AVOIDABLE SETS IN THE BicyYcLIC INVERSE SEMIGROUP
Naéndor Sieben

ABSTRACT

A subset U of a set S with a binary operation is called
avoidable if S can be partitioned into two subsets A and
B such that no element of U can be written as a product
of two distinct elements of A or as the product of two
distinct elements of B. The avoidable sets of the bxcychc
inverse semigroup are classified.

1. INTRODUCTION

If (S,-) is a set with a binary operation then a subset U of S is called
avoidable if S can be partitioned into two subsets A and B such that the
partition avoids U, that is, no element of U can be written as a product
of two distinct elements of A or as the product of two distinct elements
of B. Avoidable sets in (N, +) were first introduced by Alladi, Erdés and
Hoggatt [AEH] and further studied in [Eva, Hog, HB, SZ, CL, ZC, Gra,
Dum, Del]. Avoidable sets in groups were investigated in [De2).

In this paper we initiate the study of avoidable sets in inverse semi-
groups. An inverse semigroup is a semigroup such that every element s has
a unique adjoint s* satisfying ss*s = s and s*ss* = s*. Inverse semigroups
were first studied by Vagner [Vag] and Preston [Prl] who considered in-
verse semigroups as the most promising class of semigroups for study. An
inverse semigroup is the next best thing to having an actual group. While
a group can be represented as bijections on a set, an inverse semigroup can
be represented as partial bijections on a set. In fact, a group is an inverse
semigroup with a single idempotent. A compreheusive reference for inverse
semigroups is [Pet].

As a starting point ol this study, we classily the maximal avoidable
sets in the bicyclic inverse semigroup, which is perhaps the most important
inverse semigroup. Its role in semigroup theory is similar to the role of Z
in group theory. It is one of the basic building blocks [Pr2] of the mono-
genic inverse semigroups, that is, inverse semigroups generated by single
elements. A possible continuation of our study could consider the other
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building blocks of monogenic inverse semigroups, in particular, the inverse
semigroups generated by finite forward shifts.
The bicyclic inverse semigroup B is the set

B={(@b]a20,a+b>0}CZxZ
equipped with the following multiplication and inverse
(a,b)(¢,d) = (max{c+d,a} —d,b+d), (a,0)* = (a + b, -b).

Note that B can be represented as a semigroup of partial bijections of the
nonnegative integers where the element (a,b) is represented by the shift
of the set {n € Z | n > a} by b. Note that B is the inverse semigroup
generated by the element (0, 1).

Given U C S the associated graph G sy is the graph whose vertex set
is S and two vertices r and s are connected by an edge if rs € U or sr € U.
Then U is avoidable in S exactly when Gy is bipartite. So to show that
a set U is unavoidable in S, it suflices to find a cycle in Gsy with odd
length.

The author thanks the referec for suggestions that greatly simplified
the paper.

2. EVEN ELEMENTS

An element (a,b) of B is called even il b is even, and odd if b is odd.
Since the operation on B is written multiplicatively, it might be more ap-
propriate, but less descriptive, to call even elements perfect squares. It is
clear that a product is odd exactly when the factors have different parity.
This shows that the set of odd elements is avoidable since the partition
of B separating even and odd elements avoids the set off odd clements.
Only special even elements ol 5 can be in an avoidable set as the following
proposition shows.

Proposition 2.1. If («,b) € B is even such that a > 1, a+b 2‘ landb#0
then U = {(a,b)} is unavoidable.

Proof. Let
= ak = (I—) r= (+2-b-
p= o) q= L,'Z s =\a 2'9
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where o will be chosen later. Then ¢ # 7 since b # 0. Also

b b b b b b
rq = (a+ 3 3) (u, -2-) = (ma,\ {a+ §,u+ -2-} - 5,1)) = (a,b) € U.

