Average distance in k-connected tournaments
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Abstract
The average distance p(D) of a strong digraph D is the average
of the distances between all ordered pairs of distinct vertices of D.
Plesnik [6] proved that if D is a strong tournament of order n, then
u(D) < 24 4+ L In this paper, we show that if D is a k-connected
tournament of order n, then u(D) < & + &2 + f ‘We demonstrate
that, apart from an additive constant, this bound is best possible.

Let D = (V, A) be a strong digraph of order n. The average distance
of D, u(D), is the average of the distances between all ordered pairs of
distinct vertices of D, i.e.,

1
#(D)=;L(—n:T)' > dpla,b),

(a,b)eVxV

where dp(a, b) denotes the distance from a to b in D. The total distance of
D is defined as d(D) = 3, sy cvxv @p(a,d). I G = (V, E) is an undirected

graph, then the definitions simplify to u(G) = (3) e {a,p}cv G (a,b) and
d(G) = ¥ (a3cv da(a,b). The diameter of D, diam(D), is the maximum
of the distances between all ordered pairs of vertices of D.

Unlike for undirected graphs, not much is known about the average distance
of digraphs. For a survey of results on the average distance in undirected
and directed graphs we refer to Plesnik [6).

In this paper, we are concerned with the average distance of strong tour-
naments. The following bound is due to Plesnik.
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Theorem 1 [6] Let T be a strong tournament of order n. Then

3 n+4 1

=< < — =

g SHD S == +3
Moreover, p(T) = 2 if and only if T has diameter 2, and p(T) = 2L
if and only if T is the unique strong tournament of diameter n — 1.

Taking the degree of a vertex, after whose removal the tournament
remains strong, into account, Moon [5] obtained a slight improvement of
Theorem 1. In this paper, we improve Plesnik’s bound for tournaments of
higher connectivity.

The follwing definition (see [2] and [1]) is motivated as follows. If the
vertices of a graph G stand for sites of facilities, where in each vertex exactly
one facility is located, then the average distance 1(G) gives the expected
distance between two randomly selected distinct facilities. Assume now
that some vertices host more than one facility and that the distance between
facilities located in the same vertex is zero. Let ¢(v) be the number of
facilities located in vertex v and let N = }°, cy(g) c(v) be the total number
of facilities. Then the expected distance between two randomly chosen

distinct facilities equals (}) - X tuwcvie) c@le(v)da (u, v).

Definition 1 For a weighted graph with weight function ¢ : V(G) = Z
define the distance of G with respect to c by
(@)= Y, -cuec)de(u,v),
{“»”}CV(G)

and the average distance of G with respect to ¢ by

-1
k@=(3) X dvedow)

{u2v}CV(G)
where N = 3, cy(g) ¢(v) is the total weight of the vertices in G.

The following lemma is a generalization of the well known fact (see for
example [3, 4]) that, among all graphs of order n, the path of n vertices is
the unique graph of maximum average distance.

Lemma 1 [2] Let G be a vertex weighted graph with weight function ¢, and
let k, N be positive integers, N a multiple of k, such that c(v) > k for every
vertez v of G and 3 ,cy(q) ¢(v) < N. Then

N—-kN+k
@ <N T

Equality holds if and only if G is a path of order n = N/k and each vertex
has weight k.
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Theorem 2 Let T be a k-connected tournament of order n. Then

1 k
y(T)<—+ 69+

Apart from the additive constant, this bound is best possible.

Proof. Let D = diam(T) and let u,» be a pair of vertices of T with
d(u,v) = D. For ¢ > 0 let V; be the set of all vertices at distance exactly
i from u and let n; = |Vi|. For each vertex w of T' let P(w) be a shortest
(u, w)-path. We use the convention that for every vertex w with d(u,w) > i,
we denote the unique vertex of V(P(w)) NV; by w'. Since P(w) is a
shortest (u,w)-path and since T is a tournament, the arc ww* is in T for
0<i<d(u,w) -

Letz €V, and y € Vj, where 0 <i < j < D. Then

d(z,y) +d(y,z) <j—i+5. (¥)

Casg 1: 2<i<D.
If yz € A then d(y,z) = 1. Also P = z,y*~%,y*1,4%,...,y is an (z,y)-
path and thus d(:c,y) <j—i+3.Ifzye€ Athen j=iorj =1+ 1. Hence
P =y,2"2,2"1 zis a (y, z)-path and d(z,y) +d(y,2) <4< j—i+4. In
either case, (*) follows
Casg 2: i=1.
Firstly, let yz € A. Let P be a shortest (z,v)-path. Then the first vertex
of P not in V; is necessarily in V,. Hence P contains a vertex z € V and
we have d(z, z) = d(z,v) — d(2,v). Since d(z,v) < D and d(z,v) > D -2,
we conclude that there exists a vertex z € V, with d(z,2) < 2. Therefore,
d(z,y) < d(z,z) + d(z,u) + d(u,y) < 2+1+j and (+) follows.
Now let zy € A. Then y € V;, U V; since there is no arc from V; to
V3UV4U...UVp. If now y € V; then we obtain, as in the case yz € A
above, that d(y,z) < 4, and if y € V5 then (*) follows from the observation
that P = y,u,z is a (y, z)-path of length 2 and hence d(z,y) + d(y, z) =
CASE 3: i =0, i.e., z = u.
Ifj > 2 then we have d(z,y) = jand yz € A. If j = 1 then 2y € A
and, as above, there exists a vertex z € V such that d(z,z) = 2. Again,
d(y,z) < 3, which completes the proof of (*).
Making use of (x) and the fact that 32, (%) + X o<icicp Mini = (3), we
obtain that -

D

an) = (L X + Y ¥ )@y +de)

=0 {z,y}CV; 0<i<j<DzeViyeV;

< iS(n’) Y. mni(j—i+5)

i=0 0<i<j<D
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= 5(;) + Z nin;(j — ). (1)

0<i<j<D

Note that the proof of () yields that equality in (*) cannot hold for all
x,y. Hence the above inequality is strict.

