is straightforward that
(1+42%h(2)) ' =1 (mod4)

for any h(z) with integral coefficients. Thus by Eq. 25

= T
nt+l
gEz,.z T 1422
oo
= Z(—l)"‘:r:z""'1 (mod 4)
n=0

This implies (ref. [5])
Esp = (-1)" (mod 4).
Since (2,p) = 1 it is clear that

f: Eq( 6)t"+1

n=0
2t t2 (p—1)22
2—(20—1)t+2—(26-1)t+ "+2—(20—-1)t

(mod p).

This enables us to obtain congruences for Euler polynomials. In the sequel
we give two examples with p =3 and p = 5.

Proposition 4. If (6,3) =1, then forn > 1

Eo(&) = 1
Ex(d) = 1-46 (mod 3). (29)
{ Exm_1(0) = 1494
If6=0 (mod 3), then forn>1
{ Ey(d) = 1
Ex(0) = 0 (mod 3). (30)
Egn_l(d) = 1
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Proof. Since (2,3) = 1, we have

oo
ZEn(a)zn+l
n=0
= 2z o (mod 3)
2 - (26 - 1)::: + m
2 2 _ 3
= z+(1+0)2° + (62— 0+ 2)x (mod 3).

14222 + (8 — 6%)23
If (4,3) = 1, then
— ntl T+ (1 +06)2? -8
> E.(0)zt = T3

n=0

(x4 (1 + 8)z® — 6°%) i zn

=0
o0 " oo
= z+(1+8)) " +(1-6)) =
n=1 n=1
If6=0 (mod 3), then
oo 2 3
Y E (0™ = T+z°+207
1-22
n=0
o0
= (z+22+22%) Z:cz"
n=0
o]
= z+ Z %",
n=1
Now we compare the coefficients of z", then we complete the proof. a

Using a similar trick, we can easily get the following proposition.

Proposition 5. If (4,5) = 1, then forn >0

Eo(6) =1
E4n+1(6) = 0 + 2
E4,,+2(6) = 52 -9 (mod 5). (31)
E4n+3(5) = 63 + 62 -1
Einia(d) = 363+0+1
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If6=0 (mod5), then forn >0

Eo(é) = 1
Ein1(8) = 2
E:n:;(é) = -1 (mod 5). (32)
Eoni2(0) = 0
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