Ifb>2 then let & = a — 1. It is clear that p € B. Then

pq= (a— l,g) (a,g) = (max{a+£2),a- 1} - g,b) = (a,b) € U,
rp= <a+2,2) (a—l,k)
2'2 2
= (ma.x{u— 1+2,a+-’f} —2 b) = (a,b) e U.
2 2 2’ ’
It is clear that p # ¢, and since b # —2 we have r # p.
Ifb< ~2thenlet o = a+% —1. Thenae>-b>2andsoa+b>0>

—a + 2 which implies that o > 0. Since ¢ + b > 1, we also have o + % >0
and so p € B. Then

= +-b-—1b aé)
pg=la 2 )2 s2

b b b
= (m.m{a+ §,a+ 57 l} - ;Z-,b) = (a,b),

and since b < —2, we have ¢ + £ > b — 1 which implics

) = +2£ +2_12
pP=1la 2,2 a 5 ,2

l
= (ma.x {u+ b-1,a+ é} - g,b) = (a, D).

It is clear that p # r and since b # 2 we have p # q.
In cither case {p,q,7} forms a triangle in G . a

The following figure shows the even clements of B that are not impos-
sible in an avoidable set:

1g (0

(1,0)

(2’_2) (21 0)

X (3,0)

(4,—4) x (4,0)

X X (5,0)

(6,—6) X X (6,0)

2) (0,4)

X

e

X X X X X X
see XX X X X
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This motivates the following notation:
D:= {(a,—a)|a>2, aeven}, &:={(a,0)]a>1},

F:={(0,b)|b>2, beven}.

By Proposition 2.1, no even element outside DU & U F U {(0,0)} can be
in an avoidable set. In the following sections we find the avoidable sets
containing each type of these even elemcnts.

3. SETS CONTAINING (a,—ua) € D
We investigate the possibility of U being avoidable if UN'D # @.
Lemma 3.1. If(a,—a) € D, ¢ > 0 and c+d > 1 then U =

{(a, —a), (¢,d)} C B is unavoidable.
Proof. Let

[{) ({3 a ({3 [{
= - — y = —_ —_— I= ¢ l ").
T (2’ z) ® (2+1’ 2)’ ("‘ *3

It is clear that r,s € B. We also have & € B because c+d+af2>c+d 2>
1>0.
It is clear that r # s. We canunot have r = 1 hecause that would imply
1 <c+d=0a/2-a=—af2 <0, which is impossible. We cannot have s = ¢
either because that would imply 1 < c+d=¢af2+1~-a=1-a/2< 1.
It is easy to see that rs = (g, —a) € U. We also have

w= (§1-8) (eard)
= (max {c+d+%,% + 1} —d- g-',d) =(¢,d) e,

and similar calculation shows that rt = (¢,d) € U. So {r,s,t} forins a
triangle in Ggu. o

We now consider the case when ¢ + d = 0, thal is, d = —c.

Lemma 3.2. If(a,—a) € D,c# cand§ < cthenU = {(a,—a),(c,—c)} €
B is unavoidable.

Pruof. Since a # ¢ it is easy to sec that
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are different elements of B.
It is also easy to sce that rs = (¢, —a) € U. We also have

(]

= (ma.x{l,c— %} + 5’_6) =(¢,—c¢) €U,

and similar calculation shows that tr = (¢, —¢) € U and so {r,s, !} formns a
iriangle in G . a

Corollary 3.3. If (¢,—a),(¢,—¢c) € D and « # ¢ then U =
{(a,—a),(c, —¢)} C B is unavoidable.

Proof. Since a # ¢ we can assume, without loss of generality, that a < c.
But then § < ¢ and so the result follows {rom the previous lemma. o

Proposition 3.4. If (¢,—a) € D, 0 < c< e < § and ¢, e arc odd then
U = {(a,=a), (¢, —¢), (¢,—¢)} is unavoidable.

Proof. 1t is clear that

a—c-—¢ a+c—c a+c—e
r= 01—’ 8= s s
(05557 = (5 -),

[ = a—c+e a—-—c+ce
s 2 2

are different elements of 5. We have

o = a+c—e _a+c—e Ou.—c—e
] - 2 ! 2 ’ 2

w—-¢c—¢ a+c—e a—c—c
= (max{ SR 5 } - > -—(:) = (¢,~c) € U,

L= u+c—c a+c—e G—Cc+ e a—c+e
sl = 5) , 5 5 , 5

L+ c—¢ —c+e
=(ma.x{0,”+; (}+“ ; (,—u.)z(u,—u)EU,

o = a—c+e awa—c+e Oa—c~e
— 2 ) 2 k) 2
a—-—c—¢c a—c+e a—c—c
= (m.u\{ D) s 2 }— B) ,—-() = ((3, —C) EU»

and so {r,s,t} forms a triangle in G a
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Proposition 3.5. If (a,—a) € D and 0 < ¢ < § then U =
{(a, —a), (¢, —¢),(0,0)} is unavoidable.