Now let G be the undirected path vg,v1,. .. ,vp with vertex weight function
¢, where c(v;) = n; for i = 0,1,...,D. Then }yc;cjcpmini(f — ¢) =
de(G) = (3)#e(G). In order to apply Lemma 1, we need to make sure that
all n; are at least k and we need to increase n to be a multiple of k. Since T
is k-connected, we have n; > k fori = 1,2,...,np_, and thus c(v;) > & for
i=1,2,...,D—1. Since ¢(vp) = 1 < k and possibly ¢(vp) < k, we define a
new weight function ¢’ by ¢/(vg) =0, ¢ (v1) = 1+ ¢(v1), and '(v;) = ¢(v;)
for i = 2,3,...,D = 2. If c(vp) > k then we let ¢/(vp-1) = c(vp-1)
and ¢ (vp) = c(vp), if c(vp) < k we let ¢'(vp-1) = ¢(vp-1) +¢(vp) and
¢'(vp) = 0. The definition of ¢’ can be interpreted as shifting 1 weight unit
from vg to vy, which reduces the distance of G by n—1, and, if np < k, also
shifting c(vp) weight units from vp to vp-1, which reduces the distance
by at most np(n — np) < (k—1)(n — k+ 1). Hence we have

-1
pc(G)s;‘cl(G)+(n—1+(k—1)(n-k+1))(§) S

If n is not a multiple of k, then increase the weight of any vertex v; until the
total weight of the vertices is a multiple of k. Let ¢” be the resulting weight
function and N = Y ¢"(v;) be the total weight. Thenn < N <n+k -1
Clearly, d (G) < dev(G) and thus

(’2‘) po(G) = der(G) < dew (G) = @’) Her (G)- )

Application of Lemma 1 to G and ¢” and a simple calculation yield

N—-kEN+k n—-1 n+2k-1
N-1 3k S1’!,+k—2 3k “)

per(G) <

Combining equations (1), (2), (3), and (4), we obtain
aT) < 5(;) +(n—-1+(k-1)(n—k+1))+ (Z)“"(G)

5(’2‘) +En-1)+ (1;’) 4o (G)

n n+k—-1\ n-1 n+2k-1
5(2)+k(”'1)+( 2 )n+k—2 *

IA

IA
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Division by n(n — 1) yields, after some simple calculations,

5 n+k-1)(n+k-2)(n-1)(n+2k-1)
wI) < 5+ ;2*( 6nk(n — 1)(n(+k %)
5 k (n+k 1)(n +2k—1)
= 5 ﬁ 6nk
n 9 k
< ®&te
as desired.

To see that the obtained bound is almost best possible, let & be fixed and
let n be a multiple of k. Consider the tournament T}, & on the vertex set

Var={aij|i=1,2,...,0/k, 7=1,2,...,k},
and arc set
{aijoiy |9 =i+1}U{ai00 5 | ' <i-2}U{ajaij | 5 <3}

Clearly, Ty, is k-connected for n > k. To determine the average distance
of Ty, x approximately, note that for distinct vy ;,v;,m € Vo x

[t = +1<Ldvij,vim) <|i—1| +4.
Summation over all {v; ;,v,m} C Vai and division by n(n — 1) yields

n? k n? k
- < u(Tor) < -
k=1 61 1 SH S GE T T e T2

Hence, for large n and fixed %,

I‘(Tn,k) + 0(1)

We remark that, although the extremal graph in Theorem 1 has a vertex
of out-degree 1, the bound in Theorem 1 cannot be improved significantly
for tournaments of minimum degree § > k, where k is a fixed positive
integer. To see this let k be constant and let n be large. Let 7" and
T" be two vertex disjoint k-regular tournaments of order 2k + 1 and let
P = v;,vs,...,Up_4x—2 be a directed path. Define T™* to be the tour-
nament obtained from the disjoint union of T, T" and P as follows: join
every vertex of T’ to vy, join vn_gk—2 to every vertex of T, join v; to
U1,v2,...,;—2 and every vertex in T", and join every vertex in T" to v;
fori = 2,3,...,n — 4k — 3. Finally, join every vertex of T" to every ver-
tex of T". Clearly, T™F is a strong tournament with minimum degree k.
Consider P, the tournament induced by the vertices of P. Then P is the
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unique strong tournament of order n — 4k — 2 and diameter n — 4k — 3.
Hence, by Theorem 1,

- n—4k+2 1
wP)=——+—m 3

Since k is constant and n is large, all except O(n) pairs of vertices of T™ ok
are in P. Also, for any two vertices of P, their distance in P equals their
distance in T™F, while for the remaining O(n) pairs {u,v} of vertices we
have 1 < d(u,v) < <n-1. Therefore, d(T™*) = d(P) + O(n?) and thus

p(T™*) = w(P)+0(1) = 2 + o),

and p(T™F) differs from the upper bound in Theorem 1 at most by an
additive constant.
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