Proof. 1t is clear that

p=(0,0), g=(¢,—¢), r=(a—¢—(a=c)),
s = (O,(l. - C), i = (a, —u)

are different elements of B. It is easy to check that pg = (c,—¢), gr =
(a,—a), rs = (0,0), is = (¢, —c) and pt = (¢, —a). Thus {p,q,7,s,t} forms
a cycle with odd length in Gp,u. a

We are going to denote the remainder of y modulo m by [¥)in-

Proposition 3.6. Let (a,—a) € D and ¢ be odd. If0 <c < § thenU =
{(a,—a), (¢, —¢)} is avoidable. Il ¢ = § then U = {(a, —a), (%,%),(0,0)} is
avoidable.

Proof. Let

a—2¢ 20—-3¢c-1
A= {(w,:u) | —=— S Wla-e < -—,,——}\

{(% + k(e —¢), —% — k(e — (')) | k=0,1,.. }

and B = B\ A. Note that [v)o— = 45 il and only il v = —§ +1(a—c) for
some I € Z. We show that the partition {4, B} avoids U. The following
figure shows the partition when « = 8 and ¢ = 3. Note that a=2¢ = 1 and
2a=3c=l = 3 in this case.

—9—8—7—6—5—5—_{——2—101234(1—(*
0 . 10001 1
1 .. 110001 1
2 .0 110001 1
3 . . 0 0 110001 1
—af2 .1 0 0 110001 1
5 .1 0 0 0 110001 1
6 .11 0 0 0 110001 1
7 . 0 11 0 0 0 110001 1
- .0 01 1 0 0 0 110001 1
9 1 0 01 1 0 0 0 110001 1

O 0 0 1 1 0 0 0 110001 1
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If (o, —a) = (2, ¥)(w, z) = (max{w+ 2,2} — z,y+ z) then cither w+2z > 2
and w = ocora >w+zand 22—z = o In the first case we have
0<z+y<w+z+y=0a—a=0 which can only happen if y = —2. In
the second case we have y = —a — £ = —z as well. Thus we only have to
show that (2, —2)(w,z) is not in U unless the two factors are in separate
classes.

Let s = (2,,y) # 1 = (w, z) and suppose that s and ¢ are in the same
equivalence class. If st € {(a,—a),(¢,—¢)} then cither y + 2 = —a or
y+z = —c. So we need to study the effect of the maps v = —v —a
and v = ~v — ¢ on the congrucnce classes modulo & — ¢. Since a and ¢
are congruent modulo ¢ — ¢, we only need to study one of the maps. If

222¢ < [v]a—c < @ — 2¢ then

2c—a+2(a ¢) = a-;2c.

0=~(a—2¢c)—a+2(a—c) < [-v—a)o—c < - 5

Ila-2¢< [v)o— < 2=3e=L then
20— 3c+1 _ 20-3c-1
2 T2
< [=v = alu-e
<—=(a—=2¢)—a+3a-r¢)

= - (.

—a+3(e—1c)

So

[v] c a—2¢ 20-3c—-1
a--c 2 b} 2

- 2(?] U [zu —:23(7+ l,u—c) .

if and only il

[“7-’ = “]a—cy [_1' —Jg-c € [01 -

[

First consider the case when ¢ < §. We must have [yl,-. = ade -
[zJa—c and SOy = =% + k(e —¢) and z = =% + I(a - ¢) [or some k, l € Z
Since0 < z=—y= 3 - k(e - ¢), we mnust lmw k<Oandsose€D.

Ust=(c,—c)then —c=y+z=-a+(k+l)(a—c)andso k+1=1.
Hencel=1-k > 1 and so ¢t € A which is a contradiction. If st = (e, —a)
then —a=y+z=-a+(k+l)(a—c)andsok+1=0. Il k=0thenl =0
andsoz=y. Sinces #{ wemust havew # 2= —y=—zandsot € 4
which is a contradiction. If k < 0 then I > 0 and so ¢ € 4 which is again a
contradiction.
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Next cousider the case when ¢ = £. If st € {(¢, —¢), (¢,a)} then again
we must have [y]a-c = "‘,‘;‘ [2la—c dlld so y = k§ and z = 5 [or somne
kleZ. Slnce0<z——J=—k‘,wclmvek<0 If k< 0then s € B
a.ud we get a contradiction like we did in the ¢ < § case. If k = 0 then

= (0,0) € Aandsot = (¢,—¢) € Borl = (a,—u) € B which is a
contradlctxon

If st = (0,0) then we must have s = (2, —z) and £ = (0,2) and since
s # 1, we also know that 2 > 1. Note that in this casc a —c=¢, & ."" =0
and -"-“—'-;c—“' = "—;'2. Ifa =2then B = {(x,—2) |2 =1,2,...} and so
s € B while ¢t € A. Since ¢ is odd we cannot have a = 4. Il @« > 6 then
0< g%_‘_l < 4 =a—c So wehave

il and only il either

«+2
(=v)a-c 2 ——— + (a—c¢)=——
1 1
or [~v]a—c = 0. So since s and ¢ are in the sane equivalence class, we must,
have —2 = — 2k for some posilive k and so s € B while 1 € 2L ]

Proposition 3.7. IfUND # @ and U is maximal avoidable then U is one
of the avoidable sets of Proposition 3.6.

Proof. Let (¢,—a) € UND. Il (0, —a) # (x,y) € U then by Lemmna 3.1,
we must have y = —2. By mena 3.2 and Corollary 3.3 we know that
2 cannot be even and z < £. I[ 0 < y < § then by Propositions 3.4,
35 and 36 U = {(a,—u) (.1,—.1)} is ma..xunal avoidable. If y = 0 or
y = % then by Propositions 3. 4 and 3.5, U cannot have yet another element
(w, -w) unless w = 0 or w = 4. This fact and Proposition 3.6 implics that

= {(a,—a),($,—%) (0, U)} is maximal avoidable. We considered all the
possibilitics 50 LIM(' are the only maximal avoidable sets intersecting D. 0O

4. SETS CONTAINING (0,h) € F
We investigate the possibility of U being avoidable it U N F # 0. Our
inain tool is the fact that F = D*, which allows us (o transform the results

of the previous secliou.

Proposition 4.1. The set U is avoidable if and only if U* is avoidable.
Furthermore, U is maximal avoidable if and only if U* is maximal avoidable.
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Proof. First, assume U is avoidable. Then U can be partitioned into two
subsets A and B such that the partition avoids U. Now {A4*,B*} is a
partition of U*. If 2,y € A* and x # y then 2*,y* € A and so y*2* ¢ U,
which means 2y = (y*2*)* ¢ U*. Similar arguent shows that no element
of U* is the product of two different elements of B*.

Now if U* is avoidable then U = U** is also avoidable by the previous

arguiment.
The second part of the proposition follows from the fact that if U and
V are subsets of 8 then U C V exactly when U* C V*. a

Proposition 4.2. IfUNF # 0 and U is maximal avoidable then either

U = {(0,0),(0,d)} where (0,b) € F, dis odd and 0 < d < 2, or U =

{(0,),(0,%),(0,0)} where (0,b) € F and & is odd.

Proof. By the previous proposition, U is maximal avoidable exactly when

U™ is maximal avoidable. Since UNF # @ and F* = D, we must have U*N

D # 0. Hence U* is one of the maximal avoidable sets of Proposition 3.6.
a

5. SETS CONTAINING (a,0) € &

We investigate the possibility of U being avoidable il UNE # §.
Lemma 5.1. I («,0) € & and max{c¢,c+d} > a then U = {(«,0),(c,d)} C
B is unavoidable,

Proof. Ifc > athen (¢,d)(e,0) = (¢,d). Il c+d > athen (a,0)(c, d) = (¢, d).
In cither case {(0,0), (a,0),(c,d)} forms a triangle in G y. a
Corollary 5.2. Ifa # ¢ then U = {(a,0), (¢,0)} C & is unavoidable.

Proof. Without loss of generality we can assumne that @ < ¢ and so the

resull [ollows fromn Lemma 5.1, a

Lemma 5.3. I (¢,0) € £, dand [ arcodd, d # [, max{c,c+d,e,e+[} < a
then U = {(«,0),(c,d), (¢, f)} C B is nnavoidable.

Proof. Without loss of gencrality we can assume that d < f. Let = = L34,

Y= ff,—" and

D= (CV, '1:)1 q= (ﬂ) :'/)1 r= ((3 + 7, —Il!), N = (”1 :‘:)1 = (”‘a _1:)'
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where ¢ and A will be chosen later. Since y — 22 = d and 2 +y = [ are odd
and so not zero, we have p # ¢ # r. Sincex > 0, we also haver # s # L £ p.
Since

J+d _ c+f+c+d> c+d+ec +d

= >
5 ) 2 5 c+d>0

cty=c+

andc+y—z=c+d >0, wehave r € B. Since e + 2 > a > 0, we have
s € B. We have t € BB hcecause

J—d _(e=[)+a+d S ('.+u—(

= - >
2 2 2 0-

a—-—Tr=a4—

wls

Since a+ 2 > ¢+ d+ 2 =c+y we have
rs = (c+y, —2)(a,2) = (max{a + x,c +y} - 2,0) = (¢,0) € U.

Also
s = (a, —z)(a,z) = (max{a + x,a} — x,0) = (¢,0) € U.

First, asswne that ¢ + 2 < «. Let o = e and 3 = minf{e,e + 2} > 0.
Then clearly p € B and since

min{e, ¢ + 2} +y = min{c + y, e + 2+ y}

1
miu {—+j—+7(—+L e+ f}

>min{c+d,e+ [} >0,

we must have g € 5. Now we have
pl = (e,x)(a, —x) = (max{e —x,¢} +2,0) = (¢,0) € U,
qp = (min{c, e + z},y)(e, )
= (max{e + z,min{e,e + 2}} —x,y+ ) = (e, f) €U,
rq = (¢ +y,—z)(min{c,e +x},y)
= (max{min{c,e + 2} + y,c+y} = y,d) = (¢,d) € U,

aud so {p,q,r,5,t} formns a cycle with odd length in Gpa.

Next, assune that ¢4 x > a. We need to consider two subeases. In the
first. subcase we asswne that ¢ < e. Let o = 0 and 3 = ¢. It is clear that
p€B. Sincee+y=c+z+y—x2a+d>c+d>0,wehaveq € B. It is
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clear that pt = (0, z)(a, —z) = (a,0) € U and pq = (0,z)(¢e,y) = (e, f) € U.
We also have

rg=(c+y,~x)(e,y) = max{e+y,c+y} - y,d) = (¢,d) € U,
and so {p,q,r,s,t} forms a cycle with odd length in Gpy.

In the second subcase we assume that ¢ > ¢. This implics that e+ d >
c+d>0. Let o =e+yand = c. Since

f+d e+ [+e+d

>
2 2 20

e+y=c+

ande+y+ux=e+ f >0, we have p € B. Sincoe

c+y=c+f+(l=0+f+(f+(l>(;.}.,l_.'_(:_i_(l

=c+d>
5 5 5 c+d>0,

we have g € B. Since e — a2 > e+ f—2=ec+y+x—2x=c+y we have
pl=(e+y,2)(a,—2) = (nax{a — z,¢ + y} + 2,0) = (,0) € U.
Also
m=(e+y,2)(cy) = (max{c+y,e+y} —y,[) = (e, f) €U,

rqg=(c+y,—z)(¢,y) = (max{c+y,c+y} —y,d) = (¢,d) € U,

and so {p, q,r, 5,1} forms a cycle with odd length in Gpp. a
Proposition 5.4. If («,0) € &, d is odd and d < « then
U= {(¢,0),(0,0)} U {(c,d) € B| max{c,c+d} < a}

is avoidable.

Proof. First assume that d > 0. For y € Z \ {0} deline

0 il [yla=0andy <0

0 if0<[yle <L
&y) =
1 otherwise,

Note that if y # 0 then ¢(y) # ¢(—y). Let

A={(xy) e Bly#0and ¢(y) =0} U{(x,y) € B|y =0 and = < )
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and B = B\ A. We show that the partition {1, B} avoids U. The lollowing
figure shows the partition when a = 6 and d = 5:

-7 -6-d-4-3-2-101%34d67
0 .00 0 11100
1 . 1000 11100
2 .1 1000 11100
3 .0 1 1000 11100
4 .0 0 1 1.000 11100
5 0 001 100011100
¢ . 1.0 00 1 1100 11100
7 110 0 0 1 110 0 11100

Let s = (2,y) # ¢ = (w,z) and suppose that s and £ are in the same
equivalence class. If st = (4,0) then y + 2 = 0 and so y = 0 = z. Hence
il st = (0,0) then we must have s = (0,0) = ¢ which is a contradiction. If
st = (@,0) then withont loss of generality we can assimne that 2 > w and
so 2 =a and w < a. Thus s € B and I € -1 which is a contradiction.

Now assume (c,d) € U and (¢, f) can be written as st or Is. Then
y + z = d and so we either have y = 0 and z = d or we have y = d and
z=0. Ify =0 and z = d then ¢ € B and so we must have s € B which
implies that 2 > a. Hence (¢, d) = st = (2,0)(w, d) = (max{w+d, 2} -d,d)
and so ¢ = max{w + d,z:} —d > & —d > a — d which is a contradiction. If
y =dand z = 0 then s € B and so we must have £ € B which implics w > a.
Hence (¢, d) = (z,d)(w,0) = (nax{w,z},d) and so ¢ = max{w,r} > w > a
which is a contradiction.

In case d < 0 the proof is similar but, we nead to replace the definition
ol ¢ by the following:

0 if0<[yle <&
#y)=40 if{yls=0andy >0
1 otherwisc. a

Proposition 5.5. IfUNE # @ and U is maximal avoidable then U is the
avoidable sct of Proposition 5.4.

Proof. Let (a,0) € UNE. I (0,0) # (¢,d) € U then by Leinma 3.1,
(¢,d) ¢ D, by Lemma 4.2, (¢,d) ¢ F and by Corollary 5.2, (c,d) ¢ £ Il
(¢,d) # (0,0) then d is odd and by Lemma 5.1, max{e,c+d} < a. Il (w, z)
is also in U and (c,d) # (w,z) # (0,0) then again max{w, w + 2} < a and
by Lemuna 5.3, z = d. a
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6. SETS CONTAINING (0,0)
Proposition 6.1. If d and [ are odd and d # [ then U =
{(0,0), (¢, d), (¢, f)} C B is unavoidable.

Proof. Without loss ol generality we can assume that d < f. Let 2 = %
andy = % Note that 2 #y # —2xsinccy —x =dand 2z +y = [ are
odd. Also note that c+y=c+d+a>2>0.

First, we consider the case when ¢ <e. Il

p= (011:)’ q= (1:) -3)1 r= (C, :'[), s=(ec+ y,:ﬂ), l= (e,y)

thenp#qg#r#s#t#p. Sincec+y >0, re B. Since

e+ffe+d> c+f-j-c+d>0

cty= 2 2 5 2

we have 5,0 € B. Since e +y + 2 =¢+ [ >0 we have 5 € B. Tt is casy to
see that gp = (0,0) € U and pt = (¢, ) € U. We have

qr = (&, —x)(¢,y) = (nax{c+y, 2} —y,y — x) = (¢,d) € U,
st =(e+y,2)(6y) = (max{c+y,e+y} —u.f) = (e, /) €T,

st=(e+y,z)(e,y) = (max{e+y,e+y}—y,[)=(e,[) €U

and so {p, q,7, 5,4} lorms a cycle with odd length in Gy .
Next, we consider the case when ¢ < . We need 1o counsider two
subcases. In the first subcase we assume that ¢ +y > 0. It is clear that

p=(0,2), g={(x,-x), r=(y), s=(c+y,—x), L= (e,)

arein Bandp# q #r # s # 1L # p. As helore, we have gp = (0,0) € U,
pt= (e, f) €U and rq = (¢,d) € U. We also have

qr = (z, —z)(c,y) = (max{c+y, 2} —y,d) = (¢,d) € U,

sr=(c+y,—z)(c,y) = (max{c+y,c+y} —y,d) = (¢,d) € U,

and so {p,q,7,s,t} formns a cycle with odd length in Gp.
In the second subease we asswne that ¢ +y < 0. If

p=(0,2), q=(ct+ury), r=(c+y,—), s=(c—ny), bL=(r,—x)
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then p#q#7 # s # 1 #p. It is clear that p,q,t € B. Sincec+y 2220
ande—z=c+y—-z—y=c+d—-y>c+d+ec>e>0, wehaver,s € B.
It is easy to see that tp = (0,0) € U and qp = (¢, f/) € U. Sincec 2 e+ x
we have

rq=(c+y,—2)(e+u,y) = (max{e+x+y,c+y} —y,d) =(cd) €U
We also have
rs = (c+y,—z)(c—x,y) = (max{c—x+y,c+y} -y, d)=(c,d) €U,
st = (¢ — z,y)(z, —2) = (nax{0,c -z} + x,d) = (c,d) € U,
and so {p,q,7,s,t} forms a cycle with odd length in G- a

Proposition 6.2. Ifd is odd then U = {(0,0)} U {(e, [) € B| [ =d} is
avoidable.

Proof. Let

dl -1
2

A= el < A=ty =kt k=12,

and B = B\ A. We show that the partition {4, B} avoids U. The following
figure shows the partition when d = 5. Note that “-'ﬂ_,_—'- = 2 in this casc.

-7 -6-5-4-3-2-101231d678924111213 ---

0 . 00011100111 0 01
1 .. 1T o0o011100111 001
2 .1 1000117100111 001
3 . 0 1 1000111700111 001
4 .0 01 10011100111 001
5 0 06 01 1000111200111 001
6 . 1 0 0 0 1 100011100111 001
7 1.1 0 0 0 1 100011100111 001

Let s = (2,y) # t = (w,z) and suppose that s and & are in the same
equivalence class. If st = (0,0) then s = (&, —x) and £ = (0,x). But s and
¢ cannot, be in the same equivalence class unless y = 0 = z. So s = 1 which
is a contradiction. If st # (0,0) then cither we have y = 0 and z = d or we

have y = d and z = 0. Since y = —xr and so negative, y =0 and £ = d and
s0 s € A but L € B which is a contradiction. a
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Proposition 6.3. Ifd is odd then U = {(0,0)} U {(e,f) € B| f=d} is
maximal avoidable.

Proof. Clearly U has infinitely many clements. In particular, if d > 0 then
(0,d) € U and il d < 0 then (—d,d) € U. Il (;,y) € U and y is odd then by
Proposition 6.1 y = d. If (2,y) # (0,0) but y is even then (z,y) € DUFUE.
This is impossible because then Propositions 3.7, 4.2 and 5.4 would imply
that U is finite. _ a

7. CONCLUSION

We are in position to give a full classification of the inaximal avoidable
sets of B.

Theorem 7.1. The maximal avoidable sets in B are the following:

(a) {(a,b) € B|bisodd};

(b) {(0,0)}U {(e,f) € B f =d} whered is a fixed odd munber;

(¢) {(¢,0),(0,0)} U {(c,d) € B | max{e,c+ d} < a} where e and d are
fixed such that d < a > 0 and d is odd;

(d) {(a,~a),(c,—¢)} wherea > 0, a is even, 0 < ¢ < £ and ¢ is odd;

2

() {(e,—a),(5,-%),(0,0)} where @ > 0, a is even and % s odd;
(f) {(0,),(0,d)} whereb >0, b is even, 0 < d < & and d is odd;

() {(0,b),(0,%),(0,0)} where b >0, b is even and % is odd.

Proof. Suppose U is maximal avoidable. If I has no cven clements then
U is the sct of part (a). So suppose U has an even clement, s. Then by
Proposition 2.1, s = (0,0) or s € EUDUF. I s € EUDU F then
by Propositions 3.7, 4.2 and 5.4, U is onc of the sets in parts (e dye,fg).
Assume s = (0,0) and s # L € U. If L is even then again L € EUDUF and
50 U is one of the sets in parts (¢,¢,g). I U does not have any more cven
elements then by Proposition 6.1, U is the set in part (b). a

The notion of avoidable sets can be generalized. We could call a set
U of S n-avoidable if there is a partition of S into n subsets such that no
clement of U can be written as a product of two distinet clements of the
saune subset. It would be interesting to know il there are sets that are not
d-avoidable in a group or an inverse semigroup.
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